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ABSTRACT

Motivation: Protein subcellular localization is pivotal in under-
standing a protein’s function. Computational prediction of subcellular
localization has become a viable alternative to experimental
approaches. While current machine learning-based methods yield
good prediction accuracy, most of them suffer from two key
problems: lack of interpretability and dealing with multiple locations.
Results: We present YLoc, a novel method for predicting protein
subcellular localization that addresses these issues. Due to its
simple architecture, YLoc can identify the relevant features of a
protein sequence contributing to its subcellular localization, e.g.
localization signals or motifs relevant to protein sorting. We present
several example applications where YLoc identifies the sequence
features responsible for protein localization, and thus reveals not
only to which location a protein is transported to, but also why
it is transported there. YLoc also provides a confidence estimate
for the prediction. Thus, the user can decide what level of error is
acceptable for a prediction. Due to a probabilistic approach and the
use of several thousands of dual-targeted proteins, YLoc is able to
predict multiple locations per protein. YLoc was benchmarked using
several independent datasets for protein subcellular localization and
performs on par with other state-of-the-art predictors. Disregarding
low-confidence predictions, YLoc can achieve prediction accuracies
of over 90%. Moreover, we show that YLoc is able to reliably predict
multiple locations and outperforms the best predictors in this area.
Availability: www.multiloc.org/YLoc
Contact: briese@informatik.uni-tuebingen.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Subcellular protein localization is a key process in many eukaryotic
cells, and hence a major research topic in biology. After being
synthesized, proteins are transported into different compartments
depending on their molecular role within the cell. Some proteins
are even transported to multiple sites. Protein localization is often
mediated by sorting signals or sorting patches. However, the process
of protein sorting is not fully understood yet. The subcellular
localization of a protein is highly correlated with its function and is
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thus used to draw conclusions about its cellular role, interaction
partners and function in biological processes. During the past
decade, huge number of novel proteins were discovered in the
context of large-scale sequencing projects. Unfortunately, for a
majority of these proteins their subcellular localization is unknown
and experimentally determining the localization of a protein is
expensive and time-consuming.

Computational prediction methods that predict subcellular
localization from the amino acid sequence represent an attractive
alternative to experimental methods. Over the past few years,
numerous prediction methods have been developed. We distinguish
between sequence- and annotation-based methods. Sequence-based
predictors make use of sequence-coded sorting signals (Bannai et al.,
2002; Boden and Hawkins, 2005; Cokol et al., 2000; Emanuelsson
et al., 2007; Fujiwara and Asogawa, 2001; Petsalaki et al., 2006;
Small et al., 2004), amino acid composition information (Cedano
et al., 1997; Chou and Cai, 2003b; Cui et al., 2004; Guo and Lin,
2006; Hua and Sun, 2001; King and Guda, 2007; Nair and Rost,
2005; Park and Kanehisa, 2003; Pierleoni et al., 2006; Reinhardt
and Hubbard, 1998; Xie et al., 2005) or even both information
sources (Garg et al., 2009; Höglund et al., 2006; Horton et al.,
2007).Annotation-based predictors use information about functional
domains and motifs (Chou and Cai, 2002; Scott et al., 2004),
protein–protein interaction (Lee et al., 2009; Shin et al., 2009),
homologous proteins (Garg and Raghava, 2008; Lin et al., 2009),
annotated Gene Ontology (GO) terms (Huang et al., 2008; Lei
and Dai, 2006; Lu and Hunter, 2005) and textual information
from Swiss-Prot keywords (Lu et al., 2004; Nair and Rost, 2002a)
or PubMed abstracts (Brady and Shatkay, 2008; Fyshe et al.,
2008). Since proteins with sufficiently similar protein sequences are
usually located in the same compartment (Nair and Rost, 2002b),
missing annotation information might also be transferred from
close homologues. Annotation-based predictors often show higher
accuracies than pure sequence-based predictors although they are
less robust for novel proteins without known close homologues.
Hybrid prediction approaches (Blum et al., 2009; Briesemeister
et al., 2009; Chou and Cai, 2003a; Chou et al., 2007; Scott et al.,
2005) take advantage of both information sources.

Although there is an evidence that more than one-third of all
eukaryotic proteins are transported to multiple compartments (Zhang
et al., 2008), multiple targeting of proteins has only rarely been
considered by prediction methods. As one of the first groups,
Scott et al. (2004) introduced a method for multiple localization
prediction based on about 500 multiple localized proteins. More
recent predictors such as WoLF PSORT (Horton et al., 2007),
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Euk-mPloc (Chou et al., 2007), ngLoc (King and Guda, 2007)
and KnowPred (Lin et al., 2009) use even up to 2200 multiply
targeted proteins for their predictions.Although there has been recent
development on multiple localization prediction, we believe that
there is still room for improvement.

State-of-the-art methods show high prediction performance that
has significantly improved over the years. Unfortunately, the
machine learning models behind high-accuracy predictors are often
very complex making it difficult to understand why a particular
prediction was made. Moreover, most predictors do not provide a
confidence estimate. Consequently, predictions cannot be verified
with regard to their significance and reliability.

In this work, we present YLoc, a novel method for predicting
subcellular localization of proteins. YLoc is based on the simple
naive Bayes classifier. It combines various feature types for
its predictions ranging from simple amino acid composition to
annotation information like PROSITE domains and GO terms from
close homologues. Most importantly, it uses at most 30 of these
features. The small number of features as well as the simple
architecture guarantee interpretable predictions. YLoc is able to
elucidate why a prediction was made and what attributes of the
protein contributed most to this prediction. In addition, it returns
confidence estimates that rate predictions as reliable or not. YLoc
is available in three versions. The low-resolution version, YLoc-
LowRes, is specialized in distinguishing the localization of globular
proteins and predicts up to five locations. The high-resolution
version, YLoc-HighRes, covers 11 main eukaryotic subcellular
locations. YLoc+ is the most general predictor. It covers 11 main
eukaryotic locations while integrating multiple localization sites.
All three predictors are available for animal, fungal and plant
proteins.

We compared YLoc against other state-of-the-art protein
subcellular localization predictors using two recently published
independent datasets (IDS; Blum et al., 2009; Casadio et al., 2008).
The results confirm that YLoc, even though its architecture is very
simple, performs comparably to current state-of-the-art predictors.
For instances predicted with high confidence, YLoc yields an
even better prediction performance. For proteins with multiple
localizations, YLoc shows an outstanding accuracy compared to
existing methods. In an example prediction, we show that YLoc
prediction outputs can be easily interpreted. Moreover, we illustrate
that YLoc can be applied to explain localization changes caused by
mutations in experiments.

2 METHODS

2.1 Features
In the past, various types of features were studied in the context of subcellular
localization. However, in many cases only one or two of feature types were
included in one predictor. In our study, we included numerous types of
features and properties.

First, we make use of sequence-derived features. These include amino
acid composition, normalized amino acid composition and pseudo-amino
acid composition (Chou, 2001). In addition to counting simple amino acids,
we use the compositions of certain amino acid types such as hydrophobic,
positively charged, negatively charged, aromatic and small. Moreover, we
calculate sum and autocorrelation of properties such as hydrophobicity,
charge, and volume of the amino acids. The autocorrelation measures the
correlation of a signal with itself and can be used to identify periodic patterns.

For a given distance j, we calculate
∑

n xnxn−j and normalize it by the
length of the sequence. All features are calculated over the whole sequence
length, as well as for subsequences of various lengths in the N-terminus
(10–200), C-terminus (10–100) and middle part of the protein. In all cases,
we omit the first residue to avoid the bias caused by methionine. In addition,
various known sorting signals such as mono nuclear localization signal
(NLS), bipartite NLS, nuclear export signal (NES), peroxisomal targeting
signal, mitochondrial targeting signal, chloroplast targeting signal, secretory
pathways (SPs) signal and endoplasmatic reticulum retention signal are
considered.

Second, we make use of annotation-based features such as PROSITE
patterns and GO terms. PROSITE patterns describe protein domains,
families, as well as functional sites. A PROSITE pattern feature is assigned
a value of one if the pattern is found in the protein sequence using PROSITE
scan. In addition, we calculate a feature for each location which is defined by
PROSITE patterns that are typical for this location. A PROSITE pattern is
typical for a location if >80% of all proteins in the training dataset containing
this pattern are present in this particular location. The resulting feature is
assigned a value of one if at least one typical PROSITE pattern of this
location is present in the protein or zero otherwise. Finally, we use GO terms
from close homologues from Swiss-Prot release 42.0. A GO-term feature
equals one if at least one protein that locally aligns with the query sequence
with a maximal E-value 10−10 and a sequence identity of >30% is annotated
with this GO term. Using these alignment conditions, we are able to transfer
GO terms from known proteins that share domains with the query protein.
Similarly to PROSITE patterns, we create a feature for each location that
indicates whether the protein is likely to be annotated with a GO term that
is typical for this location. A GO term is typical for a location if >95% of all
proteins containing this GO term are located there. We use a higher threshold
due to the fact that GO terms naturally contain more noise since they were
inferred from sequences that do not neccessarily have to be orthologues, or
even homologues. An additional feature indicates the location for which the
most typical GO terms could be transfered. The overall number of features
is about 30000.

2.2 Feature selection
Because of the limited number of learning examples, learning with a small
number of features often leads to a better generalization of machine learning
algorithms (Occam’s razor). Moreover, interpreting predictions is possible if
the number of features is very small. Since we could not observe a significant
improvement in a nested cross-validation of our method (data not shown), we
decided that 30 features are sufficient for our predictors. For YLoc-LowRes,
even 20 features are sufficient due to the reduced number of locations.

To find the set of the most important features, we started a large-
scale feature selection using a correlation-based feature selection (CFS)
approach (Hall, 2000). It favors a feature set that shows high correlation
with the class variable but low redundancy among the features in the set.
The following heuristic expresses the merit of a feature subset I of size k∑

i∈I ri√
k+∑

i,j∈I rij

, (1)

where ri is the correlation between feature i and the class variable and rij

the correlation between two features i,j in the subset. Both correlations are
calculated using the symmetric uncertainty coefficient after the data were
discretized. To avoid large feature subsets, we assign a value of zero if k
is >30.

We use CFS together with a backward best-first search, which continually
catches the best 100 subsets and terminates after 50 backtracking steps The
search algorithm as well as CFS are implemented in the Weka machine
learning library (Whitten and Frank, 2005). The average running time for
the feature selection was ∼2 h (data not shown).

All selected features are manually described in biological terms. For
some features, a biological explanation is not obvious. In these cases, we
transferred the biological meaning from a strongly correlated feature.
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2.3 Naive Bayes classification
YLoc uses naive Bayes, a very simple and robust classification model,
to make predictions. It assumes features to be independent and, thus,
allows a straightforward decomposition of a prediction into the individual
contributions of each feature. It has been shown that naive Bayes is
still surprisingly effective in cases where the independency assumption
is violated (Rish, 2001). Given a set of features F ={F1,...,Fn}, a
set of locations L={L1,...,Lk} and a set of corresponding classes C =
{CL1 ,...,CLk }, it estimates the posterior probability by

P(CLk |F)∝P(CLk )
n∏

i=1

P(Fi|CLk ). (2)

The class priors and the feature probability distributions are estimated
using previous discretized training data. For our purposes, we use the
entropy-based supervised discretization (Fayyad and Irani, 1993). The final
probabilities are obtained by normalizing the posteriori such that the sum of
all posteriori is one.

Since features are treated independently, we can easily assess the influence
of a single feature Fi on the prediction. The probability of observing feature
Fi ranges from mink P(Fi|Ck) to maxk P(Fi|Ck) over the given classes Ck .
Let Cmax =arg maxCk P(Ck |F) be the predicted class. We define

log
P(Fi|Cmax)

mink P(Fi|Ck)
and log

P(Fi|Cmax)

maxk P(Fi|Ck)
(3)

to be the support and the opposition score, respectively. A large support
score originates from a high probability for the observed feature value in
the predicted class, compared to the class where this feature value is least
likely. In contrast, the opposition score is always negative. Given a very
low opposition score, it is more likely to observe this feature in a class that
was not predicted. Hence, a prediction based on the feature alone would
lead to a different decision than using all features. We merge both values in
the discrimination score (DS). If the support for Cmax is stronger than the
opposition, i.e. the sum of the scores is >0, the DS equals the support score
and vice versa. We use the absolute value of the DS to order the features
according to their influence on the prediction.

To predict multiple localizations with YLoc+, we transform our multi-
label data into single-label data. For proteins labeled with multiple locations
Li and Lk , we create a new class, CLi ∧Lk . When inferring predictions, the
probability output of the naive Bayes classifier is transformed as follows:

P(Li|F)=
∑

{Cx |Cx∈C∧Li∈α(Cx )}
P(Cx |F)

1

|α(Cx)| , (4)

where α(Cx) is the set of labels of class Cx . This transformation is based
on the assumption that proteins present in multiple locations are equally
concentrated in these compartments. Obviously, this does not hold for
all proteins with multiple localizations. However, given only qualitative
data, this is the best assumption we can make. To report only relevant
locations, YLoc employs a simple heuristic. After sorting the locations by
probability, YLoc reports the locations with probability better than chance,
i.e. P(Li|F)>1/|L|, where L is the set of locations. To report only relevant
locations with reasonable probability, YLoc stops reporting locations if a
location is less than half as probable as the preceding location. Transforming
the probabilities as above yields the advantage that label combinations not
present in the training data can also be predicted.

2.4 Confidence estimates
To provide users with an estimate of how reliable a prediction is, YLoc
computes confidence estimates. The estimate is based on the fact that proteins
can be predicted more reliably if the corresponding feature vector is very
typical for the predicted classes and less typical for any other class. Given
the feature vector F of a protein, we calculate P(F|⋃Ci∈C Ci), the probability
of observing F, given our training dataset. On the other hand, we calculate
P(F|Cmax), the probability of F, given the most probable class Cmax. Since

F should be more typical for the predicted class Cmax than for the set of
all proteins, P(F|Cmax) should be greater than P(F|⋃Ci∈C Ci), the baseline
probability of observing F. For our final confidence score, we calculate
the fraction of both probabilities and additionally weight classes with
few training examples as less reliable by multiplying the class probability
P(Cmax). The final confidence score is calculated as follows:

conf= P(Cmax)P(F|Cmax)

P(Cmax)P(F|Cmax)+P(F|⋃Ci∈C Ci)
. (5)

A confidence score close to one indicates a reliable prediction, whereas a
score close to zero indicates that YLoc is less confident about the given
prediction. Note that if we assume P(F|⋃Ci∈C Ci)=P(F), the presented
confidence score would be a monotone transformation of P(Cmax|F), given
by conf=1/(1+ 1

P(Cmax |F) ).

2.5 Datasets
2.5.1 BaCelLo For training the YLoc-LowRes predictor, we used the
BaCelLo training dataset (Pierleoni et al., 2006). The homology reduced
dataset extracted from Swiss-Prot release 48 contains 2597 animal, 1198
fungal and 491 plant proteins, resulting in three versions of YLoc-LowRes.
Only globular proteins were considered in the annotation. Animal and
fungal proteins originate from four locations: nucleus (nu), cytoplasm (cy),
mitochondrion (mi) and the SP. Plant proteins originate from five locations:
nu, cy, mi, SP and chloroplast (ch). The BaCelLo IDS (Casadio et al., 2008)
contains proteins added to Swiss-Prot between release 49 and 54 with at
most 30% sequence identity to proteins in the BaCelLo dataset. Moreover,
proteins from the same location that align with an E-value <10−3 using
BLAST are clustered, resulting in 432 animal, 418 fungi and 132 plant
groups.

2.5.2 Höglund For training YLoc-HighRes and YLoc+, we used the
Höglund training dataset (Höglund et al., 2006). The 5959 eukaryotic
proteins extracted from Swiss-Prot release 42 covering 11 locations: nu,
cy, mi, ch, endoplasmic reticulum (er), golgi apparatus (go), peroxisome
(pe), plasma membrane (pm), extracellular space (ex), lysosome (ly) and
vacuole (va). The Höglund IDS was constructed with proteins from Swiss-
Prot release 55.3 and covers the locations er, go, pe, pm, ex, ly and va.
Proteins that share >30% sequence identity with proteins from the original
Höglund dataset were excluded. In this study, we only make use of the
animal Höglund IDS, since it contains sufficient amount of proteins (198).
By clustering proteins from the same location with >40% sequence identity,
158 animal groups were obtained.

2.5.3 DBMLoc In addition to proteins from the Höglund dataset, YLoc+
was trained using proteins from the DBMLoc database (Zhang et al., 2008).
The DBMLoc database contains >10 000 proteins with multiple subcellular
localization, which were experimentally determined or extracted from the
literature. We extracted proteins that share <80% sequence similarity with
each other from DBMLoc. Most proteins in DBMLoc are present in two
subcellular locations. Still, there is a small portion of proteins with three or
more localizations. However, for training we selected only multiple locations
with >100 representative proteins: cy and nu (cy_nu), ex and pm (ex_pm), cy
and pm (cy_pm), cy and mi (cy_mi), nu and mit (nu_mi), er and ex (er_ex),
and ex and nu (ex_nu). Due to the limited number of training examples for
some localizations, we could not use a lower sequence similarity threshold.
More details concerning the 3054 proteins with multiple localization can be
found in the Supplementary Material.

2.6 Training and evaluation
We implemented YLoc using Python, the machine learning library
Weka (Whitten and Frank, 2005), BLAST and PROSITE scan. Each YLoc
predictor is available as an animal, fungi or plant version.

To evaluate the prediction performance, we use the overall accuracy
(ACC), the percentage of correctly predicted instances and the average

1234



[12:34 13/4/2010 Bioinformatics-btq115.tex] Page: 1235 1232–1238

Going from where to why

F1-score (F1), which is the harmonic mean of recall (REC) and precision
(PRE), defined as follows:

REC= TP

TP+FN
PRE= TP

TP+FP
(6)

F1= 2 REC PRE

REC+PRE
. (7)

We think that the F1 is better suited than the ACC as an evaluation
measure. Especially for unbalanced datasets, the ACC biases towards an
overrepresented class. Thus, if all instances are predicted to belong to this
class, the ACC is still rather high.

The ACC and F1 can be easily generalized using measures from multi-
label classification (Tsoumakas and Katakis, 2007). Let D denote a dataset
with n instances. Further, let Yi and Zi be the set of correct labels and the
set of predicted labels of instance i∈D, respectively. Consequently, we can
define the ACC, REC and PRE for label k as follows:

ACC=
∑

{i|i∈D}

|Yi ∩Zi|
|Yi ∪Zi| (8)

RECk =
∑

{i|i∈D∧k∈Yi}

|Yi ∩Zi|
|Yi| (9)

PREk =
∑

{i|i∈D∧k∈Zi}

|Yi ∩Zi|
|Zi| . (10)

Using multi-label measures, we can rate predictions as ‘half-right’ when
only a portion of the correct labels were recovered or more labels than the
correct ones were predicted.

3 DISCUSSION

3.1 Benchmark study using two IDSs
To show that YLoc is well-suited to predict the localization
of novel proteins, we carried out a benchmark study using
two recently published IDSs, the BaCelLo IDS (Casadio et al.,
2008) and the Höglund IDS (Blum et al., 2009). We compared
YLoc against six other state-of-the-art subcellular localization
predictors, MultiLoc2 (Blum et al., 2009), BaCelLo (Pierleoni et al.,
2006), LOCTree (Nair and Rost, 2005), WoLF PSORT (Horton
et al., 2007), Euk-mPloc (Chou et al., 2007) and KnowPred (Lin
et al., 2009). These predictors were chosen because they are quite
recent and are available as online or as stand-alone version. In the
case of the BaCelLo IDS, we grouped predicted locations from the
secretory pathway into the class SP to deal with predictors that
distinguish between these locations. In contrast, for the Höglund IDS
we excluded predictors that cannot distinguish between the secretory

pathway locations. To predict multiple locations with KnowPred, we
defined a threshold of 30 for the multi-localized confidence score
(see Supplementary Material). As mentioned before, very similar
proteins from the same location in the IDS are clusterd. Instead
of evaluating the performance based on one representative of each
cluster, we re-weight instances such that the weight of all instances
within one cluster sums to one. The results are summarized in
Table 1.

We observed that YLoc-LowRes and MultiLoc2-LowRes yield
the best overall performance on the BaCelLO IDS. This is due to
the fact that both predictors are specialized in distinguishing globular
proteins.Among the high-resolution predictors, MultiLoc2-HighRes
and KnowPred perform best, followed by YLoc-HighRes. Although
YLoc+ was designed to predict multiple localizations, it performs
comparably to Euk-mPloc and WoLF PSORT. Clearly, the prediction
performance depends on the origin of the proteins. In particular,
the YLoc predictors are less accurate for fungal proteins, but yield
good performance for animal and plant proteins. In contrast, Euk-
mPloc performs well for fungal proteins but poorly for animal and
plant proteins. Note that KnowPred does not predict chloroplasts
and, thus, performs poorly on plant proteins. Most interestingly, the
YLoc predictors perform comparably to the other predictors in the
benchmark study, even though they have a very simple architecture
and use at most 30 features. Similar results were observed for the
animal Höglund IDS. MultiLoc2-HighRes performs best among the
high-resolution predictors, followed by YLoc+, YLoc-HighRes and
KnowPred. Euk-mPloc and WoLF PSORT, the other high-resolution
predictors in this study, yield a poor F1 and ACC. In general, the
performance of all predictors is comparably low for this dataset.
This is due to the limited amount of available training data for the
peroxisome and the secretory pathway locations. Since the number
of protein sequences of the animal Höglund IDS is comparably low,
the performance results should be seen as a trend.

Using YLoc+ has an advantage. Predictions can be borderline due
to weak and noisy sorting signals. Hence, predicting all top-ranked
locations leads to an increased recall. Moreover, it can help users to
identify real multiple localization of proteins.

We also tested YLoc without transferring information from
homologous proteins by excluding GO-term features from the
feature selection. The resulting predictors show only slightly reduced
prediction performance on the IDSs (see Supplementary Material).
Additional predictors not using homology information can be helpful
to analyze whether a prediction outcome would change if we were
restricted to sequence information only.

Table 1. Performance comparison using two IDSs

Dataset YLoc- YLoc- YLoc+ MultiLoc2- MultiLoc2- BaCelLo LOCTree WoLF PSORT Euk-mPloc KnowPred
LowRes HighRes LowRes HighRes

B Animals 0.75 (0.79) 0.69 (0.74) 0.67 (0.58) 0.76 (0.73) 0.71 (0.68) 0.66 (0.64) 0.58 (0.62) 0.67 (0.70) 0.54 (0.61) 0.69 (0.75)
B Fungi 0.61 (0.56) 0.51 (0.56) 0.51 (0.48) 0.61 (0.60) 0.58 (0.53) 0.60 (0.57) 0.43 (0.47) 0.51 (0.50) 0.56 (0.60) 0.56 (0.66)
B Plants 0.58 (0.71) 0.54 (0.58) 0.49 (0.53) 0.64 (0.76) 0.54 (0.62) 0.56 (0.69) 0.58 (0.70) 0.46 (0.57) 0.37 (0.46) 0.23 (0.29)
H Animals – (–) 0.34 (0.56) 0.37 (0.53) – (–) 0.41 (0.57) – (–) – (–) 0.18 (0.36) 0.24 (0.27) 0.37 (0.49)

Performance of the YLoc predictors and other state-of-the-art predictors using the Bacello (B) IDS and the Höglund (H) IDS concerning F1 and ACC (in brackets). The performance
of YLoc+, WoLF PSORT, Euk-mPloc and KnowPred was measured using the generalized F1 and ACC. The highest-ranking method regarding each measure is highlighted in bold.
Note that the WoLF PSORT results differ slightly from those obtained in Blum et al. (2009) due to some changes in the underlying dataset. Also note that KnowPred does not
predict chloroplasts.
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Table 2. Performance of YLoc using the BaCelLo animal IDS for different
minimum confidence levels

Predictor Measure 0.00 0.20 0.40 0.60 0.80 0.90

YLoc-LowRes F1 0.75 0.76 0.78 0.80 0.84 0.95
ACC 0.79 0.79 0.81 0.86 0.91 0.93
No. Inst. 576 467 395 299 189 118

YLoc-HighRes F1 0.69 0.74 0.76 0.76 0.77 0.77
ACC 0.74 0.78 0.80 0.82 0.83 0.84
No. Inst. 576 507 470 428 391 354

YLoc+ F1 0.67 0.69 0.72 0.77 0.76 0.81
ACC 0.58 0.60 0.62 0.65 0.65 0.69
No. Inst. 576 494 423 324 219 142

For each minimum confidence score the prediction performance is given using F1 and
ACC as well as the number of instances that can be predicted with at least this score.
The performance of YLoc+ was measured using the generalized F1 and ACC.

3.2 Confidence estimates
To prove that YLoc highly benefits from confidence scores, we
analyzed the influence of the confidence score on the prediction
performance. Following our benchmark study from above, we
analyzed the performance of YLoc by considering only proteins
that could be predicted with a given minimum confidence score.
We excluded classes that had less than five instances left. The
performance of YLoc on the animal BaCelLo IDS for different
minimum confidence scores is given in Table 2. The ACC and F1
of all predictors increase with an increasing minimum confidence
score. The F1 and ACC of YLoc-HighRes increase by at least
4% given a minimum score of 0.2 and by at least 8% given a
confidence threshold of 0.90. YLoc-LowRes and YLoc+ show an
even higher enrichment for high confidence scores. For example,
YLoc-LowRes achieves an F1 of 0.84 and an ACC of 0.91 for a
minimum confidence score 0.8. Thus, YLoc-LowRes could correctly
predict the location for 91% of the 189 proteins, which have a
confidence score of at least 0.8. We got similar results for fungi
and plant proteins (see Supplementary Material). Although only a
certain portion of proteins can be predicted with high confidence,
their predicted locations are much more likely to be correct.

3.3 Evaluation of multiple-localization prediction
In a last benchmark study, we compared YLoc+, WoLF PSORT,
Euk-mPloc and KnowPred regarding their ability to predict multiple
localization sites. The locations for all proteins in the DBMLoc
dataset were predicted by WoLF PSORT, Euk-mPloc and KnowPred
by considering this dataset as an IDS. For YLoc+, we evaluated the
predictions of the DBMLoc proteins using the 5-fold nested cross-
validation results. We compared all predictors using single-label as
well as multi-label measures. The results are shown in Table 3.
YLoc+ is superior to WoLF PSORT and Euk-mPloc in this study in
terms of ACC as well as F1. While predicting at least one location
correctly for many proteins, Euk-mPloc and WoLF PSORT are only
able to predict 5% of the correct multiple locations. In contrast,
YLoc+ and KnowPred are able to recover more than one-third of the
multiple locations correctly. In a similar study, we are able to show
that the performance of all predictors remains almost unchanged if
we use a cutoff of 40% in the homology reduction of the DBMLoc
dataset. For more details see Supplementary Materials.

Table 3. Performance comparison using the DBMLoc dataset

Measures YLoc+ Euk-mPloc WoLF PSORT KnowPred

Single-label 0.31 (0.35) 0.04 (0.05) 0.03 (0.05) 0.28 (0.36)
Multi-label 0.68 (0.64) 0.44 (0.41) 0.52 (0.43) 0.66 (0.63)

The performance was measures using F1 and ACC (in brackets). For YLoc+ and
WoLF PSORT, only the best-performing version is shown. The highest-ranking method
regarding each measure is highlighted in bold.

Fig. 1. The distribution of proteins regarding the secretory pathway signal
(SPS) feature of YLoc-LowRes (animal version) is shown. For every
discretization interval, the interval borders and an interpretation is given.

3.4 Understanding predictions
To show how YLoc elucidates a subcellular localization prediction,
we provide an interpretable example prediction output. The example
protein Neurotoxin magi-12 (U13-HXTX) with Swiss-Prot AC
Q75WG7, obtained from the animal BaCelLo IDS, was predicted
to be located in the SP by YLoc-LowRes with a probability 99.99%
and a confidence score 0.99. Hence, users can be very confident
that the prediction is correct. U13-HXTX is known to be secreted
into the extracellular space. YLoc found that U13-HXTX contains
a strong secretory pathway signal, which is known to mediate the
transport into the SP. Moreover, YLoc identified this feature to be
the most discriminating, since 69% of all proteins in the SP have a
similar secretory pathway signal, whereas only 0%, 2% and 1% of
all proteins present in the cy, mi and nu, respectively, have the same
kind of feature. Figure 1 shows the distribution of proteins from
different locations concerning this particular feature. In addition,
YLoc identified other features that highly influenced the prediction,
such as the low charge of the protein and the lack of a mono-nuclear
localization signal. Table 4 shows an example output of YLoc for
the six most discriminating attributes. Given this output, it is easy
to understand why this prediction was made and what features were
responsible for it.

3.5 Understanding localization changes
A key step in understanding the localization process of proteins is
to elucidate why proteins localize to different compartments when
undergoing mutation. In the following, we show some examples
where YLoc could have been helpful to understand the underlying
localization processes.
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Going from where to why

Table 4. YLoc output of an example prediction

Sequence feature DS Nu Cy Mi SP

Strong secretory pathway sorting signal (high hydrophobic autocorrelation within first 20 amino acids) 5.72 0.01 0.00 0.02 0.69
Barely charged (low overall charge autocorrelation) 2.89 0.10 0.16 0.02 0.28
No mono NLS sorting signal 2.89 0.04 0.12 0.02 0.26
Strong putative mitochondrial or secretory pathway sorting signal (large weighted sum of amino acids typical 1.68 0.58 0.62 0.16 0.84
for mi and SP (Nakai and Kanehisa, 1992))
Very hydrophobic protein [high pseudo-amino acid count of hydrophobic amino acids (CITVWY)] 2.32 0.08 0.13 0.04 0.36
Very hydrophonic N-terminus (high pseudo-amino acid count of very hydrophobic residues 2.06 0.09 0.05 0.08 0.41
within the first 90 amino acids)

The six most discriminating protein features are displayed in order of their absolute DS. The features are manually annotated with a biological property. A more detailed description
of each feature is given in italics. For each location the ratio of proteins having this particular feature is shown.

Takada et al. (1990) showed that human glyoxylate
aminotransferase 1 (AGT1), located in the peroxisome, is
likely to have lost its mitochondrial targeting peptide (mTP) by
point mutation. In fact, the mTP of AGT1 of rat, located in the
mitochondrion, shares 74% sequence identity with the upstream
region of human AGT1. If we corrected the single point mutation,
we would extend human AGT1 by 22 residues. YLoc-HighRes
(animal version) is able to predict a localization shift from the
peroxisome to the mitochondrion. In addition, it recognizes the
appearance of an weak mTP. According to YLoc+, the extended
AGT1 is very likely in the mitochondrion.

In 1982, Carlson and Botstein (1982) found two isoforms of
glycosylated invertase in yeast, which is encoded by the SUC2
gene. The extracellular isoform is regulated by glucose repression,
whereas the N-terminal truncated cytosolic isoform is constitutively
expressed. YLoc-LowRes (fungi version) is able to predict the
localization change of this truncation, although it still recognizes
associated GO terms that indicate a secreted localization. In addition,
the truncation of the signal peptide was recognized by YLoc. Four
years later, Kaiser and Botstein (1986) examined the signal peptide
of the same protein by inducing multiple mutations in the signal
peptide region ranging from short deletions up to long substitutions.
Five of the the 10 functional mutants lack extracellular invertase
activity and show only cytoplasmic activity. Three of these cases
could be validated by YLoc-LowRes. In one case, YLoc predicted a
localization change, but not to the cytoplasm. In all five cases, YLoc
confirms the loss of a signal peptide. In addition, YLoc reproduced
the residual of the five remaining mutants in the secretory pathway.

The GLR1 gene of yeast encodes two different isoforms of
glutathione reductase: a longer, mitochondrial isoform and a shorter,
cytoplasmic isoform (Outten and Culotta, 2004). The two different
isoforms very likely arise from leaky ribosomal scanning. YLoc-
LowRes (fungi version) predicted GLR1 as mitochondrial and
identified an mTP within the first 20 amino acids. The truncated
isoform is still predicted to be located in the mitochondrion but with
a decreased probability. Moreover, YLoc observed the loss of the
mTP. Both YLoc-HighRes and YLoc+ reproduced the location shift
and observed a change in mTP.

4 CONCLUSION
Understanding protein subcellular localization is crucial for
functional annotation of proteins. In contrast to many prediction
methods, predictions made by YLoc are highly interpretable. YLoc

explains why a prediction was made and shows which particular
attributes contributed most and in which direction. Explaining why
a subcellular localization prediction was made clearly influences
the trust in the results. A user might find a prediction reasonable but
might also find attributes indicating a different localization that are
more convincing to him. In addition, a users can identify properties
of their proteins that are typical or atypical for a certain cell
organelle. Thus, YLoc can be helpful to understand the localization
of novel proteins that have not been annotated before.

Our benchmark results suggest that using complex computational
models is less important than using highly discriminating features
with different biological background. When considering only
proteins that can be predicted with a certain confidence score, the
prediction performance increases considerably. We believe that a
confidence estimate is of great interest since it increases the trust in
prediction results. When predicting proteins from multiple locations,
YLoc yields often better prediction quality than current state-of-the-
art predictors. Moreover, YLoc’s flexible probability transformation
allows predicting novel location combinations that are not part of
the training data.

We showed several examples where YLoc predicted experi-
mentally validated changes of localization sites and known sorting
signals caused by mutations. This is a key step toward understanding
subcellular localization processes without conducting expensive
experiments. However, single amino acid substitutions that will not
change important physiochemical properties are not likely to cause
a change of the predicted location.

In the future, we hope to increase both performance and
interpretability of YLoc by integrating further biologically relevant
features. Improvement will rely on traditional biology and
computational biology proceeding hand in hand. Discovering novel
protein sorting signals can improve the performance of YLoc,
whereas an improved predictor can help biologists to elucidate the
localization of novel proteins. Since we applied YLoc successfully
on proteins with alternative isoforms that differ in localization, it
seems promising to include alternative transcription and translation
sites as features for YLoc+. In addition, qualitative distribution
data of multiply targeted proteins will help to improve the
prediction quality of YLoc+. The YLoc web service is available
at www.multiloc.org/YLoc.

ACKNOWLEDGEMENT
The authors thank Nico Pfeifer for comments on the manuscript.

1237



[12:34 13/4/2010 Bioinformatics-btq115.tex] Page: 1238 1232–1238

S.Briesemeister et al.

Funding: S.B. gratefully acknowledges financial support from
LGFG Promotionsverbund ‘Pflanzliche Sensorhistidinkinasen’ of
the Universtity of Tübingen.

Conflict of Interest: none declared.

REFERENCES
Bannai,H. et al. (2002) Extensive feature detection of N-terminal protein sorting signals.

Bioinformatics, 18, 298–305.
Blum,T. et al. (2009) MultiLoc2: integrating phylogeny and Gene Ontology terms

improves subcellular protein localization prediction. BMC Bioinformatics, 10, 274.
Boden,M. and Hawkins,J. (2005) Prediction of subcellular localization using sequence-

biased recurrent networks. Bioinformatics, 21, 2279–2286.
Brady,S. and Shatkay,H. (2008) EpiLoc: a (working) text-based system for predicting

protein subcellular location. In Pacific Symposium on Biocomputing. World
Scientific, pp. 604–615.

Briesemeister,S. et al. (2009) SherLoc2: a high-accuracy hybrid method for predicting
protein subcellular localization. J. Proteome Res., 8, 5363–5366.

Carlson,M. and Botstein,D. (1982) Two differentially regulated mRNAs with different
5′ ends encode secreted with intracellular forms of yeast invertase. Cell, 28,
145–154.

Casadio,R. et al. (2008) The prediction of protein subcellular localization from
sequence: a shortcut to functional genome annotation. Brief Funct. Genomic
Proteomic, 7, 63–67.

Cedano,J. et al. (1997) Relation between amino acid composition and cellular location
of proteins. J. Mol. Biol., 266, 594–600.

Chou,K. and Cai,Y. (2002) Using functional domain composition and support vector
machines for prediction of protein subcellular location. J. Biol. Chem., 277,
45765–45769.

Chou,K. and Cai,Y. (2003a) A new hybrid approach to predict subcellular localization
of proteins by incorporating Gene Ontology. Biochem. Biophys. Res. Commun.,
311, 743–747.

Chou,K. and Cai,Y. (2003b) Prediction and classification of protein subcellular location-
sequence-order effect and pseudo amino acid composition. J. Cell Biochem., 90,
1250–1260.

Chou,K. et al. (2007) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein
subcellular location prediction by incorporating multiple sites. J. Proteome Res., 6,
1728–1734.

Chou, K. (2001) Prediction of protein cellular attributes using pseudo-amino acid
composition. Proteins Struct. Funct. Genet., 43, 246–255.

Cokol,M. et al. (2000) Finding nuclear localization signals. EMBO Rep., 1, 411–415.
Cui,Q. et al. (2004) Esub 8: a novel tool to predict protein subcellular localizations in

eukaryotic organisms. BMC Bioinformatics, 5, 66.
Emanuelsson,O. et al. (2007) Locating proteins in the cell using TargetP, SignalP and

related tools. Nat. Protoc., 2, 953–971.
Fayyad,U.M. and Irani,K. (1993) Multi-interval discretization of continuous-

valued attributes for classification learning. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, Morgan Kaufman
Publishers, San Fransisco, pp. 1022–1027.

Fujiwara,Y. and Asogawa,M. (2001) Prediction of subcellular localizations using amino
acid composition and order. Genome Inform., 12, 103–112.

Fyshe,A. et al. (2008). Improving subcellular localization prediction using text
classification and the Gene Ontology. Bioinformatics, 24, 2512–2517.

Garg,A. and Raghava,G. (2008) ESLpred 2: improved method for predicting subcellular
localization of eukaryotic proteins. BMC Bioinformatics, 9, 503.

Garg,P. et al. (2009) SubCellProt: predicting protein subcellular localization using
machine learning approaches. In Silico Biol., 9, 35–44.

Guo,J. and Lin,Y. (2006) TSSub: eukaryotic protein subcellular localization by
extracting features from profiles. Bioinformatics, 22, 1784–1785.

Hall,M. (2000) Correlation-based feature selection for discrete and numeric class
machine learning. In Proceedings of the Seventeenth International Conference on
Machine Learning, Morgan Kaufmann Publishers Inc., pp. 359–366.

Höglund,A. et al. (2006) MultiLoc: prediction of protein subcellular localization using
N-terminal targeting sequences, sequence motifs and amino acid composition.
Bioinformatics, 22, 1158–1165.

Horton,P. et al. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res.,
35, W585–W587.

Huang,W. et al. (2008) ProLoc-GO: utilizing informative Gene Ontology terms for
sequence-based prediction of protein subcellular localization. BMC Bioinformatics,
9, 80.

Hua,S. and Sun,Z. (2001) Support vector machine approach for protein subcellular
localization prediction. Bioinformatics, 17, 721–728.

Kaiser,C. and Botstein,D. (1986) Secretion-defective mutations in the signal sequence
for Saccharomyces cerevisiae invertase. Mol. Cell. Biol., 6, 2382–2391.

King,B. and Guda,C. (2007) ngLOC: an n-gram-based Bayesian method for estimating
the subcellular proteomes of eukaryotes. Genome Biol., 8, R68.

Lee,K. et al. (2009) Protein networks markedly improve prediction of subcellular
localization in multiple eukaryotic species. Nucleic Acids Res., 36, e136.

Lei,Z. and Dai,Y. (2006) Assessing protein similarity with Gene Ontology and its use
in subnuclear localization prediction. BMC Bioinformatics, 7, 491.

Lin,H. et al. (2009) Protein subcellular localization prediction of eukaryotes using a
knowledge-based approach. BMC Bioinformatics, 10, S8.

Lu,Z. and Hunter,L. (2005) GO molecular function terms are predictive of subcellular
localization. In Proceedings of Pacific Symposium on Biocomputing, World
Scientific, pp. 151–161.

Lu,Z. et al. (2004) Predicting subcellular localization of proteins using machine-learned
classifiers. Bioinformatics, 20, 547–556.

Nair,R. and Rost,B. (2002a) Inferring sub-cellular localization through automated
lexical analysis. Bioinformatics, 18(Suppl. 1), S78–S86.

Nair,R. and Rost,B. (2002b) Sequence conserved for subcellular localization. Protein
Sci., 11, 2836–2847.

Nair,R. and Rost,B. (2005) Mimicking cellular sorting improves prediction of
subcellular localization. J. Mol. Biol., 348, 85–100.

Nakai,K. and Kanehisa,M. (1992) A knowledge base for predicting protein localization
sites in eukaryotic cells. Genomics, 14, 897–911.

Outten,C. and Culotta,V. (2004) Alternative start sites in the Saccharomyces cerevisiae
GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione
reductase. J. Biol. Chem.., 279, 7785–7791.

Park,K. and Kanehisa,M. (2003) Prediction of protein subcellular locations by support
vector machines using compositions of amino acids and amino acid pairs.
Bioinformatics, 19, 1656–1663.

Petsalaki,E. et al. (2006) PredSL: a tool for the N-terminal sequence-based prediction
of protein subcellular localization. Genomics Proteomics Bioinformatics, 4, 48–55.

Pierleoni,A. et al. (2006) BaCelLo: a balanced subcellular localization predictor.
Bioinformatics, 22, e408–e416.

Reinhardt,A. and Hubbard,T. (1998) Using neural networks for prediction of the
subcellular location of proteins. Nucleic Acids Res., 26, 2230–2236.

Rish,I. (2001) An empirical study of the naive Bayes classifier. In IJCAI 2001 Workshop
on Empirical Methods in Artificial Intelligence, Morgan Kaufmann, pp. 41–46.

Scott,M. et al. (2004) Predicting subcellular localization via protein motif
co-occurrence. Genome Res., 14, 1957–1966.

Scott,M. et al. (2005) Refining protein subcellular localization. PLoS Comput. Biol., 1,
e66.

Shin,C.J. et al. (2009) Protein-protein interaction as a predictor of subcellular location.
BMC Syst. Biol., 3, 28.

Small,I. et al. (2004) Predotar: a tool for rapidly screening proteomes for N-terminal
targeting sequences. Proteomics, 4, 1581–1590.

Takada,Y. et al. (1990) Human peroxisomal L-alanine: glyoxylate aminotransferase.
Biochem. J., 268, 517–520.

Tsoumakas,G. and Katakis,I. (2007) Multi-label classification: an overview. Int. J. Data
Warehousing Min., 3, 1–13.

Whitten,I. and Frank,E. (2005) Data Mining: Practical machine learning tools and
techniques. Morgan Kaufman Publishers, San Fransisco.

Xie,D. et al. (2005) LOCSVMPSI: a web server for subcellular localization of
eukaryotic proteins using SVM and profile of PSI-BLAST. Nucleic Acids Res.,
33, W105–W110.

Zhang,S. et al. (2008) DBMLoc: a database of proteins with multiple subcellular
localizations. BMC Bioinformatics, 9, 127.

1238


