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Long-term electrical stimulation 
at ear and electro-acupuncture at 
ST36-ST37 attenuated COX-2 in the 
CA1 of hippocampus in kainic acid-
induced epileptic seizure rats
En-Tzu Liao1, Nou-Ying Tang2, Yi-Wen Lin   3,4,5 & Ching Liang Hsieh4,5,6,7

Seizures produce brain inflammation, which in turn enhances neuronal excitability. Therefore, anti-
inflammation has become a therapeutic strategy for antiepileptic treatment. Cycloxygenase-2 (COX-2) 
plays a critical role in postseizure brain inflammation and neuronal hyperexcitability. Our previous 
studies have shown that both electrical stimulation (ES) at the ear and electro-acupuncture (EA) at 
the Zusanli and Shangjuxu acupoints (ST36–ST37) for 6 weeks can reduce mossy fiber sprouting, 
spike population, and high-frequency hippocampal oscillations in kainic acid (KA)-induced epileptic 
seizure rats. This study further investigated the effect of long-term ear ES and EA at ST36–ST37 on the 
inflammatory response in KA-induced epileptic seizure rats. Both the COX-2 levels in the hippocampus 
and the number of COX-2 immunoreactive cells in the hippocampal CA1 region were increased after 
KA-induced epileptic seizures, and these were reduced through the 6-week application of ear ES or EA 
at ST36–ST37. Thus, long-term ear ES or long-term EA at ST36–ST37 have an anti-inflammatory effect, 
suggesting that they are beneficial for the treatment of epileptic seizures.

Epilepsy is a chronic brain disorder that results in the sporadic occurrence of spontaneous seizures. 
Brain-damaging events such as encephalitis, traumatic brain injury, and stroke can induce inflammation in the 
central nervous system (CNS). This inflammation contributes to enhanced neuronal excitability and the onset 
of epilepsy1. Inflammation plays a critical role in epileptogenesis and ictogenesis, and epileptic seizures enhance 
the production of inflammatory mediators such as interleukin-1ß (a proinflammatory cytokine) and prosta-
glandins; these mediators stimulate the inflammatory process and enhance neuronal excitability2. Thus, brain 
inflammation can enhance neuronal excitability and seizure production, and seizures can cause inflammation. 
Anti-inflammation maybe a therapeutic strategy for the treatment of epilepsy3.

Cycloxygenase-2 (COX-2) enzyme levels rapidly increase during seizures, and COX-2 plays a critical proin-
flammatory role in postseizure brain inflammation and neuronal hyperexcitability. Accordingly, pretreatment 
with COX-2 inhibitors can reduce seizure severity4. Astrocytes play a crucial role in the initiation of seizures 
through the release of glutamate from extrasynaptic sources; this initiates the occurrence of paroxysmal depolar-
ization shifts5.

The calcium-binding protein S100-B is mainly synthetized in and secreted from astrocytes. S100 combines 
with receptors for advanced glycation end-product (RAGE) in the extracellular matrix and plays a critical role in 
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the glial modulation of neuronal synaptic plasticity6. The serum levels of S100-B are increased in children with 
temporal lobe epilepsy7. High RAGE expression is observed in inflammatory lesions, and the blocking of RAGE 
delays the development of an inflammatory response8.

The metabotropic glutamate receptor subtype-3 (mGluR3) is upregulated in the reactive astrocytes of kainic 
acid (KA)-treated mice9, and mGluR3 expression is increased in the mesial temporal lobe of an epileptic rat 
model; these represent the changes in glial and neuronal communication10.

Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays a pivotal role in the regulation of 
migration and infiltration of monocytes/macrophages in response to inflammation11. The levels of MCP-1 and its 
CC chemokine receptor-2 (CCR2) are increased in intractable epilepsy patients with hippocampal sclerosis; this 
finding is correlated with the disease duration12.

Auricular acupuncture can be used to treat suspected epilepsy cases; this treatment can increase parasympa-
thetic activity, which then activates the solitary tract nucleus and interferes with the synchronization of electro-
encephalograms (EEGs) from the subcortex; it also simultaneously activates the cholinergic anti-inflammatory 
pathway for controlling inflammation13. The signal induced by auricular acupuncture projects to the solitary tract 
nucleus through the auricular branch of the vagus nerve14. The solitary tract nucleus mediates the anticonvulsive 
effect of vagus nerve stimulation, and the stimulation of the solitary tract nucleus can affect the development of 
seizures in cats15, 16. Peripheral muscarinic receptors mediate the anti-inflammatory effects of auricular acupunc-
ture17. Electro-acupuncture (EA) at the bilateral Zusanli acupoints (ST36) produces an antiepileptic effect and 
increases the expression of GDA67 (glutamic acid decarboxylase) mRNA, which is a marker for γ-amino-butyric 
acid (GABA)-sensitive neurons in the dentate gyrus of lithium–pilocarpine-induced epilepsy rats18. EA at ST36 
can increase the production of c-fos (a cellular marker of neural activity) in the solitary tract nucleus19. Our 
previous studies have shown that both 2-Hz electrical stimulation (ES) at the ear and 2-Hz EA at Zusanli and 
Shangjuxu acupoints (ST36–ST37) for 6 weeks can reduce mossy fiber sprouting as well as spike population and 
high-frequency hippocampal oscillations, which are both biomarkers of epileptogenesis in KA-induced epileptic 
seizure rats20, 21 and which can reduce epileptogenesis. We hypothesized that both ear ES and EA at ST36–ST37 
could produce an anti-inflammatory effect. Therefore, the present study used Western blot and immunohisto-
chemical (IHC) staining analyses to investigate the effects of long-term ear ES and long-term EA at ST36–ST37 
on COX-2, glial fibrillary acidic protein (GFAP), S100-B, RAGE, mGluR3, MCP-1, and CCR2 in KA-induced 
epileptic seizure rats.

Materials and Methods
Animals.  Male Sprague–Dawley (SD) rats weighing 200–300 g were purchased (BioLASCO Taiwan Co., Ltd) 
and raised in the animal center of China Medical University (CMU). A 12–12-h light–dark cycle was maintained, 
and the room temperature was controlled at 25 °C. Adequate food and water were provided. The Animal Care and 
Use Committee of CMU approved the use of these animals. In addition, all procedures were performed according 
to the Guide for the Use of Laboratory Animals (National Academy Press).

Epileptic seizure rat model
Preparation of electrodes.  Thirty SD rats were placed in a stereotactic apparatus in a prone position 
under isoflurane (Aerrane, Canada) anesthesia administered through a vaporizing system (MATRX VIP 3000, 
Midmark, USA). The methods used in this study were similar to those described in our previous study21. In 
summary, the rats’ scalp hair was cut using surgical scissors, and a surgical knife was used to incise the scalp at 
the midline to expose the skull. Stainless steel screw electrodes, which were placed on the dura above the bilateral 
sensorimotor cortices, served as the recording electrodes. A reference electrode was placed at the frontal sinus 
for EEG recordings. Bipolar electrical wires were passed through the subcutaneous tissue and around the neck 
muscles for electromyogram (EMG) recordings. The electrodes were plugged into a conductor, which was affixed 
to the skull with dental acrylic cement. These electrodes were then connected to EEG- and EMG-monitoring 
machines (MPIOOWSW, BIOPAC Systems, Inc., CA, USA). Epileptic seizure behaviors were confirmed using 
a video-recording epileptic behavioral analysis system (SeizureScan, Clever Sys., Inc., Virginia, USA), and EEG 
and EMG findings were recorded during a conscious and free-moving state for at least 4 days after electrode 
implantation. On EEG recordings, intraperitoneal injection (i.p.) of KA (12 mg/kg) was observed to mainly 
induce epileptic seizure behaviors, namely wet-dog behavior, facial myoclonia, and paw tremors, and epilepti-
form discharges. Epileptic seizure behaviors were observed on EEG and EMG recordings from 15 min before to 
3 h after KA injection.

Grouping.  In the present study, the treatment groups included only those rats who exhibited wet-dog shake 
counts of >250 from the start to 3 h after KA injection; the rats in the normal group did not receive KA injection. 
The rats were randomly divided into five experimental groups, and each group contained six rats as follows: 1) 
normal group, in which the rats were peritoneally injected with phosphate buffer solution (PBS); 2) KA group, 
in which the rats were injected with KA (12 mg/kg i.p.); 3) sham group, in which two stainless steel acupuncture 
needles were inserted into the subcutaneous layer at ST36–ST37, and the needles were connected to electric 
stimulator without electric charge. Electric stimulation was applied for 3 days per week at 20 min/day for 6 weeks, 
starting from the next day after KA injection; 4) auricular group, in which the rats received 2 Hz ES (using clip 
electrodes with the anode placed at the ear apex and cathode at the ear lobe; stimulus frequency, 2 Hz; stimulus 
intensity, visual ear twitch; stimulus duration, 20 min/day with each ear receiving the stimulus for 10 min) for 3 
days per week for 6 weeks continuously, starting from the next day after KA injection; and 5) Zusanli group, in 
which the rats received 2 Hz EA at ST36–ST37 (through the insertion of two stainless steel acupuncture needles 
into the muscle layer, with the anode placed at ST36 and cathode at ST37; stimulation intensity, visible muscle 
twitch) for 3 days per week for 6 weeks continuously, starting from the next day after KA injection. All the rats 
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were sacrificed at 6 weeks, and the rat brains were removed after KA or PBS injection. The left hippocampus was 
used for immunohistochemistry (IHC) staining and the right hippocampus for Western blot studies.

Western blot analysis.  Right hippocampi were immediately excised for protein extraction. Total pro-
tein was prepared by homogenizing the hippocampi for 1 h at 4 °C in a lysis buffer containing 20 mmol/L of 
imidazole-HCl (pH 6.8), 100 mmol/L of KCl, 2 mmol/L of MgCl2, 20 mmol/L of ethyleneglycoltetraacetic acid 
(pH 7.0), 300 mmol/L of sucrose, 1 mmol/L of NaF, 1 mmol/L of sodium vanadate, 1 mmol/L of sodium molyb-
date, 0.2% Triton X-100, and a proteinase inhibitor cocktail. From each sample, 30 μg protein was extracted and 
analyzed through a bicinchoninic acid protein assay. The protein was subjected to 10–15% sodium dodecylsul-
fate–Tris–glycine gel electrophoresis and was transferred to a nitrocellulose membrane. The membrane was 
blocked with 5% nonfat milk in a TBST buffer (10 mmol/L of Tris, pH 7.5; 100 mmol/L of NaCl; and 0.1% Tween 
20) and was incubated overnight at 4 °C with the primary antibodies in TBST containing bovine serum albumin. 
Peroxidase-conjugated antibody (1:500) was used as the secondary antibody. The membrane was assessed using 
the ECL-Plus protein detection kit.

IHC staining.  The rats were anesthetized with chloral hydrate (400 mg/kg, i.p.) and then intracardially per-
fused with saline. The brains were removed and postfixed in the same fixative overnight at 4 °C. After briefly wash-
ing with PBS, the brains were transferred to a 30% sucrose solution in 0.01 M PBS for cryoprotection, and coronal 
sections containing the hippocampal area were cut into 16-μm-thick slices through cryosectioning. The sections 
were preincubated for 10 min at room temperature with 10% normal goat serum in PBS to avoid nonspecific 
binding. The sections were incubated overnight at 4 °C in PBS containing the primary antibodies to COX-2 (Cell 
Signaling, USA; 1:1000), GFAP (Calbiochem, Germany; 1:500), S100-B (1:1000; Novus Biologicals, USA), RAGE 
(Abcam, UK; 1:1000), mGluR3 (1:1000; Abcam, UK), MCP-1 (1:1000; Abcam, UK), CCR2 (1:1000; Abcam, UK), 
and actin (1:1000; Millipore, USA). The sections were subsequently incubated with the biotinylated-conjugated 
secondary antibody (diluted at 1:200; Vector, Burlingame, CA 94010, USA) for 10 min at room temperature, 
followed by incubation with the avidin–horseradish peroxidase complex (ABC kit, Genemed, USA). The sec-
tions were finally visualized using 3,3′-diaminobenzidine as the chromogen. During the incubation steps, the 
sections were washed with PBS three times for 10 min per cycle. The stained hippocampus slices were sealed 
under the coverslips, and then examined for the presence of immune-positive hippocampal neurons using a 
microscope (Olympus, BX-51, Japan) with a 40× numerical aperture (NA = 1.4) objective. Where applicable, the 
immune-positive signals were quantified with NIH ImageJ software (Bethesda, MD, USA).

Double immunofluorescence analysis.  The brain sections were blocked for 10 min in PBS containing 
10% bovine serum albumin (Sigma, USA) and then incubated overnight at 4 °C with the primary antibodies 
[1:1000 rabbit polyclonal S-100B (Novus bio, USA) and 1:500 mouse monoclonal GFAP (Calbiochem, USA)]. 
Subsequently, the sections were incubated with the secondary antibodies [1:800 Alexa Fluor 488-conjugated don-
key anti-rabbit and 1:800 Alexa Fluor 594-conjugated goat (Jackson ImmunoResearch Lab. Inc., USA)] for 1 h at 
room temperature. Each of the aforementioned steps was followed by three 3-min rinses in 0.01% Tween 20/PBS. 
At the end of the procedure, the sections were coverslipped using a mounting medium (Sigma, USA) containing 
4′,6-diamidino-2-phenylindole to counterstain the DNA in the nuclei and were then dried overnight. Confocal 
images were captured using a laser-scanning confocal microscope (Leica TCS SP2, Germany).

Statistical analysis.  All data are presented as mean ± standard deviation. Statistical significance among the 
normal, KA, sham, auricular, and Zusanli groups was analyzed through one-way ANOVA, followed by Tukey’s 
post hoc test. A p value of <0.05 was considered statistically significant.

Results
KA-induced epileptic seizures in rats.  Among the KA-treated rat groups, the counts for wet-dog shakes 
were 285.3 ± 14.0 in the KA group, 275.8 ± 16.3 in the sham group, 294.5 ± 25.3 in the auricular group, and 

Figure 1.  Kainic acid (KA)-induced epileptic seizures in rats. The counts of KA-induced wet-dog shakes, facial 
myoclonia, and paw tremors were similar among the KA group (KA), sham group (Sham), auricular group 
(Ear), and Zusanli group (Zusanli).
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294.7 ± 24.8 in the Zusanli group. However, no significant differences were observed among these groups (all 
p > 0.05; Fig. 1).

Among the KA-treated rat groups, the counts for paw tremors were 48.7 ± 7.7 in the KA group, 47.2 ± 11.1 in 
the sham group, 47.2 ± 6.9 in the auricular group, and 41.8 ± 10.6 in the Zusanli group. However, no significant 
differences were observed among these groups (all p > 0.05; Fig. 1).

Among the KA-treated rat groups, the counts for facial myoclonia were 85.5 ± 10.5 in the KA group, 
90.7 ± 22.0 in the sham group, 88.3 ± 10.1 in the auricular group, and 88.5 ± 14.6 in the Zusanli group. However, 
no significant differences were observed among these groups (all p > 0.05; Fig. 1).

Thus, the KA, sham, auricular, and Zusanli groups showed similar baseline values.

Effect of 6-week ear ES and EA at ST36-ST37 on the levels of COX-2, GFAP, S100-B, RAGE, 
mGluR3, MCP-1, and CCR2 in KA-induced epileptic seizure rats.  Western blot analysis find-
ings.  The hippocampal COX-levels in the KA group were 79% ± 18%, which were higher than those in the 
normal group (27% ± 4%), auricular group (31% ± 3%), and Zusanli group (37% ± 7%; all p < 0.05; Fig. 2A and 
B; n = 6). The COX-2 levels in the sham group (68% ± 15%) were similar to those in the KA group (p > 0.05; 
Fig. 2A and B; n = 6).

The hippocampal GFAP levels in the KA (85% ± 22%) and sham (91% ± 16%) groups were higher than those in 
the normal (29% ± 6%) and auricular (37% ± 6%) groups (all p < 0.05; Fig. 2A and C; n = 6). The GFAP levels in the 
Zusanli group were 49% ± 16%, which were similar to those in the KA and sham groups (p > 0.05; Fig. 2A and C; n = 6).

The hippocampal S100-B levels were 147% ± 15% in the normal group, 171% ± 15% in the KA group, 
170% ± 18% in the sham group, 143% ± 12% in the auricular group, and 141% ± 17% in the Zusanli group. 
However, no significant differences were observed among these groups (all p > 0.05; Fig. 2A and D; n = 6).

Figure 2.  Western blot findings for the effects of electrical stimulation at the ear and electro-acupuncture at 
ST36–ST37 on the levels of COX-2, GFAP, S-100B, RAGE, mGluR3, MCP-1, and CCR2 in kainic acid (KA)-
induced epileptic seizure rats. The levels of COX-2 increased in the KA group (K) and sham group (S), and 
decreased in the auricular group (E) and Zusanli group (Z) (A and B). The levels of GFAP increased in the KA 
group and sham group and decreased in the auricular group and Zusanli group (A and C). The levels of S100-B 
(A and D), RAGE (A and E), mGluR3 (A and F), MCP-1 (A and G), and CCR2 (A and H) among the normal 
group (N) and the KA, sham, auricular, and Zusanli groups. ¶p < 0.05 compared with the value of N; *p < 0.05 
compared with the value of K; #p < 0.05 compared with the value of S; n = 6.
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The hippocampal RAGE levels were 89% ± 7% in the normal group, 97% ± 18% in the KA group, 95% ± 17% 
in the sham group, 86% ± 10% in the auricular group, and 93% ± 9% in the Zusanli group. However, no signifi-
cant differences were observed among these groups (all p > 0.05; Fig. 2A and E; n = 6).

The hippocampal mGluR3 levels were 99% ± 7% in the normal group, 101% ± 3% in the KA group, 93% ± 6% 
in the sham group, 92% ± 6% in the auricular group, and 110% ± 8% in the Zusanli group. However, no signifi-
cant differences were observed among these groups (all p > 0.05; Fig. 2A and F; n = 6).

The hippocampal MCP-1 levels were 106% ± 11% in the normal group, 105% ± 9% in the KA group, 
102% ± 8% in the sham group, 104% ± 10% in the auricular group, and 107% ± 12% in the Zusanli group. 
However, no significant differences were observed among these groups (all p > 0.05; Fig. 2A and G; n = 6).

The hippocampal CCR2 levels were 83% ± 7% in the normal group, 82% ± 8% in the KA group, 80% ± 11% 
in the sham group, 76% ± 9% in the auricular group, and 82% ± 8% in the Zusanli group. However, no significant 
differences were observed among these groups (all p > 0.05; Fig. 2A and H; n = 6).

IHC staining findings.  The counts of the COX-2, GFAP, S100-B, RAGE. mGluR3, MCP-1, and CCR2 immuno-
reactive cells were assessed in the CA1, CA2, CA3, and hilus regions of the hippocampus (Fig. 3A).

The total counts of COX-2 immunoreactive cells in the CA1, CA2, CA3, and hilus regions of the hippocampus 
were higher in the KA group (164.8 ± 93.5) than in the Zusanli group (61.0 ± 9.0; p < 0.05; Fig. 3B; n = 6); The 
total counts of COX-2 immunoreactive cells were higher in the sham group (178.3 ± 79.6) than in the Zusanli 
and auricular (73.5 ± 29.8) groups (both p < 0.05; Fig. 3B; n = 6). The total counts of COX-2 immunoreactive 
cells were similar between the KA and sham groups (p > 0.05; Fig. 3B; n = 6). Because the total counts of COX-2 
immunoreactive cells in the KA group were similar to those in the normal group (91.8 ± 36.9; p > 0.05), we 
further analyzed the individual counts in the CA1, CA2, CA3, and hilus regions. The counts of COX-2 immuno-
reactive cells in the CA1 region were higher in the sham group than in the normal, Zusanli, and auricular groups 
(all p < 0.05; Table 1; n = 6), and the counts in the KA group were higher than those in the Zusanli and auricular 
groups (both p < 0.05; Table 1). The counts of COX-2 immunoreactive cells in the CA2 region were higher in the 
sham group than in the Zusanli and auricular groups (both p < 0.05; Table 1; n = 6). The counts of COX-2 immu-
noreactive cells in the CA3 and hilus regions did not significantly differ among the normal, KA, sham, auricular, 
and Zusanli groups (all p > 0.05; Table 1). Thus, our results revealed that COX-2 increases mainly occurred in the 
CA1 region.

The total counts of GFAP immunoreactive cells in the CA1, CA2, CA3, and hilus regions of the hippocam-
pus were higher in the KA (318.5 ± 39.7) and sham (271.2 ± 70.2) groups than in the normal (115.8 ± 35.9), 
Zusanli (137.7 ± 44.8), and auricular (143.0 ± 45.0) groups (all p < 0.05; Fig. 3B; n = 6). The total counts of GFAP 
immunoreactive cells in the KA and sham groups were similar (p > 0.05; Fig. 3B; n = 6). The counts of GFAP 
immunoreactive cells in the CA1 and CA3 regions were higher in the KA and sham groups than in the normal, 
auricular, and Zusanli groups (all p < 0.05; Table 1). The counts of GFAP immunoreactive cells in the CA2 region 
were higher in the KA group than in the normal group (p < 0.05; Table 1), and the counts in the sham group were 
higher than those in the normal, auricular, and Zusanli groups (all p < 0.05; Table 1). The counts of GFAP immu-
noreactive cells in the hilus region were higher in the KA group than in the normal, sham, auricular, and Zusanli 
groups (all p < 0.05; Table 1). Thus, the GFAP immunoreactive cells were distributed in the CA1, CA2, CA3, and 
hilus regions of the hippocampus.

The total counts of S100-B immunoreactive cells in the CA1, CA2, CA3, and hilus regions of the hippocampus 
were higher in the KA (306.2 ± 11.7) and sham (349.7 ± 26.1) groups than in the normal (187.3 ± 26.9), auric-
ular (205.0 ± 25.5), and Zusanli (208.3 ± 38.6) groups (all p < 0.05; Fig. 3B; n = 6). The total counts of S100-B 
immunoreactive cells in the KA and sham groups were similar (p > 0.05; Fig. 3B; n = 6). The counts of S100-B 
immunoreactive cells in the CA1, CA3, and hilus regions of the hippocampus were higher in the KA and sham 
groups than in the normal, auricular, and Zusanli groups (all p < 0.05; Table 1). The counts of S100-B immuno-
reactive cells in the CA2 region were higher in the KA group than in the auricular group (p < 0.05; Table 1), and 
the counts in the sham group were higher than those in the normal, auricular, and Zusanli groups (all p < 0.05; 
Table 1). Thus, the S100-B immunoreactive cells were distributed in the CA1, CA2, CA3, and hilus regions of the 
hippocampus.

The total counts of hippocampal RAGE immunoreactive cells were 202.2 ± 109.6 in the normal group, 
239.7 ± 138.0 in the KA group, 278.3 ± 104.8 in the sham group, 235.0 ± 171.3 in the auricular group, and 
159.3 ± 135.4 in the Zusanli group. However, no significant difference was observed among these groups  
(all p > 0.05; Fig. 3B; n = 6).

The total counts of mGluR3 immunoreactive cells in the CA1, CA2, CA3, and hilus regions of the hippocam-
pus were 192.0 ± 79.8 in the normal group, 214.7 ± 117.0 in the KA group, 185.3 ± 103.4 in the sham group, 
177.7 ± 90.1 in the auricular group, and 158.0 ± 97.1 in the Zusanli group. However, no significant differences 
were observed among these groups (all p > 0.05; Fig. 3B; n = 6).

The total counts of MCP-1 immunoreactive cells in the CA1, CA2, CA3, and hilus regions of the hippocampus 
were 39.2 ± 35.3 in the normal group, 63.0 ± 59.0 in the KA group, 52.7 ± 32.1 in the sham group, 56.7 ± 27.3 
in the auricular group, and 70.0 ± 59.1 in the Zusanli group. However, no significant differences were observed 
among these groups (all p > 0.05; Fig. 3B; n = 6).

The total counts of CCR2 immunoreactive cells in the CA1, CA2, CA3, and hilus regions of the hippocampus 
were 77.8 ± 34.6 in the normal group, 77.8 ± 24.2 in the KA group, 76.3 ± 48.9 in the sham group, 80.5 ± 28.8 
in the auricular group, and 73.5 ± 28.0 in the Zusanli group. However, no significant differences were observed 
among these groups (all p > 0.05; Fig. 3B; n = 6).

Effect of 6-week ear ES and EA at ST36–ST37 observed on double immunofluorescence analy-
sis in KA-induced epileptic seizure rats.  The double immunofluorescence analysis of the hippocampus 
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used IHC staining to assess GFAP and S100B. In KA-induced epileptic seizure rats, the co-localization of GFAP 
with S100B staining was observed in the hippocampus (Fig. 4). Significant increase of double staining of GFAP 
and S100B was obtained in the auricular group (Table 1).

Discussion
Results of the present study indicated that COX-2 levels in the KA-induced epileptic seizure rats were increased, 
but this increase was attenuated through the 6-week application of ear ES and EA at ST36–ST37. The counts of 

Figure 3.  Effects of electric stimulation at the ear and electro-acupuncture at ST36–ST37 on the counts of 
COX-2, GFAP, S100-B, RAGE, mGluR3, MCP-1, and CCR2 immunoreactive cells in kainic acid (KA)-induced 
epileptic seizure rats. The CA1, CA2, CA3, and hilus regions of the hippocampus (A). The counts of COX-2, 
GFAP, and S100-B immunoreactive cells were higher in the KA group (KA) and sham group (Sham) than in the 
normal group (Normal), whereas these counts were decreased in the auricular group (Ear) and Zusanli group 
(Zusanli). The counts of RAGE, mGluR3, MCP-1, and CCR2 immunoreactive cells were similar among the 
normal, KA, sham, and auricular groups (B). Immunoreactive cell (arrowhead); B image is 400× in the CA1 
region; n = 6.
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COX-2 immunoreactive cells in the CA1 region were higher in the sham group than in the normal, auricular, 
and Zusanli groups, and these counts were decreased through the 6-week application of ear ES and EA at ST36–
ST37. These findings suggest that COX-2 levels were increased mainly in the CA1 region of the hippocampus, 
but the Western blot analysis did not discriminate among the CA1, CA2, CA3, and hilus regions. Our results 
were consistent with the finding that dendritic excitability originates from the CA1 region of the hippocampus in 
KA-treated rats22. CA1 plays an essential role in maintaining the balance between excitation and inhibition during 
epileptic seizures because perisomatic inhibitory input is provided when survival pyramidal cells are preserved 
in the CA1 region in patients with epilepsy23. In patients with temporal epilepsy and pilocarpine-treated epileptic 
rats, axon collateral increases in the pyramidial cells, and this increase can extend to the stratum pyramidale 
and stratum radiatum within the CA1 region. This reorganization of hippocampal CA1 plays a critical role in 
epileptogenesis24.

COX-2 is an inflammatory mediator that produces an early inflammatory response to damage and plays a 
critical role in postseizure inflammation and neuronal hyperexcitablity4. A therapeutic strategy for drug-resistant 

Groups

Normal KA Sham Ear Zusanli

COX-2

CA1 19.3 ± 13.4 42.2 ± 19.2 49.8 ± 28.2¶ 7.8 ± 3.0*# 6.2 ± 4.5*#

CA2 8.8 ± 6.6 12.8 ± 12.6 18.2 ± 6.9 1.8 ± 1.3# 4.8 ± 5.5#

CA3 30.0 ± 13.9 48.8 ± 32.2 59.0 ± 28.8 28.2 ± 18.2 22.0 ± 5.9

Hilus 33.7 ± 11.1 61.0 ± 41.5 51.3 ± 35.2 35.7 ± 14.0 28.0 ± 9.0

GFAP

CA1 22.5 ± 4.9 91.2 ± 26.6¶ 85.2 ± 43.1¶ 42.3 ± 21.8*# 36.3 ± 9.8*#

CA2 9.7 ± 3.9 36.7 ± 6.2¶ 41.5 ± 30.1¶ 13.8 ± 6.7# 12.3 ± 6.2#

CA3 18.7 ± 7.0 67.8 ± 9.6¶ 60.2 ± 19.4¶ 28.0 ± 9.6*# 25.7 ± 11.1*#

Hilus 65.0 ± 23.6 122.8 ± 16.6¶ 84.3 ± 16.6* 58.8 ± 10.2* 63.3 ± 23.7*

S100-B

CA1 62.7 ± 6.9 109.5 ± 11.6¶ 111.7 ± 15.0¶ 73.5 ± 8.7*# 65.7 ± 15.4*#

CA2 40.7 ± 6.4 48.2 ± 7.4 58.8 ± 10.7¶ 34.3 ± 4.6*# 38.3 ± 10.0#

CA3 46.3 ± 11.7 73.8 ± 9.5¶ 89.5 ± 11.1¶ 52.5 ± 7.5*# 56.3 ± 8.8*#

Hilus 37.7 ± 14.8 74.7 ± 9.9¶ 89.7 ± 14.1¶ 45.2 ± 10.2*# 48.0 ± 14.6*#

GFAP+S100-B

CA1 9.3 ± 2.1 22.0 ± 3.4¶ 29.5 ± 4.0¶ 40.7 ± 3.9¶*# 27.2 ± 5.6¶

CA2 1.5 ± 0.6 5.7 ± 1.2¶ 8.3 ± 1.5¶ 12.0 ± 1.2¶*# 6.3 ± 2.8¶

CA3 6.3 ± 1.5 19.0 ± 1.1¶ 21.3 ± 5.2¶ 32.3 ± 4.0¶*# 19.7 ± 4.5¶

Hilus 22.2 ± 1.6 37.7 ± 2.9¶ 33.7 ± 5.9¶ 59.7 ± 9.9¶*# 30.3 ± 5.0¶

Table 1.  Effect of electrical stimulation at the ear and electro-acupuncture at ST36–ST37 on COX-2, GFAP, and 
S100-B immunoreactive cells in kainic acid-induced epileptic seizure rats. Data represented as mean ± standard 
deviation; Normal: normal group; Sham: sham group; Ear: auricular group; Zusanli: Zusanli group; KA: kainic 
acid group; COX-2: cycloxygenase-2 immunoreactive cells; GFAP: glial fibrillary acidic protein immunoreactive 
cells; S100-B: S100-B immunoreactive cells; CA1: CA1 region of the hippocampus; CA2: CA2 region of 
the hippocampus; CA3: CA3 region of the hippocampus; Hilus: hilus region of the hippocampus; ¶p < 0.05 
compared with the value of Normal; *p < 0.05 compared with the value of KA; #p < 0.05 compared with the 
value of Sham; n = 6.

Figure 4.  Effect of electrical stimulation at the ear and electro-acupuncture at ST36–ST37 observed on double 
immunofluorescence analysis in kainic acid-induced epileptic seizure rats. Double immunofluorescence 
analysis revealed the co-localization of GFAP (green) and S-100B (red) immunoreactive cells; the co-
localization is marked with yellow (GFAP and S-100B).
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epilepsy involves the use of COX-2 inhibitors to prevent the upregulation of seizure-induced P-glycoprotein at 
the blood–brain barrier25.

In addition, our results revealed increased GFAP levels in the KA-induced epileptic seizure rats, and these 
levels were decreased through ear ES. The total counts of the GFAP immunoreactive cells in the CA1, CA2, CA3 
and hilus regions of the hippocampus were increased, and these counts were decreased through the 6-week appli-
cation of ear ES and EA at ST36–ST37.

In the Western blot analysis, the S100-B levels did not increase in the KA-induced epileptic seizure rats. The 
counts of S100-B immunoreactive cells in the CA1, CA2, CA3 and hilus regions of the hippocampus increased 
in KA-induced epileptic seizure rats, and these counts were decreased through the 6-week application of ear ES 
and EA at ST36–ST37.

GFAP is an astrocyte marker, and astrocytes are a pathological hallmark of the CNS because they respond to 
CNS injuries through the process of astrogliosis26. Astrocytes modulate the release of neurotransmitters, such as 
glutamate uptake through the GLT transporter, and regulate the release of GABA from interneurons. The dis-
rupted balance between glutamate and GABA levels is a key pathological mechanism in epilepsy27. In addition, 
astrocytes may play a role in amplifying, maintaining, and spreading neurogenic seizure activity5.

S100-B is synthesized in and secreted from astrocytes to the extracellular space28, 29. The serum levels of 
S100-B are increased in patients with mesial temporal lobe epilepsy, and serum S100-B levels are suspected to 
be a peripheral marker for astrocytes and brain inflammation30. Taken together, this suggests that most S100-B 
is limited within astrocytes after the 6-week application of ear ES or EA at ST3–-ST37. Accordingly, our results 
indicated that the counts of S100-B immunoreactive cells increased, but Western blot analysis did not reveal an 
increase in the S100-B levels. This finding is supported by our results indicating the co-localization of S100-B and 
GFAP in the double stain analysis.

In addition, both RAGE and mGluR3 levels in the Western blot study and immunoreactive cell counts in 
the IHC staining analysis were similar among the normal, KA, sham, auricular, and Zusanli groups. Moreover, 
S100-B has a dual role in intracellular and extracellular signaling. Intracellular S100-B plays a critical role in cell 
proliferation, migration and differentiation, and repair. Extracellular S100-B engages RAGE and has a beneficial 
or detrimental action depending on the protein concentration31, 32. High concentrations of extracellular S100-B, 
which result in apoptosis, can be observed in conditions such as brain trauma and inflammatory diseases. S100-B 
also plays a critical role in epileptogenesis33. mGluR3-mediates the release of S100-B from astrocytes to the extra-
cellular space, and this extracellular S100-B modulates neuronal network activity through RAGE34.

The results of the present study indicated that the levels of MCP-1 and CCR2 were similar in the Western blot 
analysis, and the counts of MCP-1 and CCR2 immunoreactive cells in the hippocampus were also similar among 
the normal, KA, sham, auricular, and Zusanli groups at 6 weeks after KA-induced epileptic seizures. MCP-1 is 
a chemokine that plays a crucial role in the regulation of monocyte/macrophage migration and infiltration, and 
CCR2 is the receptor of MCP-111. CCR2 has a dual proinflammatory and anti-inflammatory action11. MCP-1 
enhances neuronal excitability through presynaptic glutamate release35.

The absence of increases in MCP-1 and CCR2 levels in the KA and sham groups remains unexplained. MCP-1 
upregulation during seizure injury has been reported in a KA-induced status epilepticus model36. MCP-1 is pro-
duced by various cell types, including astrocytes, monocytes, endothelial cells, smooth muscle cells, and micro-
glial cells37, and various cells may contribute to the expression of CCR2 at different time points after seizures38. 
Therefore, the relationship between the time points of MCP-1/CCR2 expression and KA-induced epileptic sei-
zures needs further study. In addition, the limitation of the current study is that we cannot online monitor the 
animal behaviors during seizure during 6 weeks’ period and test actual effect of ear ES or EA.

In conclusion, the 6-week application of ear ES and EA at ST36–ST37 led to decreased COX-2 levels in the 
CA1 region as well as lowered astrocyte counts and S100-B levels in the hippocampus, suggesting that long-term 
ear ES or long-term EA at ST36–ST37 may produce an anti-inflammatory response in KA-induced epileptic sei-
zure rats. Thus, the use of these techniques may be a strategy for the treatment of epilepsy.
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