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3-D magnetohydrodynamic 
AA7072-AA7075/methanol hybrid 
nanofluid flow above an uneven 
thickness surface with slip effect
Iskander Tlili1,2, Hossam A. Nabwey3,4, G. P. Ashwinkumar5* & N. Sandeep6*

A 3-D magnetohydrodynamic flow of hybrid nanofluid across a stretched plane of non-uniform 
thickness with slip effects is studied. We pondered aluminum alloys of AA7072 and AA7072 + AA7075 in 
methanol liquid. The aluminum alloys amalgamated in this study are uniquely manufactured materials, 
possessing enhanced heat transfer features. AA7072 alloy is a composite mixture of Aluminum & Zinc 
in the ratio 98 & 1 respectively with added metals Silicon, ferrous and Copper. Equally, AA7075 is a 
mixture of Aluminum, Zinc, Magnesium, and Copper in the ratio of ~90, ~6, ~3 and ~1 respectively 
with added metals Silicon ferrous and Magnesium. Numerical solutions are attained using R-K based 
shooting scheme. Role of physical factors on the flow phenomenon are analyzed and reflected by plots 
and numerical interpretations. Results ascertain that heat transfer rate of the hybrid nanoliquid is 
considerably large as matched by the nanofluid. The impact of Lorentz force is less on hybrid nanofluid 
when equated with nanofluid. Also, the wall thickness parameter tends to improve the Nusselt number 
of both the solutions.

Advanced electronic gadgets frequently encounter challenges because of heat control from enhanced thermal 
rise or reduction of available space for the thermal emission. Such drawbacks are overwhelmed by developing a 
preeminent model for heat-repelling gadgets or by amplifying thermal transport features. Nanofluid is a unique 
and well-suited fluid to fit for all needs. Initially, Choi1 has experimented on the treatment of solid particles 
in conventional liquids to improve its thermal performance characterized as nanoliquid. Due to its marvelous 
thermal and chemical properties, less volume and enhanced thermal properties, it is emerging as an extensively 
used cooling agent. Nanofluid has entered in many areas of science and engineering, and few are witnessed in 
nuclear cooling, biomedical applications, electronic cooling, etc. Because of its massive demand, it has attracted 
the research community to develop a new class of nanofluids. Few researchers (2–11) provided the theoretical and 
experimental studies for developing nanofluids in terms of preparation methods, applications and enhancing its 
thermal properties. Further, Animasaun et al.12 deliberated the comparative study for distinct magnitude alumi-
num nanomaterials suspended in water, namely, 36 nanometers and 47 nanometers and predicted that 36 nm 
nanoparticle used to attain maximum flow velocity than other. Asadi et al.13 explained the flow of nanofluid (10 
nanometer-sized Fe3O4 nanoparticles) across a sinusoidal crumpled section accounting the magnetic field effects. 
Later, Kumar et al.14 elaborated the stagnated flow caused by non-Newtonian liquids over a strained cylinder 
using C-C heat flux model. They concluded that friction factor parameter hikes significantly in Williamson liquid 
as compared with Casson liquid under the influence of thermal relaxation parameter. This kind of work was pro-
longed by Bai et al.15 using Oldroyd-B nanofluid.

MHD describes the magnetic properties of electrically conducting fluids. Theoretical investigation on 
CNT-water nanoliquid motion through a rectangular region using Hamilton-Crosser model was scrutinized by 
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Benos et al.16. They noticed that variation in the shape of the nanomaterials tends to enhance heat transfer perfor-
mance. Moreover, Chamkha17 discussed numerically the impression of magnetic properties over the nano liquid 
flow caused due cylinder in a three-dimensional enclosure by the aid of the finite element method. Meanwhile, 
the joint response of Prandtl number and magnetic properties over the 2D steady motion of nanofluid past a 
stretched membrane was numerically explored by Ganesh et al.18. As per the available literature, several research-
ers (19–23) did the outstanding work on applying MHD concept in their analysis.

Radiative thermal emission found vital applications in industrial engineering as the construction of gas tur-
bines, design of fin and missiles, etc. Khan et al.24 deliberated the 2-D flow of nano liquid through melting plane 
under the response of radiative heat flux24. They revealed that hike in thermal radiation results in the improve-
ment of heat transfer performance of the liquid. Seth et al.25 examined semi analytically with the aid of OHAM 
to study the flow of nanofluid through an elongated plane by the implication of magnetic properties and also 
examined the entropy generation. Further, the researchers26–31 made noticeable results their analysis in convective 
heat transfer. Acharya et al.32 explored a computational work for analyzing the multiple slip effects on chemically 
reacting Williamson fluid flow in permeable medium. A hybrid approach for investigating the thermal radiation 
and hall current effects on nanoliquid flow over a spinning disk was proposed by Acharya et al.33. The effect of 
aligned magnetic field on the slippery flow of nanofluid was numerically studied by Acharya et al.34. The research-
ers35,36 investigated the convective heat transport in different nanofluids using NDM and Lie group approaches. 
Effect of internal heat source and radiation on 3-D flow of nanofluid past a shrinking sheet was theoretically 
studied by Sharma et al.37. The researchers38,39 investigated the natural convection in magnetohydrodynamic flow 
under various physical effects. Thermal radiation effect on magnetohydrodynamic flow in the presence of heat 
generation was numerically studied by the researchers40,41. Boling et al.42 proposed a stability solution for the 
MHD equation. The researchers43,44 studied the magnetohydrodynamic flow of Power-Law fluid by considering 
the various flow geometries. Recently, Tlili et al.45,46 premeditated the magnetohydrodynamic flow of nanofluid 
by considering the various physical effects and flow geometries.

Recent days, variety of nanomaterial are discovered in literature, among these aluminum alloy nanoparticles 
AA7075 and AA7072 are of special featured nanomaterial with greater thermal, chemical and physical properties. 
Aluminum alloy plays a prominent role in aerospace industries, especially, aluminum alloys AA7072 and AA7075 
are of abundant significance in the production of transport appliances namely, glider aircraft, rocket climbing 
frame, etc.29. It is evident that very less work has found in the study of hybrid nanofluids. This article reports the 
3-D magnetohydrodynamic flow of hybrid nanofluid across a stretched plane of non-uniform thickness with slip 
effects. We pondered aluminum alloys of AA7072 and AA7072 + AA7075 in methanol liquid. The numerical 
solutions are attained, and the role of physical factors on the flow phenomenon is analyzed and reflected by plots 
and numerical interpretations.

Formulation
3D MHD, steady flow of hybrid nanofluid past a stretched plane of non-uniform thickness with slip effect is con-
sidered. The hybrid nanofluid is composed of alloy nanoparticles of AA7072 and AA7072 + AA7075 suspended 
in methanol liquid.

The sheet of non-uniform thickness is considered as z A x y c n, , 1n(1 )/2δ δ= = + + ≠−  we have chosen A 
is small. It is also presumed, the sheet temperature as δ= +

−
∞T T Tw

n
0

1
2 . The induced magnetic field is ignored 

in this study. Here B0 is the magnetic field applied in parallel with the z− axis as revealed in Fig. 1. With conven-
tions made above, the governing equations in vector form can be expressed as30:

∇. =q 0, (1)

ρ µ σ. ∇ = ∇ −q u u B u( ( )) , (2)hnf hnf hnf
2 2

Figure 1.  Schematic Model.
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ρ µ σ. ∇ = ∇ −q v v B v( ( )) , (3)hnf hnf hnf
2 2

ρ . ∇ = ∇c q T k T( ) ( ( )) , (4)p hnf hnf
2

the linked boundary restrictions are
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The hybrid nanofluid parameters k, , ,nf nf nf nfρ µ σ  represent the density, dynamic viscosity, electrical conduc-
tivity, thermal conductivity can be used as26:
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following similarity transformations are used for non-dimensionalisation
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by making use of Eqs. (6–9), the Eqs. (1–5) can be transmuted as

φ
φ

φ ρ φ ρ

ρ

σ φ φ σ φσ

σ φ σ φ φ σ

+
−

′′′ −





− +

+ 







 ′ + ′ ′ −

+
+ ″





−





+

+ −

− + − + +






′ =











.
n f n f nf g n f g f

Mf

1
2(1 )

(1 ) ( ) 1
2

( )

1
3 3

(1 ) (1 ) (2 )
0,

(10)

s s s s

f

s s s s f

s s s s f

2 5
1 1 2 2 2

1 1 2 2

1 1 2 2

φ
φ

φ ρ φ ρ

ρ

σ φ φ σ φσ

σ φ σ φ φ σ

+
−

′′′ −





− +

+ 







 ′ + ′ ′ −

+
+ ″





−





+

+ −

− + − + +






′ =











.
n g n g nf g n f g g

Mg

1
2(1 )

(1 ) ( ) 1
2

( )

1
3 3

(1 ) (1 ) (2 )
0,

(11)

s s s s

f

s s s s f

s s s s f

2 5
1 1 2 2 2

1 1 2 2

1 1 2 2

https://doi.org/10.1038/s41598-020-61215-8


4Scientific Reports |         (2020) 10:4265  | https://doi.org/10.1038/s41598-020-61215-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

φ φ φ

φ φ φ
θ

φ
φ ρ φ ρ

ρ

θ θ







− + + + +

+ + − + −






″

−
+






− +

+ 









−
′ + ′ −

+
′ +



 =











k k k
k k k

n
c c

c

n f g n f g

2(1 ) (1 2 ) (1 2 )
(2 ) (1 ) (1 )

2Pr
1

(1 )
( ) ( )

( )

1
2

( ) 1
2

( ) 0,
(12)

f s s s s

f s s

s p s s p s

p f

1 1 2 2

1 1 2 2

1 1 2 2

the transmuted boundary restrictions are

f n
n

h f f h f

g n
n

h g h

g h g f g

(0) 1
1

1 ( ) , (0) 1 ( ) ,

(0) 1
1

1 ( ) , (0) [1 (0)],

(0) [1 (0)], ( ) 0, ( ) 0, ( ) 0, (13)

1 0 1 0

1 0 2

1

η η

η θ θ

η η θ η

= Λ




−
+





 + ′′ 

 ′ = 
 + ″ 



= Λ




−
+





 + ″ 

 = + ′

′ = + ″ ′ = ′ = =











η η

η

η η η

= =

=

→∞ →∞ →∞

Figure 2.  Impression of φ on η′f ( ).

Figure 3.  Impression of φ on g ( )η′ .
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Figure 4.  Impression of φ on θ η( ).

Figure 5.  Impression of M on f ( )η′ .

Figure 6.  Impression of M on η′g ( ).
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Figure 7.  Impression of M on ( )θ η .

Figure 8.  Impression of n on f ( )η′ .

Figure 9.  Impression of n on η′g ( ).
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are the magnetic field parameter, Prandtl number and wall thickness parameters respectively. For engineering 
curiosity the Cf and Nux are defined as
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Results and Discussion
The system of ODE’s (10–12) along the boundary restrictions (13) are resolved numerically using R-K based 
shooting procedure14. Impression of diverse dimensionless factors, volume fraction (φ), magnetic field (M), 
velocity power index (n), velocity slip (h1), temperature jump (h2), and wall thickness (Λ) over common profiles 
are revealed with plots and the influence of same restrictions on f (0)″  and θ− ′(0) are depicted in a tabular man-
ner. The physical parametric values are set to M n h h1, 0 7, 0 4, 0 4, 0 1, Pr 7 381 2= = . = . = . Λ = . = .  in order 

Figure 10.  Impression of n on θ η( ).

Figure 11.  Impression of Λ on η′f ( ).
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to attain the required results. Above quantities are reserved for the complete study, unless they specified in respec-
tive graphs and tables. Symbols used in figures f ( )η′ , g ( )η′  and θ(η) describes the flow common quantities as 
velocity and temperature respectively. Simultaneous solutions are noticed for Methanol+AA7075 nanofluid and 
Methanol+AA7075 + AA7072 nanofluid. We treat Methanol+AA7075 nanofluid as first solution and 
Methanol+AA7075 + AA7072 nanofluid as second solution.

Figures 2–4 exhibits the impact of (φ) on f ( )η′ , η′g ( ) and θ(η) we detect a hike in η′f ( ), g ( )η′  and θ(η) for 
improvement in volume of (φ). The methanol+AA7075 nanofluid flow is highly influenced for rise in (φ) than 
Methanol+AA7075 + AA7072 nanofluid. Physically, rising the nanoparticle volume fraction leads to enhance the 
thermal conductivity of the fluid.

Figures 5–7 depicted to witness the effect of Lorentz force on η′f ( ), η′g ( ) and θ(η). We conclude that, increase 
in M upshots the reduction of η′f ( ) and η′g ( ). And a reverse trend is detected for θ(η). Physically, improvement 
in M leads to develop Lorentz force which in turn causes to resist the fluid motion, hence, we notice upswing in 

Figure 12.  Impression of Λ on η′g ( ).

Figure 13.  Impression of Λ on θ η( ).
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Thermo Physical 
Properties Methanol AA7075 AA7072

ρ(Kg/m3) 792 2810 2720

cp(JKg−1 K−1) 2545 960 893

k(Wm−1 K−1) 0.2035 173 222

σ (S/m) 0.5 × 10−6 26.77 × 106 34.83 × 106

Table 1.  Physio-thermal properties29.

φ M n Λ h1 h2 ″f (0) (0)θ− ′

Methanol+AA7075

0.1 −0.904541 1.189994

0.2 −0.815286 1.183189

0.3 −0.719774 1.171804

Methanol+AA7075 + AA7072

0.1 −0.924201 1.204535

0.2 −0.835555 1.200096

0.3 −0.740353 1.191678

Methanol+AA7075

1 −0.946854 1.191963

2 −1.064841 1.140875

3 −1.153017 1.096588

Methanol+AA7075 + AA7072

1 −0.924250 1.204508

2 −1.035379 1.158209

3 −1.119866 1.117809

Methanol+AA7075

0.1 −0.977908 1.427021

0.5 −0.954347 1.263593

0.9 −0.940993 1.125571

Methanol+AA7075 + AA7072

0.1 −0.947767 1.441625

0.5 −0.929845 1.276739

0.9 −0.919909 1.137567

Methanol+AA7075

0.1 −0.946854 1.191963

0.5 −0.962395 1.285095

0.9 −0.977748 1.368908

Methanol+AA7075 + AA7072

0.1 −0.924250 1.204508

0.5 −0.939929 1.297872

0.9 −0.955430 1.381794

Methanol+AA7075

0.2 −1.214595 1.260707

0.4 −0.947198 1.191768

0.6 −0.781192 1.137189

Methanol+AA7075 + AA7072

0.2 −1.180789 1.270845

0.4 −0.924716 1.204259

0.6 −0.764753 1.151438

Methanol+AA7075

0.2 −0.951100 1.561062

0.4 −0.951100 1.189641

0.6 −0.951100 0.960994

Methanol+AA7075 + AA7072

0.2 −0.929448 1.582044

0.4 −0.929448 1.201788

0.6 −0.929448 0.968904

Table 2.  Values of ″f (0) and (0)θ− ′  for diverse non-dimensional constraints.

h1 Λ ref. 31 Present Results

0 0.2 −0.924828 −0.924828342

0.2 0.25 −0.733395 −0.733395213

0.2 0.5 −0.759570 −0.759570103

Table 3.  Validation of the results for ″f (0) (2D case-water with φ = 0) for various values of Λ and h1.
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Figure 14.  Impression of h1 on η′f ( ).

Figure 16.  Impression of h1 on ( )θ η .

Figure 15.  Impression of h1 on η′g ( ).
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thermal boundary layer. The existence of M diminishes the fluid motion of Methanol+AA7075 + AA7072 nano-
liquid over the Methanol+AA7075 nanoliquid

Figures 8–10 are depicted to ascertain the nature of the curvatures η′f ( ), g ( )η′  and θ(η) under the influence of 
n. It is clear that, rise in n improves the distributions for η′f ( ), g ( )η′  and θ(η). Actually, boosting n helps in slen-
dering of the sheet. It leads to, weaken the thickness of the sheet and in turn it enhances the thermal boundary 
layers. Figures 11–13 outlined to witness the consequences of Λ on f ( )η′ , η′g ( ) and θ(η). We found that, η′f ( ), 
g ( )η′  and θ(η) are decreasing function of Λ. This concur the physical nature of the wall thickness parameter.

Figures 14–16 are portrayed to witness the changes in f ( )η′ , g ( )η′  and θ(η) for diverse values of h1. It is evident 
that, escalating values of h1 improves θ(η), but reverse nature is observed for η′f ( ) and η′g ( ). Finally, Fig. 17 exhib-
its the impact of h2 on θ(η). It is obvious that, temperature distributions are diminishing functions of h2.

Table 1 portrays the basic properties of base liquid and nanoscaled materials. The disparity in skin friction 
factor f (0)″  and Nusselt number (0)θ− ′  under the influence of flow parameters φ ΛM n h h, , , , and1 2 are 
depicted in Table 2. The following observations are made, improved values of M and n results in declination of 
both skin friction coefficient and rate of heat transfer. It also worth noting that, the values ″f (0) and (0)θ− ′  of 
methanol+AA7072 + AA7075 nanofluid are more influenced by the varied values of M and n when compared 
with methanol+AA7075 nanofluid. Rate of heat transfer is a rising function of Λ, and (0)θ− ′  of metha-
nol+AA7072 + AA7075 solution is high as equated with methanol+AA7075 solution. They are intensifying the 
values of φ and h1, both the parameters ″f (0) and (0)θ− ′  decelerates. Thermal transport rate of the nanofluids 
diminishes for improved vales of h2. The validation of the present results is depicted in Table 3.

Conclusions
A 3D MHD flow of hybrid nanofluid over a surface of non-uniform thickness with slip effects is studied numeri-
cally. We pondered aluminum alloys of AA7072 and AA7072 + AA7075 in methanol liquid and presented simul-
taneous solutions. The significant outcomes are as follows:

•	 Momentum and thermal distributions are increasing functions of n.
•	 Flow field is diminished by magnetic field parameter, M and a reverse trend is observed for the temperature 

field.
•	 The hike in wall thickness parameter results in a lessening in the flow and energy fields.
•	 The impact of Lorentz force is less on hybrid nanofluid when equated with nanofluid.
•	 The rate of thermal transport of the hybrid nanofluid is higher than the nanofluid.
•	 Wall thickness parameter regulates the Nusselt number for both the nanoliquids.
•	 The major application of the present study can be found in aerospace manufacturing industries.
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