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Abstract
Plasma soluble Receptor for Advanced Glycation End-products (sRAGE) is a strong marker

of vascular outcomes although evidence on the direction of association is mixed. Compared

to whites, blacks have lower levels of sRAGE. We hypothesized that genetic determinants

of sRAGE would help clarify the causal role of sRAGE and the black-white difference in

sRAGE levels. We conducted a genome-wide analysis of sRAGE in whites and blacks from

the Atherosclerosis Risk in Communities Study. Median plasma sRAGE levels were lower

in blacks than whites (728 vs. 1067 pg/ml; P<0.0001). The T (vs. C) allele of rs2070600, a

missense variant in AGER, the gene encoding RAGE, was associated with approximately

50% lower sRAGE levels in both whites (N = 1,737; P = 7.26x10-16; minor allele frequency

(MAF) = 0.04) and blacks (N = 581; P = 0.02; MAF = 0.01). In blacks, the T (vs. C) allele of

rs2071288, intronic to AGER, was associated with 43% lower sRAGE levels (P = 2.22x10-8;

MAF = 0.10) and was nearly absent in whites. These AGER SNPs explained 21.5%

and 26% of the variation in sRAGE in blacks and whites, respectively, but did not explain

the black-white difference in sRAGE. These SNPs were not significantly associated with

incident death, coronary heart disease, diabetes, heart failure, or chronic kidney disease

in whites (N = 8,130–9,017) or blacks (N = 2,293–2,871) (median follow up ~20 years).

We identified strong genetic determinants of sRAGE that did not explain the large
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black-white difference in sRAGE levels or clearly influence risk of clinical outcomes,

suggesting that sRAGEmay not be a causal factor in development of these outcomes.

Introduction
The soluble receptor for advanced glycation end-products (sRAGE) has emerged as a bio-
marker of cardiovascular disease [1–5] and all-cause mortality [4–7]. In prospective studies,
blood levels of sRAGE have been associated with important cardiovascular outcomes, but the
direction of associations has varied. Some studies have demonstrated an association between
higher sRAGE levels and incident cardiovascular disease [1, 5], cardiovascular mortality [2],
and all-cause mortality [2, 5], but others have reported a significant inverse association between
sRAGE and cardiovascular disease [4], progression of carotid atherosclerosis by intima media
thickness [3], and all-cause mortality [4, 7].

An additional striking finding from studies of sRAGE in humans is the substantial differ-
ence among racial and ethnic groups. In the Atherosclerosis Risk in Communities Study
(ARIC), Dallas Heart Study, and the Northern Manhattan Study, non-Hispanic blacks [4, 8]
and Hispanics [9] had significantly lower sRAGE levels than whites, and adjustment for multi-
ple confounding variables did not change this racial difference in sRAGE levels [4, 9], leading
to a hypothesis that genetic factors may explain at least a proportion of the observed racial dif-
ference. Given the strong associations of sRAGE with clinical outcomes, understanding this
racial difference could have implications for racial disparities in cardiovascular disease.

To clarify mixed findings of large associations between sRAGE and outcomes in prior stud-
ies and to further understand the black-white difference in sRAGE levels, we used the Athero-
sclerosis Risk in Communities (ARIC) Study, a multi-ethnic, community-based cohort study
to 1) conduct genome-wide association studies (GWAS) of sRAGE levels in whites and blacks
separately; 2) evaluate if genetic variation underlies the black-white difference in sRAGE; and
3) conduct a Mendelian randomization study to evaluate the association between genetic deter-
minants of sRAGE and mortality, coronary heart disease, congestive heart failure, diabetes, and
chronic kidney disease. We hypothesized that we would identify genetic determinants of
sRAGE, that genetic variation that would explain at least part of the black-white difference in
sRAGE levels, and that associations between genetic determinants of sRAGE and vascular out-
comes would inform the causal role of sRAGE in cardiovascular disease and related outcomes.

Methods

Study Population
The ARIC Study is a community-based prospective cohort of 15,792 individuals recruited from
4 US communities (Forsyth County, NC; Jackson, MS; suburban Minneapolis, MN; and Wash-
ington County, MD) who were between the ages of 45 and 64 years at enrollment in 1987 to
1989. After enrollment, there were three follow-up visits approximately every three years
(1990–92, 1993–95, 1996–98). A fifth visit was completed from 2011 to 2013. Details of the
ARIC cohort have been published elsewhere [10].

sRAGE was measured in a random sample of 2,024 participants at visit 2 and also measured
in 1,019 participants (as part of an ancillary study consisting of persons with diabetes and a
random sample of persons without diabetes) at visit 1. We excluded samples from visit 1 for
participants who had sRAGE measured at both visit 1 and visit 2 (N = 134), participants with-
out GWAS genotyping data (N = 392), without genotyping samples that passed quality control
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measures (N = 188), or who had missing diabetes status at visit 2 (N = 11), resulting in 581
black and 1,737 white participants for the GWAS of sRAGE levels.

For the analysis of AGER (Gene ID: 177; Entrez Gene) SNPs and clinical outcomes, we were
not limited to the ARIC subsample in which sRAGE was available and of the entire cohort of
black and white participants with follow-up from visit 1 (1987–1989) who consented to non-
cardiovascular disease-related research (N = 15,703), we excluded participants without geno-
typing data (N = 2,778) and those with genotyping samples that did not pass quality control
measures (N = 1,037). For the analysis of each incident clinical outcome (see below), we
excluded those with disease at Visit 1 (e.g., participants with prevalent diabetes were excluded
from the analysis of incident diabetes) and those without data on the variables of interest.

Figs A and B in S1 File provide details on the analytic sample for each of these analyses.

GWASmethods
Single-nucleotide polymorphisms (SNPs) were genotyped on the Affymetrix 6.0 platform and
were imputed to� 37 million SNPs based on a cosmopolitan reference panel of haplotypes
from 1000 Genomes Phase I [11]. Imputation was done using IMPUTE version 2 and the pre-
phasing step was done by using SHAPEIT2 [12]. Extensive quality control was performed, and
individuals were excluded based on the following: SNP missing rate higher than 5%, gender
mismatch, high discordance with previous Taqman assay genotypes, genetic outlier status, and
relatedness. Principal components analysis using a subset of the GWAS SNPs was used to esti-
mate population substructure with the software EIGENSTRAT [13]; 10 factors were estimated,
and one was associated with sRAGE in whites while none were associated with sRAGE in
blacks. The imputation, quality control analyses, and principal components analysis were done
separately by race; after exclusion of SNPs with MAF<5% and those with r2 <0.3 (imputation
score), approximately 9.1 million and 6.5million SNPs were analyzed in ARIC blacks and
whites, respectively.

Given that SNP identifiers change over time, for consistency, we have used rs numbers from
dbSNP (GRCh37.p10) and have provided both the dbSNP (GRCh37.p10) and 1000G SNPID
identifiers for each SNP in Table A in S1 File.

Measurement of sRAGE
sRAGE was measured by ELISA (R&D Systems, Minneapolis, MN) in stored plasma samples
[4]. Plasma sRAGE levels have been shown to remain fairly stable within individuals over three
years in the ARIC Study [14]. For participants with sRAGE at visit 1 only, we predicted visit 2
levels based on linear regression of sRAGE at visit 1 on age.

Measurement of covariates
For analyses of the ARIC sub-sample with sRAGE levels (N = 2,318), covariates included self-
reported age, sex, race (black or white), and educational level (less than high school, high
school or any college, more than four years post-high school); body mass index calculated as
measured weight/height2 in kg/m2 [15]; prevalent diabetes mellitus (self-reported diabetes, use
of diabetes medications, and/or fasting glucose�6.99 mmol/l among those with fasting
samples); estimated glomerular filtration rate (eGFR) calculated from measured creatinine [16]
and age, sex, and race using the Modification of Diet in Renal Disease Study Group method
[17]; and prevalent coronary heart disease by self-report or diagnosis by ARIC procedures
described below. Fasting glucose was measured as described previously [16]. Sex, race, and
education were reported at Visit 1, and all other covariates were from Visit 2 in this sample.
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For the analyses of associations between genetic determinants of sRAGE and clinical out-
comes (death, incident coronary heart disease (CHD), incident diabetes, incident chronic kid-
ney disease (CKD), and incident heart failure), self-reported age, sex, race, and education (as
categorized above) ascertained at Visit 1 were included as covariates.

Clinical Outcomes
Deaths and incident CHD, CKD, diabetes, and heart failure were ascertained from in-
person clinic visits, active surveillance for hospitalizations and deaths, and annual telephone
calls to all participants or their proxies. Incident CHD was adjudicated by an endpoints com-
mittee and defined as the first definite or probable myocardial infarction (MI), fatal CHD or
MI by electrocardiogram. Incident heart failure was defined by death or hospitalization for
heart failure. Incident diabetes was defined by first self-report of diabetes, fasting glucose
�6.99 mmol/l, or use of diabetes medications. Incident CKD was defined by first occurrence of
eGFR<60 ml/min per 1.73 m2.

Analysis
We used a two-sided t test to compare means (if normally-distributed) or Wilcoxon test to
compare distributions (if not normally-distributed) and a chi-squared test to compare propor-
tions of characteristics between blacks and whites and assessing associations of variables with
sRAGE levels.

We conducted genome-wide association analyses of natural log-transformed sRAGE using
linear regression with an additive genetic model in the ARIC white cohort and in the ARIC
black cohorts separately using SNPTEST version 2.4.1 [18]. We adjusted for age, gender, cen-
ter, diabetes status, and principal components that were associated with sRAGE (one in whites
and none in blacks). SNPs with minor allele frequency (MAF)< 5% were excluded from the
initial analysis. Regional association plots showing linkage disequilibrium (LD), recombination
rates and the location of nearby genes were generated for the top ranking SNPs for each race
using a 400 kb window [19]. Genome-wide significance was defined as a P-value<5×10−8.

To follow up our GWAS findings, we conducted additional analyses of SNPs at the AGER
gene and its flanking regions based on their correlation with the most significant GWAS SNPs
in whites and blacks (r2>0.06 and MAF�1%). We also conducted conditional analyses using
the most significant SNP from the GWAS in blacks and whites separately. We focused on the
AGER gene for these additional analyses because of the biologic plausibility of this gene being
causal as it encodes RAGE.

We selected the most significant SNP from the above analyses to evaluate the multivariate
association of race (blacks vs. whites) with sRAGE levels using linear regression and included
covariates associated with sRAGE.

We assessed the association of the top sRAGE SNP and clinical outcomes using Cox propor-
tional hazards models in whites and blacks separately; these analyses were conducted using the
R survival package, [20, 21] and P<0.05 was considered statistically significant.

We estimated the percentage of variance explained by a SNP using R2 = b2var(SNP)/var(ln
(sRAGE)) where b is the estimated effect of the SNP on ln(sRAGE), and var(SNP) = 2�MAF�

(1-MAF) [22]. We estimated var(ln(sRAGE)) in each ancestry group separately.
We performed a post-hoc power calculation for blacks and whites separately using the non-

centrality-parameter-based method for estimating power in Mendelian randomization studies
described by Brion et al, 2013 [23, 24] and estimated power for the analyses of clinical out-
comes assuming the following: type I error rate of 0.05; proportion of variance in ln(sRAGE)
explained by SNP as reported in this study; event rates observed in this study; odds ratios for ln
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(sRAGE) and the clinical outcomes estimated using logistic regression in this study (Table B in
S1 File). With the exception of CKD, we estimate>80% power for all outcomes in whites and
for all outcomes besides heart failure in blacks (Table B in S1 File).

Participants in this study provided written informed consent, and approval from Institu-
tional Review Boards from participating institutions was obtained. The authors report no
disclosures.

Results
Baseline age, sex, education, body mass index (BMI), prevalence of CHD, and fasting glucose
differed between black and white participants in ARIC having sRAGE values (N = 2,329;
Table 1). Median sRAGE was 339 pg/l lower in blacks compared to whites (P = 1.26 x 10−68).
sRAGE levels were lower among men and were lower with increasing BMI (Table C in S1 File).

The genome-wide association study (GWAS) of natural log-transformed plasma sRAGE in
white participants (N = 1,740) revealed a locus on chromosome 6 closest to the NOTCH4
(Gene ID: 4855; Entrez Gene) gene (Fig 1) with rs2854050 having the most significant effect
(P = 1.94 x 10−11, MAF = 0.06; Table 2). This area of chromosome 6 had several other genes
nearby, including AGER, the gene encoding RAGE (Fig 2). Given the proximity of the AGER to
NOTCH4, we conducted further analyses using SNPs with MAF�1% from the AGER gene
(N = 29; Table A in S1 File) to determine whether the index SNPs in NOTCH4 were tagging
SNPs in AGER. Multiple AGER variants were associated with sRAGE levels in whites; a cluster
of three highly-correlated SNPs were most significant (location range 32147044 to 32151443
(build 37); P values 2.7 x10-16 to 6.1 x 10−16; and MAF 0.042 to 0.044; Table D in S1 File). Of
these three SNPs, rs2070600 (previously known as rs114177847), is a missense mutation
(Gly!Ser; P = 6.08 x 10−16; Table 2). Our initial GWAS did not identify these SNPs because

Table 1. Characteristics of black and white participants with sRAGE levels (N = 2,329).a, b, c, d

Whites Blacks

N 1737 581

sRAGE, pg/ml 1066 (837,1355) 728 (542, 963)

Age, years 57.64 (5.7) 55.45 (5.6)

Male 783 (45) 182 (31)

Education

�11 years 266 (15) 208 (36)

High school graduate 771 (44) 170 (29)

Attended college 699 (40) 202 (35)

Diabetes 100 (6) 101 (17)

BMI, kg/m2 27.8 (5.1) 30.8 (6.7)

Prevalent CHD 84 (5) 15 (3)

eGFR, ml/min/1.73m2 76.6 (14.7) 86.9 (20.0)

Fasting glucose, mmol/l 5.75 (0.75) 6.23 (1.43)

a Continuous variables reported as means (SD) and categorical variables as n (%). Median (p25, p75)

provided for sRAGE.
b Education, n = 1739 for whites and 588 for blacks; prevalent CHD, n = 1707 for whites and n = 577 for

blacks; eGFR, n = 568 for blacks; fasting glucose, n = 1726 for whites and n = 586 for blacks
c P<0.05 for differences between race groups for all characteristics
d Abbreviations: sRAGE, soluble receptor for advanced glycation end-products; BMI, body mass index;

CHD, coronary heart disease; eGFR, estimated glomerular filtration rate

doi:10.1371/journal.pone.0128452.t001
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their MAFs were<5%. Rs2070600 is in high linkage disequilibrium (LD) with rs116807055
(NOTCH4) (r2 = 0.84 and D’ = 0.92). Conditional analyses of rs2070600 on AGER SNPs in
whites did not reveal any other additional SNPs with genome-wide significance.

In the GWAS conducted among black participants (N = 589; Figs 3 and 4), the most signifi-
cant SNP was rs2071288 (P = 1.12 x 10−8; MAF = 0.10; Table 2), which is intronic to the AGER
gene. The analysis of AGER SNPs extending the SNPs evaluated to those with MAF�1%
(N = 29; Table A in S1 File) revealed a cluster of three highly-correlated SNPs on chromosome
6 which were most significant (location range 32147478 to 32150498 (build 37); P values
1.1x10-8 to 1.3x10-8; and MAFs 0.104 to 0.105; Table D in S1 File). Of these three SNPs,
rs2071288 and rs114971929 are intronic (AGER) and the third one exonic and synonymous
(RNF5 (rs57409105)). Conditional analysis of rs2071288 on AGER SNPs in blacks did not
reveal any other or additional SNPs reaching genome-wide significance. Rs2070600 was
nominally associated with sRAGE levels in blacks (P = 0.018; Table 2) and remained nominally
associated with sRAGE levels in blacks (P = 0.003) after adjustment for rs2071288.

The T allele of rs2070600 occurred in 4.4% of whites and 1.4% of blacks and was associated
with 49 and 47% lower sRAGE in whites and blacks, respectively; rs2070600 explained 21.5%
and 3.6% of the variation in ln(sRAGE) in whites and blacks, respectively. Rs2070600 was not
in LD with the most significant GWAS SNP in blacks (Table 2). The T allele of the most signifi-
cant SNP in blacks, rs2071288, intronic to AGER, was associated with a 43% reduction in
sRAGE and explained 26% of the variability in ln(sRAGE) in blacks; this SNP was infrequent
in whites (MAF = 0.005) and not significantly associated with ln(sRAGE) in whites. Rs2070600

Fig 1. Manhattan plot for genome-wide association for ln(sRAGE) in whites (N = 1,737).

doi:10.1371/journal.pone.0128452.g001

Table 2. Genome-wide significant loci and corresponding trans-ethnic results for sRAGE levels in whites and blacks.

SNPa Gene Chr:base pair
position

Whites Blacks

A1b/
A2

A1
frequency

Βc P D’ r2d A1
frequency

β P D’e r2e

rs2854050 NOTCH4 6:32185605 A/G 0.06 -0.50 2.13e-
11

NA NA 0.03 -0.21 0.20301 1.0 0.003

rs2071288 AGER 6:32149260 T/C 0.005 -0.43 0.10 1.0 0.0 0.10 -0.56 2.22e-08 NA NA

rs2070600 AGER 6:32151443 T/C 0.04 -0.67 7.26e-
16

0.92 0.84 0.01 -0.63 0.017903 1.0 0.001

aFrom dbSNP build 37
bA1 is the minor allele in whites
cMean change in ln(sRAGE) for Allele 1 vs. Allele 2
dWith rs2854050 (index SNP from GWAS in whites)
eWith rs2071288 (index SNP from GWAS in blacks)

doi:10.1371/journal.pone.0128452.t002
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and rs2071288 were not in LD with each other in either population (r2 of 0 and 0.001 in blacks
and whites, respectively; Table 2). Accounting for these SNPs in regression models of the
association between race (black vs. white) and lnsRAGE levels did not change the association
between race and lnsRAGE. While adjustment for additional variables did decrease the beta
coefficient for race by 0.1 ln units (18% absolute reduction), race remained the strongest
predictor (by magnitude) of sRAGE levels in multivariate analyses (Table 3).

Rs2070600 was not associated with all-cause death or incident coronary heart disease, heart
failure, or diabetes in whites, and rs2071288 was not associated with these outcomes in blacks
(Fig 5) although there was a marginal association between the T allele (sRAGE-lowering allele)
and increased risk of CHD (HR, 1.24; 95%CI, 1.0 to 1.6; P = 0.054) (Fig 5). Of note, the study
sample with sRAGE levels (N = 2,321) consisted of slightly more women, had a slightly higher
BMI, lower prevalence of CHD, minimally lower eGFR, and lower fasting glucose compared to
the sample included in these genetic association analyses without sRAGE levels (N = 9,590;
Table E in S1 File).

Discussion
Using a candidate gene approach to follow up our GWAS of plasma sRAGE levels, we identi-
fied rs2070600, a missense mutation in the AGER gene (Gly!Ser), as a variant influencing
sRAGE levels in both blacks and whites. We also report a genetic determinant of sRAGE levels
in blacks, rs2071288 which was associated with a 43% reduction in sRAGE levels and explained
a substantial portion (26%) of the variability in lnsRAGE in this group. Rs2070600 was

Fig 2. Regional association plot for genome-wide significant locus (AGER) in whites.

doi:10.1371/journal.pone.0128452.g002

Fig 3. Manhattan plot for genome-wide association for ln(sRAGE) in blacks (N = 581).

doi:10.1371/journal.pone.0128452.g003
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associated with ~50% lower levels of sRAGE in both whites and blacks and explained substan-
tial (21.5%) and modest (3.6%) variation in this trait in these groups, respectively. Evaluation
of rs2070600 and the most significant SNP in blacks, rs2071288, revealed that these genetic var-
iants do not explain the observed black-white difference in sRAGE levels. Most importantly,
rs2070600 and rs2071288 were not significantly associated with clinical outcomes, raising the
suspicion that sRAGE may not the causal factor in prior studies implicating sRAGE in the
development of [1, 2, 5] or protection from cardiovascular disease [4, 7].

Rs2070600 has been associated with sRAGE in prior candidate gene studies [25–28]. We
used a non-biased genome-wide approach and confirmed rs2070600 as true genetic determi-
nant of sRAGE levels. Moreover, with conditional analyses incorporating SNPs with MAF
�1%, we were able to demonstrate that there is not another SNP which explains the effect of

Fig 4. Regional association plot for genome-wide significant locus (AGER) in blacks.

doi:10.1371/journal.pone.0128452.g004

Table 3. Genetic variants and the black-white difference in ln(sRAGE).

Model 1 Model 2 Model 3 Model 4

Race (ref = white)

Beta for blacks -0.58 -0.56 -0.56 -0.46

95% CI -0.69 to -0.47 -0.67 to -0.45 -0.67 to -0.45 -0.56 to -0.35

P value 3.61E-24 8.40E-24 1.09E-23 8.50E-17

rs2070600a (ref = C)

Beta for T allele -0.26 -0.26 -0.27

95% CI -0.32 to -0.20 -0.32 to -0.20 -0.33 to -0.21

P value 6.75E-16 5.48E-16 1.24E-18

rs2071288a (ref = C)

Beta for T allele -0.25 -0.25 -0.26

95% CI -0.32 to -0.17 -0.32 to -0.17 -0.33 to -0.19

P value 3.01E-11 2.98E-11 6.40E-13

Model 1: age + race + gender + center

Model 2: Model 1 + rs2070600 + rs2071288

Model 3: Model 2 + education

Model 4: Model 3 + BMI, eGFR, fasting glucose, prevalent CHD
aBeta for difference in ln(sRAGE) for T vs. C allele

doi:10.1371/journal.pone.0128452.t003
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rs2070600. This evidence, in addition to biologic plausibility based on rs2070600 being a cod-
ing variant, supports that rs2070600 is a causal variant influencing sRAGE levels. The exact
mechanism by which rs2070600 influences sRAGE levels is unknown and may include tran-
scription, expression, or alternative splicing of AGER.

Interestingly, rs2071288, intronic to AGER and a major determinant of sRAGE in our
study, was previously associated with plasma sRAGE levels and the diffusing capacity of carbon
monoxide in a subgroup of white participants in a prior candidate gene study, but results from
other ethnic groups were not reported [26]. The MAF among whites was higher (0.019) in that
study compared to ours [26].

Our results demonstrating the lack of a significant effect of AGER variation on cardiovascu-
lar outcomes in whites are consistent with most prior case-control studies [29, 30] and extend
these findings using a prospective cohort design which addresses confounding and selection
bias more fully. While some case-control studies have identified associations between AGER
SNPs and myocardial infarction and stroke [31] and prevalent coronary heart disease based on
angiographic evidence of stenosis>50% [32], two recent meta-analyses including over 25 case-
control studies (maximum N for single SNP = 7,111) [29] did not find a consistent association
between AGER polymorphisms and coronary heart disease (odds ratios from meta-
analyses ranged from 0.97 to 1.16 with P>0.05) [29, 30]. It is important to note, however, that
rs2070600 has been associated with other diseases, including type 1 diabetes [33], chronic
obstructive pulmonary disease [26], schizophrenia [34], and Alzheimer’s Disease [35].

The receptor for advanced glycation end products (RAGE) is a cellular receptor with multi-
ple ligands, including advanced glycation end products (AGEs) and S100/calgranulins, and is
expressed in a wide variety of cell types including endothelial cells, smooth muscle cells, phago-
cytes and neurons [36]. Interactions between RAGE and its ligands activate multiple signaling
pathways which affect many important cell functions, ranging from the release of inflamma-
tory cytokines to apoptosis depending on the tissue [36]. Excessive interactions between RAGE
and its ligands may lead to cellular dysfunction [36]. sRAGE is a circulating, soluble form of
RAGE which prevents binding of RAGE ligands to cellular RAGE thereby serving as a decoy
for ligands and preventing these RAGE-ligand interactions [37] and possibly preventing cellu-
lar dysfunction. sRAGE is known to have at least two isoforms, a cleaved isoform caused by
cleavage of the receptor from the cell membrane, and a spliced isoform (esRAGE) arising from
alternative splicing of mRNA [38]. While it may be that one of these isoforms in particular or
their regulation is relevant to pathophysiology (or “causal” in the sRAGE-RAGE axis), the stan-
dard assay method for sRAGE does not distinguish between these [38], and therefore we can-
not assess the separate role of either isoform in incidence of the outcomes studied.
Additionally, multiple isoforms of the membrane form of RAGE also exist and function differ-
ently, including in their affinity for different ligands [38].

Fig 5. AGER SNPs and risk of death, incident coronary heart disease, heart failure, diabetes, and
chronic kidney disease by race. Abbreviations: CHD, coronary heart disease; CKD, chronic kidney
disease. Hazard ratio for T vs. C allele adjusted for age, sex, and center. Median follow up in years displayed.

doi:10.1371/journal.pone.0128452.g005
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Based on the results of our Mendelian randomization analysis, for the clinical outcomes in
this study, we hypothesize that another causal factor is highly correlated with sRAGE in the
complex pathway involving RAGE. The multi-ligand nature of RAGE and the multiple possible
isoforms of RAGE and sRAGE [38], possibly resulting from particular disease states (e.g., the
availability of advanced glycation end-products as ligands in diabetes), set the stage for com-
plex interactions in the RAGE-sRAGE axis which likely cannot be marked by the current
sRAGE measure.

Thus, our inability to determine a genetic basis to at least partly explain the black-
white difference in sRAGE could result from the inability of sRAGE, as a biomarker, to repre-
sent the complex RAGE-ligand interaction. However, the lack of an identifiable genetic deter-
minant of the racial difference in sRAGE in combination with a lack of an association between
principal components and sRAGE in blacks suggests that environmental factors could be
responsible for this difference. RAGE ligands are pro-inflammatory, and inflammation, as
measured by C-reactive protein [39–41] and interleukin-6, is known to be higher among blacks
vs. whites [41]. In our study, BMI and fasting glucose were higher in black vs. white partici-
pants; outside of known racial disparities in these factors and their downstream inflammatory
diseases (e.g., diabetes and coronary heart disease), proximal environmental factors suggested
to underlie the observed increased inflammation among blacks include lower socioeconomic
status [39, 41], stress [42] and racial discrimination [43].

Of note, we did find that sRAGE levels were 14% lower among men compared to women
and negligibly (1%) lower per unit increase in BMI; adjustment for these variables did not sig-
nificantly impact the observed black-white difference in sRAGE levels.

The Mendelian randomization approach to determine if an exposure is causal relies on
three major assumptions: 1) the genetic variant is associated with the exposure; 2) the genetic
variant is associated with the outcome only through the exposure; and 3) the genetic variant is
independent of confounders of the exposure-outcome association [44]. In our study, we have
clearly shown an association between rs2070600 and sRAGE levels. While we cannot prove
absolutely that rs2070600 would only affect the outcomes of interest through sRAGE, we can
be confident that this would be the case given that rs2070600 is a SNP in the AGER gene which
encodes sRAGE. Finally, we have adjusted our analyses for potential confounders. In light of
the aforementioned assumptions, it has been suggested that Mendelian randomization analyses
may actually be more useful for establishing a lack of causality, as we have in this study, rather
than establishing causality [44].

A major strength of our study is that it is the most comprehensive evaluation of the genetics
of sRAGE to date. We were able to identify a variant with genome-wide significance in whites
for sRAGE and confirm our results in blacks. Our additional analyses establish that the coding
AGER variant, rs2070600, is likely the most important genetic determinant of sRAGE levels in
whites. We also identified an additional determinant of sRAGE levels in blacks, an intronic
SNP (rs2071288) which was not correlated with rs2070600, and rs2071288 was associated with
sRAGE in whites in a prior study[26] implying the likelihood of another independent genetic
determinant of sRAGE levels in the AGER gene region. Finally, we were able to use this infor-
mation to evaluate the causal role of sRAGE, as currently measured, in important outcomes–
death, incident CHD, heart failure, diabetes mellitus, and CKD–using a Mendelian randomiza-
tion design. Our post-hoc power calculations suggest that we had substantial power (power
>80%) for these analyses of clinical outcomes in whites with the exception of the outcome of
CKD (power<20%); as expected given the smaller sample size, we had lower power for some
outcomes (CKD and heart failure) in blacks. Based on these power calculations and our find-
ings, sRAGE does not appear to be a substantial and significant causal factor for death, heart
failure, or diabetes in whites, and our results in blacks were similar. We did not have sufficient
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power to rule out a modest association between the sRAGE SNPs and CKD in blacks or whites;
therefore, we cannot exclude the possibility of a causal role for sRAGE in CKD. Also, in blacks,
the association between the sRAGE SNP (rs2071288) and incident CHD (HR 1.24, 95% CI,
1.00 to 1.55) nearly reached significance (P = 0.05), and this analysis was underpowered
(power = 52%). For the sRAGE SNP in whites (rs2070600), we found a non-significant associa-
tion in the same direction (HR 1.12, 95% CI, 0.91 to 1.38).

Our GWAS was limited to currently-identified variants meeting our quality control criteria,
including the requirement for a SNP to occur at a frequency of at least five percent in the study
population; we did do additional analyses to include SNPs with MAF�1%. However, this anal-
ysis would overlook rare variants, although it is unlikely that rare variants alone could explain
the phenotypic difference in sRAGE between blacks and whites in this sample. We did select a
single SNP from each racial group for our analyses of racial differences in sRAGE and clinical
outcomes. Given the high correlation of the excluded SNPs with the selected SNPs, we are
unable to exclude if they are the causal variants rather than the ones selected; we did select the
SNPs used in the analysis based on statistical significance and proximity to the AGER locus,
increasing biologic plausibility. Also, our evaluation of the genetic determinants of sRAGE
does not include gene-environment or gene-gene interactions which could also explain vari-
ability in sRAGE and clinical outcomes.

Conclusions
Through a GWAS, we have established the rs2070600 SNP, a coding variant in the AGER gene,
as a likely causal determinant of sRAGE levels, but genetic variation in AGER does not appear
to explain black-white difference in sRAGE. Also, strong genetic determinants of sRAGE levels
were not associated with mortality, heart failure, or diabetes. We did not find evidence for
robust associations between genetic determinants of sRAGE and either CKD or CHD, but we
cannot rule out the possibility of modest positive effects given more limited power for these
outcomes. These findings do not negate the importance of the RAGE-sRAGE axis but instead
indicate that further study must identify the relevant causal factors for this axis given the
strong, but mixed, epidemiologic associations observed between sRAGE and cardiovascular
outcomes in prior studies [1, 2, 4, 5, 7]. Since sRAGE appears to be correlated with important
clinical outcomes, the racial difference in sRAGE levels is likely relevant to the known racial
disparities in cardiovascular disease, and given the lack of a clear genetic explanation, environ-
mental factors identified in future studies could help address these disparities.
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