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Abstract

Background: Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into
diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells.

Methodology/Principal Findings: We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-
6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system.
When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human
recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days,
expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6
exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4,
AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than
BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface
endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a
more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases
ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for
inducing hES cell differentiation.

Conclusions/Significance: Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing
differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance.
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Introduction

Embryonic stem (ES) cell lines derived from the epiblast tissue of

the inner cell mass of a blastocyst or earlier morula stage embryos

are pluripotent and can develop to the three primary germ layers:

ectoderm, endoderm and mesoderm. For that reason, human

embryonic stem (hES) cells represent an excellent clinical source of

precursor cells for cell-based therapy if they can be guided to

differentiate into a certain cell type needed to treat damaged

tissue in chronic diseases or injuries [1]. In addition to tissue

regeneration, hES cell derivatives can be used in studies of cellular

development, tumorigenesis, and in the discovery or cytotoxicity

screening of new drug candidates [2].

Different members of the Transforming Growth Factor b
(TGFb) family have been implicated in various developmental

stages and processes. One subfamily, the Bone Morphogenetic

Proteins (BMPs), have been traditionally studied with regard to

bone and cartilage development, but recently their effects have

been studied in mouse and human stem cell cultures [3]. Murine

and human stem cells display differences in their behavior upon

incubation with BMPs. BMP signaling promotes self-renewal in

mouse stem cells when incubated together with Leukemia

Inhibitory Factor in the absence of serum replacement or

conditioned medium [4]. In contrast, inhibition of BMP signaling

is a requirement for long term maintenance of hES cells [5], while

incubation with BMPs is a potent inductor of differentiation of

these cells in conditions that would otherwise support self-renewal

[6].

The diverse members of the BMP subfamily exert different

effects on hES cells. BMP-2 and BMP-6 have been involved in
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osteogenesis of human mesenchymal stem cells [7,8] and BMP-2 is

also known to induce extraembryonic endoderm differentiation of

hES cells [9]. BMP-4 has been linked to mesoderm and endoderm

formation, as well as kidney and bone development. In culture,

BMP-4 induces trophoblast differentiation of hES cells [10], and

endoderm differentiation of monkey stem cells [11].

From a structural point of view, the mature segment of the

BMPs is highly conserved in all organisms and contains seven

cysteine amino acid residues. Six of these residues are involved in

the formation of intrachain disulphide bonds that forms a rigid

‘‘cysteine-knot’’ molecular structure, and the seventh cysteine

residue is involved in the formation of a dimer via interchain

disulphide bond. BMPs interact with a pair of type II and type I

receptors (e.g. BMP receptor type Ia, BMPR1A; Activin receptor-

like kinase 1, ACVRL1; BMP receptor type 2, BMPR2; Activin

receptor type IIa, ACVR2A; Activin receptor type IIb, ACVR2B),

which are also respectively structurally conserved [12–14]. Most of

TGFb family ligands, including BMPs, are produced as either

homo- or heterodimers, increasing the variability of the effector

molecule. Although most studies in the past have been performed

with BMP homodimers, mainly due to their availability, there

are natural heterodimers with equal, if not increased, bioactivity

[15–19], and the heterodimer activity is not well elucidated yet.

We have recently established a procedure that allows us to

generate large quantity of BMP-2/BMP-6 heterodimer (BMP-2/6)

by a chemical refolding method [20]. This methodology enabled

us to study the activity of the BMP-2/6 heterodimer in a variety of

experiments that require sub-milligram amount of ligands. The

heterodimer showed a higher affinity to both receptor types than

its homodimeric counterparts, and increased SMAD1-dependent

signaling activity by luciferase reporter assay, osteogenic differen-

tiation-inducing activity in mouse MC3T3-E1 cells and chondro-

genic activity in primary cultured embryonic limb mesenchyme

[20]. To study its biological activity on hES cells, we have

compared BMP-2, BMP-6 and BMP-2/6 in inducing differenti-

ation of hES cells, quantified by gene expression analysis of specific

differentiation markers. We found that among BMP-2, BMP-6

and BMP-2/6, BMP-2/6 is more effective than BMP-2 or BMP-6

for inducing both trophoblast and endoderm differentiation of

hES cells H9. BMP-2/6 also induced higher levels of SMAD1/5

phosphorylation, and increased activation of Smad-independent

signaling pathways (ERK and p38 mitogen-activated protein/

MAP kinases) that might be related to its increased potency

for inducing hES cell differentiation. Our results support the

hypothesis of an enhanced biological activity of the BMP-2/6

heterodimer, and these characteristics make BMP-2/6 a good

candidate for its application in in vitro differentiation guidance of

human stem cells.

Results

BMP-2, BMP-6 and BMP-2/6 induce differentiation of hES
cells in a dose- and type-dependent manner

H9 cells were cultured in mTeSR1 (StemCell Technologies) on

Growth Factor-Reduced (GFR) Matrigel-coated wells (BD Biosci-

ences). Forty-eight hours (h) after splitting, hES cells were treated

with BMP-2, BMP-6 or BMP-2/6 at 100 ng/ml in mTeSR1 for 5

days, and the time course of morphological changes was analyzed.

Morphological changes were observed as soon as 24 h after

beginning incubation, and evident differentiation morphology

appeared usually after another 24 h.

Morphological changes induced by BMPs started synchronically

at the periphery of the colonies and spread towards the center.

Usually a central core of highly packed, morphologically

undifferentiated cells remained after 5 days of treatment

(Figure 1). In comparing this morphology to spontaneous

differentiation morphology, BMP-treated cells were usually bigger

and homogeneously shaped, while spontaneous differentiation

tended to be restricted to discrete spots, not synchronic and

morphologically heterogeneous (data not shown).

The time course of morphological changes depended on the

BMP ligand used as inductor of differentiation. BMP-2 and BMP-

2/6 at 100 ng/ml induced morphological changes after 24 h and

evident differentiation morphology of hES H9 cells after 48 h,

whereas the same concentration of BMP-6 only induced similar

morphological changes after an additional 24 h in comparison to

BMP-2 or BMP-2/6. There was no increased activity of BMP-2/6

when compared to BMP-2 in the number of differentiated

colonies, rate of differentiation or morphology. As expected,

noggin at 1 mg/ml completely blocked the morphological changes

induced by BMP-2 at 100 ng/ml (Figure 1E), which confirms that

the differentiation is BMP-dependent.

Lower concentrations of agonists (1 and 10 ng/ml) were also

tested. BMPs at 1 ng/ml did not induce any morphological

change on hES cell colonies after 5 days of incubation (data not

shown). BMP-2 or BMP-2/6 at 10 ng/ml induced morphological

changes, but with a delay of 24 h when compared to 100 ng/ml

(Figure 1F, 1H). BMP-6 at 10 ng/ml only elicited modest

morphological changes after 5 days, indicating again the lower

potency of BMP-6 to induce differentiation of H9 cells in our

culture conditions (Figure 1G). Based on morphological examina-

tion, BMP-2/6 heterodimer and BMP-2 homodimer are compa-

rably active, whereas BMP-6 homodimer is not as active.

Gene expression analysis of BMP-treated hES cells: BMP-2
and BMP-2/6 show similar activity to induce loss of
pluripotency markers

In order to examine the differentiation by BMP-2/6 with

molecular markers, we performed quantitative gene expression

analysis. After 5 days of incubation with BMPs at 100 ng/ml, total

RNA was extracted following the guanidinium thiocyanate-

phenol-chloroform protocol [21]. 5 mg of total RNA were used

for the reverse transcription reaction and gene expression was

analyzed by quantitative PCR (qPCR) with specific primers for

pluripotency or differentiation markers. We selected GAPDH as

housekeeping gene to perform the normalization of qPCR results

as GADPH expression is known to be less affected in hES cell

differentiation than other normalization standards [22]. All the

results were also normalized to non-treated H9 cells grown in

mTeSR1 (control conditions).

Consistent with the morphological change, expression of stem

cell markers NANOG and POU5F1/OCT4 were reduced in BMP-2-

treated H9 cells, and even more efficiently in BMP-2/6-treated H9

cells (Figure 2A, 2B). In contrast, expression of these markers was

not reduced in BMP-6 treated cells, despite the obvious

differentiation morphology in a significant percentage of cells

after 5 days (Figure 1C). Interestingly, BMP-6 induced an increase

in the expression of NANOG, which was potentiated by co-

incubation with noggin but not induced by noggin alone

(Figure 2A).

We also quantified the percentage of cells which lost the

embryonic stem cell marker TRA-1-60 (Figure 2C, 2D). H9 cells

were exposed to 100 ng/ml of BMP-2 or BMP-2/6 for 5 days, at

which point TRA-1-60 was tagged with an Alexa Fluor 488

conjugated antibody. Cells were analyzed by flow cytometry to

quantify the percentage of TRA-1-60-positive cells. We observed a

50% loss of TRA-1-60-positive pluripotent cells after BMP-2 or

BMP-2/6 treatment (Figure 2C), suggesting that differences in the

BMP-2/6 in hES Cells
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expression of stem cell markers do not necessarily reflect the

percentage of pluripotent cells.

Gene expression analysis of BMP-treated hES cells: BMP-2
and BMP-2/6 differ in their ability to induce the
expression of differentiation markers

Next, we examined markers for differentiation after 1, 3 and 5

days of BMP treatment. There were no significant variations in the

expression levels of NES/NESTIN (Figure 3A), which is a marker

of neural tissue. This confirms previous reports that activation of

BMP signaling blocks neuroectodermal differentiation of hES cells

[9,23,24].

We examined next trophectodermal markers CDX2 and CGB5/

HCG [25,26]. Expression of these markers was highly increased by

BMP-2 treatment, and this change was completely blocked by

noggin at 1 mg/ml (Figure 3B, 3C). BMP-6 also induced CDX2

expression, but no CGB5 expression. Interestingly, BMP-2/6 was

better inducer of CDX2 marker than BMP-2 or BMP-6 at any time

point analyzed, revealing an increased activity of the heterodi-

meric form in inducing trophoblast differentiation.

Expression of the early stage mesendodermal marker T (human

brachyury homolog) was induced by BMP-2, BMP-6 and BMP2/6

(Figure 3D). T was expressed in BMP-2 and BMP-6-treated cells at

the same level. Similar to the induction of trophectodermal

markers, BMP-2/6 showed stronger activity as inducer of this

marker. T is a hallmark of both definitive mesoderm cells as cells

undergoing meso-endoderm transition [27]. T expression peaked

after 3 days of treatment and decreased afterwards, which suggests

that its expression is mainly a prelude of endoderm differentiation.

Similar to the pattern of CDX2 expression, noggin at 1 mg/ml

completely blocked T expression induced by BMP-2, but only

partially blocked the increase induced by BMP-2/6 (Figure 3B, 3D).

Gene expression analysis of BMP-treated hES cells: BMP-
2/6 shows stronger activity to induce endodermal marker
expression

Given the strong induction of T, an early mesendodermal

marker, we further characterized the differentiation induced by

BMPs by the analysis of endodermal markers. SOX17 and CXCR4

are markers of definitive endoderm systematically used in studies

of endoderm differentiation [28–30]. Nevertheless, SOX17 can also

be expressed in extraembryonic endoderm, and CXCR4 can also

be expressed in mesendoderm cells, so a combination of several

markers is the best choice when definitive endoderm needs to be

accurately quantified. GATA4, GATA6 and AFP are extraembry-

onic endodermal markers [31], and AFP is also a marker of hepatic

differentiation of hES cells [32].

The pattern of expression of the endodermal markers SOX17,

GATA4, GATA6 and AFP indicated that BMP-2/6 is an effective

inducer of these markers and BMP-6 is not (Figure 4A-D).

Expression of SOX17, GATA4 and GATA6 showed a strong

induction under our conditions (500 to 1000 times GAPDH

expression), while expression of AFP showed a modest level of

induction. From these results we conclude that BMP-2/6 is a more

efficient inductor of endodermal differentiation than BMP-2 in our

experimental paradigm.

We also analyzed the expression of several members of the BMP

signaling pathway: agonists (BMP2, BMP6) and receptors

(BMPR1A/ALK3, BMPR1B/ALK6, BMPR2, ACVR1/ALK2,

ACVR2A, ACVR2B). Expression of BMP2 gene was induced by

BMP-2 and BMP-2/6 treatment, suggesting a positive feedback in

the BMP signaling pathway (Figure 4E). BMP2 is also a mesoderm

marker, indicating that BMP-2 and BMP-2/6 could also induce

modest levels of mesoderm differentiation. Expression of type II

receptor BMPR2 was also increased in all the conditions, but

Figure 1. Morphological changes of hES cells after treatment with BMPs. H9 cells were treated with BMP-2, BMP-6 or BMP-2/6 in mTeSR1 for
5 days. Noggin 1 mg/ml was used as antagonist to BMP-2. Medium was changed daily for fresh medium supplemented with the desired
concentration of agonists. Pictures were taken using an inverted microscope and 10X objective. A, control cells in mTeSR1. B, BMP-2 100 ng/ml. C,
BMP-6 100 ng/ml. D, BMP-2/6 100 ng/ml. E, BMP-2 100 ng/ml + noggin 1 mg/ml. F, BMP-2 10 ng/ml. G, BMP-6 10 ng/ml. H, BMP-2/6 10 ng/ml.
Arrowheads indicate morphologically pluripotent cells; arrows point out morphologically differentiated areas. Insets belong to 36magnification.
doi:10.1371/journal.pone.0011167.g001

BMP-2/6 in hES Cells
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BMP-2/6 was again the most effective inducer of this gene

(Figure 4F). The expression levels of BMPR1A, BMPR1B, ACVR1,

ACVR2A, ACVR2B and BMP6 were, however, not significantly

affected by any of the treatments (Figure S1). Therefore, these

results suggest that the positive feedback induced by BMP-2 or

BMP-2/6 comprises an increase in the expression of both agonist

(BMP2) and receptor (BMPR2).

With these results combined, we conclude that BMP-2, BMP-6

and BMP-2/6 induce mainly trophoblast and endoderm differen-

tiation in our experimental conditions. These BMPs also regulate

the expression of BMP2 and BMPR2 genes, suggesting the

possibility of a positive feedback of stimulation of BMP-2 signaling

pathway. The level of expression of selected genes (endodermal

SOX17, GATA6, GATA4, AFP and BMP signaling members BMP2

or BMPR2) can be used as a measure of the biological activity of

different BMPs in H9 hES cells. It is interesting to note that BMP-

2/6 is a more effective inducer of expression of differentiation

markers than BMP-2 or BMP-6, even though it is a heterodimeric

assembly of BMP-2 and BMP-6, and BMP-6 is not an active

inducer of differentiation.

Gene expression analysis of BMP-treated hES cells: BMP-2
and BMP-2/6 differ in their ability to induce definitive
endoderm marker CXCR4

CXCR4 is a marker of definitive endoderm cells and a surface

receptor that has been used to purify this population of cells

without compromising their viability [33]. We decided to measure

CXCR4 gene expression levels and the percentage of the CXCR4-

Figure 2. Expression analysis of stem cell markers after treatment with BMPs. H9 cells were treated with BMP-2, BMP-6 or BMP-2/6 at
100 ng/ml in mTeSR1 for 5 days. Noggin 1 mg/ml was used as antagonist. After 5 days of treatment, qPCR and flow cytometry were used to analyze
expression of stem cell markers. qPCR values correspond to relative expression compared to GAPDH mRNA. As control, cells growing in mTeSR1 were
used. Treatments were repeated at least in three different experiments, and results are expressed as average 6 SD. A, qPCR analysis of NANOG
expression. B, qPCR analysis of POU5F1 expression. C, Flow cytometry analysis of the embryonic stem cell marker TRA-1-60. D, Flow cytometry
histogram corresponding to the results shown in C. (*) P,0.05 BMP-2 vs. BMP-2/6; (**) P,0.01 BMP-2 vs. BMP-2/6; (#) P,0.05 control vs. BMP; (##)
P,0.01 control vs. BMP.
doi:10.1371/journal.pone.0011167.g002

BMP-2/6 in hES Cells
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positive population to quantify definitive endoderm induction after

BMP treatments. H9 cells were treated with BMP-2, BMP-6 or

BMP-2/6 at 100 ng/ml for 1, 3 and 5 days in mTeSR1, and RNA

was extracted and analyzed by qPCR. While the increase in the

expression of CXCR4 was modest compared to the increase of

extraembryonic endodermal markers, we observed stronger

activity of BMP-2/6 in inducing this marker than that of the

homodimers BMP-2 and BMP-6 (Figure 5A).

This increase in mRNA levels could not be directly correlated to

changes in the percentage of definitive endodermal cells. To

quantify the percentage of CXCR4-positive endoderm cells

present after incubation with BMPs, we used flow cytometry in

non-permeabilization conditions. H9 cells were exposed to 10 or

100 ng/ml of BMP-2, BMP-6 or BMP-2/6 for 5 days and

CXCR4 was targeted with a Phycoerythrin (PE) labeled antibody.

Cells were analyzed by flow cytometry and the percentage of

CXCR4-positive cells quantified (Figure 5B–D). As expected, the

percentage of CXCR4-positive cells depended on the BMP and its

concentration (Figure 5B). When incubated at 10 ng/ml, BMP-2

induced an average of 17.4% CXCR4-positive cells and BMP-2/6

induced 24.4%. When incubated at 100 ng/ml, BMP-2/6 also

induced the expression of CXCR4 in more cells that BMP-2

(42.3% and 33.3% respectively). Nevertheless, BMP-6 had

reduced differentiation potency when compared to BMP-2 and

BMP-2/6 (2.6% at 10 ng/ml and 13.6% at 100 ng/ml).

These results confirm that BMP-2/6 is better inducer of

definitive endoderm differentiation of H9 cells than BMP-2 or

BMP-6 when measured by the level of expression of endodermal

markers and percentage of CXCR4-positive cells. BMP-2/6

induced the expression of CXCR4 marker in 1.3 times more cells

Figure 3. qPCR expression analysis of differentiation markers after treatment with BMPs (I). H9 cells were treated with BMP-2, BMP-6 or
BMP-2/6 at 100 ng/ml in mTeSR1 for 1, 3 or 5 days. Noggin 1 mg/ml was used as antagonist. After 5 days of treatment, qPCR was used to analyze
expression of differentiation markers. qPCR values correspond to relative expression compared to GAPDH mRNA. As control, cells growing in mTeSR1
were used. Treatments were repeated at least in three different experiments, and results are expressed as average 6 SD. A, NES. B, CDX2. C, CGB5. D, T.
(**) P,0.01 BMP-2 vs. BMP-2/6.
doi:10.1371/journal.pone.0011167.g003

BMP-2/6 in hES Cells
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Figure 4. qPCR expression analysis of differentiation markers after treatment with BMPs (II). H9 cells were treated with BMP-2, BMP-6 or
BMP-2/6 at 100 ng/ml in mTeSR1 for 1, 3 or 5 days. Noggin 1 mg/ml was used as antagonist. After 5 days of treatment, qPCR was used to analyze

BMP-2/6 in hES Cells
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than BMP-2, similar value to the ratio obtained by qPCR analysis

(average of 1.6 times). Those results confirm that BMP-2/6 is a

better inducer of endoderm differentiation than BMP-2 by a factor

of 30–60% in this model system.

Signaling pathways analysis of BMP treated hES cells:
BMP-2/6 is a better inductor of Smad-dependent and
Smad-independent signaling

Finally, we analyzed the involvement of different signaling

pathways in the early stages of BMP-2, BMP-6 and BMP-2/6-

induced differentiation of hES cells. Activation of BMP receptors

leads to the recruitment and phosphorylation of the receptor

regulated Smads (R-Smads) SMAD1, SMAD5 or SMAD8, that in

complex with SMAD4 migrate into the nucleus and activate the

transcription of specific target genes [34–36]. But BMPs and other

TGFb family members also activate a multitude of intracellular

signaling pathways in addition to Smads to regulate cell function,

including MAP kinases [34,37,38].

H9 cells were treated with BMP-2, BMP-6 or BMP-2/6 at

100 ng/ml for 5, 10, 30, 60 or 120 min in mTeSR1, and protein

was extracted and analyzed by immunoblotting (Figure 6).

Antibodies against phosphorylated (active) and total forms of

different members of Smad-dependent and Smad-independent

Figure 5. Expression analysis of endodermal marker CXCR4 in hES cells treated with BMPs. H9 cells were treated with BMP-2, BMP-6 or
BMP-2/6 in mTeSR1 for 1, 3 or 5 days. Noggin 1 mg/ml was used as antagonist. After 5 days of treatment, qPCR and flow cytometry were used to
analyze expression of the endodermal marker CXCR4. qPCR values correspond to relative expression compared to GAPDH mRNA. As control, cells
growing in mTeSR1 were used. Treatments were repeated at least in three different experiments, and results are expressed as average 6 SD. A, qPCR
analysis of CXCR4 expression. B, Flow cytometry analysis of CXCR4 after incubation with BMP-2, BMP-6 or BMP-2/6 at 10 or 100 ng/ml. C, D, Flow
cytometry histograms of CXCR4-positive cells after incubation with BMPs at 10 (C) or 100 ng/ml (D). As negative controls, untreated cells (TeSR) and
PE-conjugated mouse IgG2a isotype control (isotype) were used. (*) P,0.05 BMP-2 vs. BMP-2/6.
doi:10.1371/journal.pone.0011167.g005

expression of differentiation markers. qPCR values correspond to relative expression compared to GAPDH mRNA. As control, cells growing in mTeSR1
were used. Treatments were repeated at least in three different experiments, and results are expressed as average 6 SD. A, SOX17. B, GATA4. C,
GATA6. D, AFP. E, BMP2. F, BMPR2. (*) P,0.05 BMP-2 vs. BMP-2/6; (**) P,0.01 BMP-2 vs. BMP-2/6; (***) P,0.001 BMP-2 vs. BMP-2/6; (#) P,0.05 control
vs. BMP; (##) P,0.01 control vs. BMP; (###) P,0.001 control vs. BMP.
doi:10.1371/journal.pone.0011167.g004

BMP-2/6 in hES Cells
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signaling pathways were used. As expected, all three BMPs

induced SMAD1/5 phosphorylation in a time dependent manner.

BMP-2/6 induced higher levels of SMAD1/5 phosphorylation

than BMP-2 or BMP-6 after 1–2 h of treatment, while BMP-6 was

the less potent activator at any time point (Figure 6).

Next we analyzed activation of MAP kinase pathways by BMPs.

Levels of phosphorylated ERK (pan ERK) increased after 30 min

of treatment with BMPs (Figure 6), and BMP-2/6 strongly induced

ERK activation when compared to the homodimers BMP-2 and

BMP-6. This effect could also be observed in the case of p38 MAP

kinase, a known member of BMP Smad-independent signal-

ing cascades. After 2 h of treatment, both proteins remained

phosphorylated at high levels (Figure 6). On the contrary,

phosphorylation of SAPK/JNK was similar in BMP-2 and

BMP-2/6 treated cells and started decreasing after 30–60 min of

treatment (Figure 6).

Therefore the BMP-2/6 heterodimer induced higher levels of

SMAD1/5 phosphorylation and it is also a more potent activator

of Smad-independent signaling pathways than the homodimeric

forms BMP-2 or BMP-6, and these properties might be related to

its increased potency for inducing differentiation of hES cells.

FGF2 and TGFb1 components of the culture medium
affect how hES cells respond to BMP treatment

TeSR1 medium is characterized by high concentration of FGF2

(100 ng/ml) to inhibit cell differentiation and promote self-renewal

and pluripotency [39]. FGF2 is known to indirectly inhibit BMP

signaling and, therefore, a lower concentration or absence of

FGF2 would theoretically enhance the BMP-induced response.

Furthermore, Transforming Growth Factor b1 (TGFb1) (0.6 ng/

ml) present in mTeSR1 activates SMAD2/3 pathway to help

maintain hES cells in a proliferative state [40]. SMAD2/3 is

known to form a complex with SMAD4, which is also a

component of BMP-induced SMAD1/5/8 pathway, thus poten-

tially interfering with BMP-induced differentiation [40]. In order

to examine if BMP-induced differentiation of hES cells is affected

by FGF2 and TGFb1 present in the culture medium, we planned

to test whether depletion of FGF2 and TGFb1 would affect

the percentage, speed or amount of differentiation to a particular

fate in our culture conditions, using BMPs as inducers of

differentiation.

Cells were split in mTeSR1 and incubated with a modified

composition of mTeSR1 starting 24 h after splitting. The standard

mTeSR1 culture medium, containing both FGF2 and TGFb1 as

described above, was modified to a composition lacking FGF2 or

lacking both FGF2 and TGFb1. Cells were maintained in these

modified composition media for a total of 9 days, including a

splitting process at day 4 of incubation. Treatments with BMPs in

modified composition mTeSR1 started at day 5 of incubation in

modified composition media and lasted for 4 days.

After 4 days of incubation in FGF2-free medium, the effect of

FGF2 depletion was observed as a change in the morphology of

the colonies (star-shaped instead of rounded) and lower cell density

(Figure 7B). When the colonies were split in FGF2-free medium,

an elevated percentage of differentiated cells were observed in the

following days (Figure 7C), to the point that cells cultured in

FGF2-free mTeSR1 were unable to maintain pluripotency for

more than two passages. Treatment with BMP-2 or BMP-2/6 at

100 ng/ml in FGF2-free medium for 4 days exacerbated

differentiation triggered by the medium itself (Figure 7E, 7F),

while treatment with Activin A at 100 ng/ml completely blocked

differentiation (Figure 7D).

POU5F1 expression was reduced by 50% after 9 days of

incubation in FGF2-free medium and by 90% if the incubation

was performed in FGF2/TGFb1-free medium (Figure 8A).

Incubation of H9 cells in FGF2-free or FGF2/TGFb1-free media

did not induce the expression of high levels of any of the

differentiation markers analyzed, although differentiation was

evident at the end of the treatment (Figure 7, Figure 8). We only

detected an increased expression of BMP2 in modified composi-

Figure 6. Activation of Smad-dependent and Smad-independent signaling pathways by BMPs in hES cells. H9 cells were treated with
BMP-2, BMP-6 or BMP-2/6 at 100 ng/ml in mTeSR1 for 5, 10, 30, 60 and 120 min, or with mTeSR1 for 120 min (Control). Cell lysates were
immunoblotted using different antibodies for phosphorylated (p-, active) and total forms of transcription factors or MAP kinases. b-actin was used as
loading control.
doi:10.1371/journal.pone.0011167.g006
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tion media (Figure 8F). These observations suggest that FGF2 and

TGFb1 are acting as anti-apoptotic, proliferative and pluripotency

maintenance factors, but not inhibiting endogenous BMP-induced

differentiation into ectodermal and endodermal lineage.

Next, we tested the differentiation-inducing activity of BMPs in

these culture conditions. H9 cells cultured for 5 days in FGF2-free

or FGF2/TGFb1-free media were exposed to BMP-2 or BMP-2/6

at 100 ng/ml for 4 subsequent days in the modified composition

media. When cells were treated with BMP-2 or BMP-2/6 after 5

days of FGF2 or FGF2/TGFb1 depletion, the effect of those

BMPs was characterized by an increased inhibition of POU5F1

expression (Figure 8A); however, the expression of trophectoder-

mal and endodermal markers was drastically abolished (Figure 8B–

D). With the only exception of AFP marker (Figure 8E), BMP-2/6

and BMP-2 exerted the same effect on hES cells cultured in FGF2-

free medium.

These results were confirmed by flow cytometry for the

endodermal marker CXCR4 (Figure 9). When incubated in a

FGF2/TGFb1-free medium, BMP-2 or BMP-2/6 diminished the

percentage of CXCR4-positive cells, both at 10 ng/ml (Figure 9A)

and at 100 ng/ml (Figure 9B) concentration. Therefore depletion

of FGF2 in mTeSR1 did not enhance differentiation-inducing

properties of BMP-2 or BMP-2/6, nor accentuated differences

between them. These results suggest that FGF2, rather than block,

synergistically acts with BMP signaling on the early stages of

differentiation of hES cells to trophoblast and endoderm

derivatives.

In light of the experimental results presented here, we can

conclude that BMP-2/6 is a better inductor of differentiation of

hES cells than BMP-2, and it’s a good candidate for differenti-

ation-guidance molecule. Furthermore, we demonstrate that

FGF2 can directly regulate BMP-induced differentiation in vitro.

Discussion

hES cells constitute a valuable model system in developmental

studies and in the search for new regenerative therapies. Various

stem cell types utilize BMP signals in a multitude of ways in order

to define their fates [41]. BMPs are known to be involved in

several types of differentiation processes and the use of BMPs in

differentiation of pluripotent cells is a powerful tool in biological

and medical research [32,42]. The development of new molecules

with increased activity is, therefore, a priority in medical and

pharmaceutical research. The use of these BMPs with increased

activity would permit the development of more efficient protocols

and increase the productivity of the existent ones.

In this line of investigation, increased activity of BMP

heterodimers has been previously reported; co-expression of

BMP-2 with BMP-6 or BMP-7 yields heterodimeric BMPs with

a specific activity about 20-fold higher than BMP homodimers in

in vitro alkaline phosphatase induction assay, and 5- to 10-fold

more potent than BMP-2 in inducing cartilage and bone in an in

vivo assay [15,19]. Other heterodimers, as BMP-4/7 or BMP-7/

GDF-7, also showed enhanced and/or novel properties in the

context of embryo development [16–18]. Therefore, BMP

heterodimers could be used as a natural choice for substituting

BMP homodimers in in vitro or in vivo assays. The production of

BMP heterodimers in an Escherichia coli cell expression system and

subsequent chemical refolding in vitro allowed us to work with high

concentrations of purified protein while avoiding the low yield

problems associated with a mammalian cell expression system

[20].

The BMP-2/6 heterodimer consists of one BMP-2 and one

BMP-6 subunit. Our experiments confirm the increased activity of

BMP-2/6 heterodimer relative to the homodimeric counterparts

Figure 7. Morphological changes of hES cells after treatment with BMPs in FGF2-free mTeSR1. H9 cells were split in regular mTeSR1 and
changed to FGF2-free mTeSR1 24 h after splitting. After 4 days of growing in modified composition media, colonies were split in FGF2-free mTeSR1
and incubated for other 5 days (total of 9 days). Treatments with BMP-2 or BMP-2/6 at 100 ng/ml started 24 h after splitting and lasted for 4 days.
Pictures were taken using an inverted microscope and 10X objective. A, control cells after 9 days of culture in mTeSR1. B, Incubation in FGF2-free
medium ((-)FGF2) for 4 days. C, Incubation in (-)FGF2 for 9 days. D, Treatment with 100 ng/ml Activin A in (-)FGF2 for 9 days. E, Treatment with
100 ng/ml BMP-2 in (-)FGF2 for 4 days. F, Treatment with 100 ng/ml BMP-2/6 in (-)FGF2 for 4 days. Arrowheads indicate morphologically pluripotent
cells; arrows point out morphologically differentiated areas. Insets belong to 36magnification.
doi:10.1371/journal.pone.0011167.g007
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Figure 8. qPCR expression analysis of differentiation markers after treatment with BMPs in modified composition mTeSR1. H9 cells
were split in regular mTeSR1 and changed to modified composition media 24 h after splitting. After 4 days of growing in modified composition
media, colonies were split in the same modified composition medium and incubated for other 5 days (total of 9 days). Treatments with BMP-2 or
BMP-2/6 at 100 ng/ml started 24 h after splitting in modified composition media and lasted for 4 days. qPCR was used to analyze expression of stem
cell and differentiation markers. qPCR values correspond to relative expression compared to GAPDH mRNA. As control, cells growing in regular or
modified composition mTeSR1 were used. Treatments were repeated at least in three different experiments, and results are expressed as average 6

SD. A, POU5F1. B, CDX2. C, SOX17. D, GATA6. E, AFP. F, BMP2. (*) P,0.05 BMP-2 vs. BMP-2/6; (**) P,0.01 BMP-2 vs. BMP-2/6; (***) P,0.001 BMP-2 vs.
BMP-2/6; ns, no significative difference BMP-2 vs. BMP-2/6; (###) P,0.001 control vs. BMP-2/6.
doi:10.1371/journal.pone.0011167.g008
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BMP-2 or BMP-6, which support the hypothesis that such

heterodimeric forms are likely to have natural biological functions.

Previously BMP-2/7 heterodimer failed to exert an increased

effect on hES cells growing on MEFs when compared to BMP-2

[9], indicating that culture conditions and/or conditioned media

could play an important role in determining the fate of BMP-

differentiated cells.

BMP-2 and BMP-6 are both inducers of osteogenesis in human

mesenchymal stem cells [7,8] and endogenous BMP-2 and BMP-6

cooperatively play pivotal roles in bone formation under both

physiological and pathological conditions [43]. Nevertheless, type

I and type II receptor utilization differs significantly between

BMP-2/BMP-4 and BMP-6/BMP-7. BMP-4 is known to bind

to BMPR1A and/or BMPR1B, whereas BMP-6 and BMP-7

preferentially bind to ACVR1 [44]. Also a greater reliance of

BMPR2 is observed for BMP-2 (or BMP-4) relative to BMP-6 (or

BMP-7), whereas ACVR2A is more critical to BMP-6 for signaling

[45]. Unlike the homodimers, we recently reported that BMP-2/6

heterodimer exhibits a relatively high affinity for each receptor

type extracellular domain (ECD) as measured by surface plasmon

resonance [20]. Correlated to this, in several in vitro experiments

we have observed stronger activity of BMP-2/6 than that of BMP-

2 or BMP-6 [20]. Thus, the more potent inducer activity of BMP-

2/6 on hES cells is also likely derived from higher affinity to both

type I and type II receptors. In the present study we have observed

an increased expression of BMPR2 that could be responsible for

the stronger effect of BMP-2 when compared to BMP-6.

For differentiation analysis we used a combination of markers of

the three embryonic layers: ectoderm, mesoderm and endoderm.

None of the BMPs we examined exclusively direct differentiation

to only one cell type, but rather alter the relative proportions

of a specific cell type. By quantification of the expression of

differentiation markers, we identified BMP-2/6 as a better inducer

of trophoblast and endoderm differentiation of hES cells than

BMP-2 or BMP-6. BMP-2/6 is more effective than either BMP-2

or BMP-6 in inducing the expression of trophectodermal (CDX2),

mesendodermal (T), and endodermal (SOX17, GATA6, AFP,

CXCR4) markers, including the expression of BMPR2 receptor.

These results support an increased bioactivity of BMP-2/6 in the

described stem cell culture system, and it is being confirmed using

other hES cell lines.

The increase in CDX2 expression indicates trophectodermal

differentiation and suggests that in feeder-free conditions BMP-2

induces trophoblast, as observed previously with BMP-4 [46].

Markers of endoderm (both extraembryonic and definitive) were

also strongly induced. The definitive endoderm forms during

gastrulation and replaces the extraembryonic visceral endoderm.

Definitive endoderm is the precursor of several organs (pancreas,

liver) and in vitro differentiation to those cell types is of great use in

medical and biological studies. To generate definitive endoderm,

100 ng/ml of Activin A has been traditionally used in uncondi-

tioned medium [33], revealing a central role of TGFb family

pathways on this type of differentiation. Feeder layer-free

conditions are also better systems for differentiation of hES cells

into definitive endoderm [30]. Our results demonstrate that the

heterodimer BMP-2/6 is better inductor of endodermal markers

than the BMP-2 homodimer, including definitive endoderm. It

suggests that BMP-2/6 could replace BMP-2 as the inductor in

protocols of BMP-2-guided differentiation in vitro.

BMP receptors are present on hES cells and BMP signaling can

induce expression of BMP ligands, forming a positive feedback

loop in cells from various species, including human [47].

Specifically, BMP-2 can induce its own expression in human

embryonic carcinoma cells [9]. Treatment of human pluripotent

cells with BMP-2 leads to the accumulation of transcripts for this

factor consistent with a positive feedback model [9], but an

increased level of BMP2 gene transcription in hES cells had not

been reported. In our experiments we observed an increased

expression of both BMP2 and the type II receptor BMPR2 in cells

treated with BMP-2 and BMP-2/6. Up-regulation of the

expression of both ligand and receptor is a strong evidence of a

positive feedback of BMP-2 signaling and differential induction of

BMPR2 could be also a factor in the increased biological activity of

BMP-2/6 in hES cells. These results should be confirmed in the

Figure 9. Expression analysis of endodermal marker CXCR4 in hES cells treated with BMPs in FGF2/TGFb1-free mTeSR1. H9 cells were
split in regular mTeSR1 and changed to FGF2/TGFb1-free mTeSR1 24 h after splitting. After 4 days of growing in modified composition media,
colonies were split in FGF2/TGFb1-free mTeSR1 and incubated for other 5 days (total of 9 days). Treatments with BMP-2 or BMP-2/6 at 100 ng/ml
started 24 h after splitting and lasted for 4 days. Flow cytometry was used to analyze expression of the endodermal marker CXCR4. As control, cells
growing in FGF2/TGFb1-free mTeSR1 (TeSR) were used. As negative control, PE-conjugated mouse IgG2a isotype control (isotype) was used. A, Flow
cytometry histograms of CXCR4-positive cells after incubation with BMPs 10 ng/ml. B, Flow cytometry histograms of CXCR4-positive cells after
incubation with BMPs 100 ng/ml. Bars indicate the percentage of CXCR4-positive cells in each condition.
doi:10.1371/journal.pone.0011167.g009

BMP-2/6 in hES Cells

PLoS ONE | www.plosone.org 11 June 2010 | Volume 5 | Issue 6 | e11167



future by analyzing levels of both proteins in hES cells after BMP

treatment.

BMPs play an important role during all stages of embryonic

development, and although only two major signaling pathways

have been characterized (p38 and Smad pathways), the BMP

signaling is complex and includes cross-talk with other major

signaling pathways and negative feedback mechanisms [34,48,49].

It has been reported that the initiation of Smad-dependent

and Smad-independent signaling by BMP-2 depends on BMP-

receptor complexes [37,50,51]. BMP-2/6 possesses a higher

affinity to both receptors type I and II than its homodimeric

counterparts [20], and this new biological property could be

responsible for the increased activation of Smad-dependent and

Smad-independent signaling observed. We detected increased

levels of SMAD1/5 phosphorylation induced by BMP-2/6, which

confirms the recent reports using diverse experimental models,

as luciferase reporter assay, osteogenic differentiation-inducing

activity and chondrogenic activity [20]. Furthermore, increases in

SMAD1 phosphorylation have been previously reported in the

early events of BMP-induced hES cell differentiation [9,40].

Further study of BMP-2/6-activated signaling pathways would be

necessary to fully understand its increased potency in hES cell

differentiation.

Fibroblasts secrete multiple growth factors, including FGFs,

TGFbs, Activins, Wnts and antagonists of BMP signaling [6]. Of

those, FGF2 has the greatest effect in promoting hES cell self-

renewal, interrupting BMP signaling either by preventing the

nuclear translocation of phosphorylated SMAD1 [52] or by

repressing SMAD1 activity in the nucleus [53]. Suppressed BMP

signaling remains a consistent hallmark of current methods of hES

cell culture. When we cultured H9 cells in a modified TeSR1

medium without FGF2, cells differentiated quickly after splitting

and this differentiation was not blocked by noggin (data not

shown), but blocked by 100 ng/ml Activin A, suggesting a

compensatory effect due to the activation of the SMAD2/3

pathway [54]. Depletion of FGF2 has a more drastic effect than

TGFb1, as FGF2 is also involved in cell proliferation [46] and

trace levels of TGFb1 are present in Growth Factor-Reduced

Matrigel coating. Our results confirm that both FGF2 and TGFb1

in mTeSR1 are necessary for long term maintenance of H9 cells in

mTeSR1. Further analysis of this involvement should be

performed to improve and manipulate BMP-directed differentia-

tion of hES cells in vitro.

FGF2 depletion also affected BMP-2 and BMP-2/6-induced

differentiation by diminishing levels of expression of all the

differentiation markers analyzed, both trophectodermal and

endodermal. Presence of FGF2 was necessary for driving BMP-2

or BMP-2/6-induced differentiation to endoderm in mTeSR1.

When FGF2 was absent in mTeSR1, however, morphological

differentiation appeared but the pattern of expression of

differentiation markers after incubation with BMP-2 or BMP-2/

6 completely changed. We hypothesize that FGF2 inhibition of

neural differentiation could be a requirement for efficient BMP-

induced differentiation to endoderm. Further investigation in this

sense is required to clarify the involvement of FGF2 in BMP-

induced differentiation in mTeSR1.

We analyzed the biological activity of BMP-2/6 for inducing

differentiation of hES cells by measuring the expression of

differentiation markers using qPCR and flow cytometry. Both

BMP-2 and BMP-6 induce differentiation of hES cells, but the

heterodimer BMP-2/6 is a more efficient inductor of expression

of differentiation markers and percentage of CXCR4-positive

definitive endoderm cells. It suggests that BMP-2/6 is a better

candidate than BMP-2 as inductor in protocols of BMP-2-guided

differentiation in vitro, as well as possible applications of BMP-2/6

to treat bone injury substituting BMP-2 as active molecule.

Materials and Methods

Human embryonic stem cell culture
hES cell line H9 (WiCell, WI) was cultured in mTeSR1

(StemCell Technologies) on Growth Factor-Reduced Matrigel

(BD Biosciences) following the established protocol [55]. When

colonies reached 80–90% confluence, they were detached of the

plates with dispase 2 mg/ml in DMEM/F12 (1:1) (Invitrogen),

washed with DMEM/F12 and then scrapped in mTeSR1 and split

1:4 to 1:6 in Matrigel coated wells. Medium was changed daily for

fresh mTeSR1. For experiments, passages 40–60 were used.

Protein expression and purification
The mature domains of human BMP-2 (residues 1–110), human

BMP-6 (residues 1–132) and noggin were expressed in Escherichia

coli as inclusion bodies. The expressed inclusion bodies were

isolated, purified, and refolded using a modified protocol

[12,20,56,57]. The refolded BMP-2 and BMP-6 homodimers and

BMP2/BMP6 heterodimer were purified using a HiTrap heparin

column (GE Healthcare, Uppsala, Sweeden) and reversed phase

chromatography (GraceVydac, Deerfield, IL). The ligands were

lyophilized and resuspended in 10 mM HCl and stored at 280uC
(supplied by joint Protein Central, http://www.jointproteincentral.

com). After thawing, compounds can be stored at 4uC for one week

to one month. The biological activity of media supplemented with

BMPs was not affected after storage at 4uC for one month.

Treatment with agonists and modified media
For treatments in regular medium, mTeSR1 supplemented with

the desired concentration of agonists (1–100 ng/ml) was prepared,

filtered and daily added to the culture. For modified composition

media, mTeSR1 was prepared as previously reported [55] by

mixing all its components but the ones to be depleted. This

medium was supplemented with human recombinant FGF2

(Invitrogen) and/or TGFb1 (R&D Systems) if necessary for

control condition. Pictures were taken using an Olympus IX51

inverted microscope and QuantiFire XI Cooled Digital CCD

Camera and processed using PictureFrame software.

RNA extraction and reverse transcription reaction
Total RNA was extracted following the guanidinium thiocya-

nate-phenol-chloroform protocol [21] using TRIzol reactive

(Invitrogen). 5 mg of total RNA were used for reverse transcription

reaction, and mRNA was converted to complementary DNA

(cDNA) using oligo dT primers and Superscript II reverse

transcriptase (Invitrogen). For qPCR analysis 2 ml of total cDNA

were diluted in 90 ml of H2O, and 4 ml of this dilution were used in

each reaction.

Quantitative PCR (qPCR) analysis
Primers for qPCR were designed using Primer3 software [58] to

yield a 75–150 bp product, 20 bp long and Tm 60uC. Sequences

of primers, location, Tm and GC% are available in Table 1.

PCR reactions were prepared in microamp optical 96-well

reaction plates (Applied Biosystems). 4 ml of a 1:45 dilution of total

cDNA were mixed with 5 ml SYBR green PCR master mix 2X

(Roche) and 1 mM of each primer pair in a total volume of 10 ml.

Reactions were run in an ABI Prism 7900 Sequence Detector

(Applied Biosystems) and results analyzed with SDS2.3 software

(Applied Biosystems) for Ct calculations. Calculations of DDCt

values were performed following specifications of the manufacturer.
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Flow cytometry of human embryonic stem cells
H9 cells were treated with BMP-2, BMP-6 or BMP-2/6 at

10 ng/ml or 100 ng/ml for 5 days and then digested into

individual cells with TrypLE (Sigma) diluted 1:4 in PBS

(Invitrogen) for several minutes at 37uC. Cell suspension was

incubated with fluorophore-tagged primary antibody or isotype

control in phosphate-buffered saline (PBS) with 2% fetal bovine

serum. For quantifying pluripotent embryonic stem cells, Alexa

Fluor 488 mouse anti-human TRA-1-60 (BD Biosciences) was used.

For labeling definitive endoderm cells, Phycoerythrin (PE)-conju-

gated mouse monoclonal anti-human CXCR4 (R&D Systems) or

PE-conjugated mouse IgG2a isotype control (eBioscience) were

used. Cells were sorted using a Becton-Dickinson FACScan

analytical flow cytometer and data were analyzed with FlowJo

software.

Immunoblot analysis
H9 cells treated with BMP-2, BMP-6 or BMP-2/6 at 100 ng/

ml for 5, 10, 30, 60 or 120 min were washed with PBS, and

solubilized in RIPA buffer containing 50 mM Tris-HCl pH7.5,

150 mM NaCl, 1% NP-40, 0.1% SDS and 0.5% sodium

deoxycholate. Lysates were subjected to SDS-gel electrophoresis,

and proteins were electrotransferred to polyvinylidene difluoride

membranes and immunoblotted with specific antibodies. All the

antibodies used were from Cell Signaling Technologies (1:1000),

except anti-ERK (pan ERK) from BD Transduction Laboratories

(1:20000). Secondary HRP-conjugated antibodies were from

Bio-Rad. Labeled proteins were visualized using an enhanced

chemiluminescence detection system (Thermo Scientific).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 5

software. One-way ANOVA and Bonferroni post-test were used to

compare multiple data sets, and t-Student test was used to

compare two data sets when necessary.

Supporting Information

Figure S1 qPCR expression analysis of BMP receptors and

agonist after treatment with BMPs. H9 cells were treated with

BMP-2, BMP-6 or BMP-2/6 at 100 ng/ml in mTeSR1 for 5 days.

After 5 days of treatment, qPCR was used to analyze expression of

BMP receptor and agonists. qPCR values correspond to relative

expression compared to GAPDH mRNA. As control, cells growing

in mTeSR1 were used. Treatments were repeated at least in three

different experiments, and results are expressed as average 6 SD.

A, BMPR1. B, BMPR1B. C, ACVR1. D, ACVR2A. E, ACVR2B. F,

BMP6.

Found at: doi:10.1371/journal.pone.0011167.s001 (0.68 MB TIF)
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