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The dynamic changes in protein expression are well known to be required for oocyte

meiotic maturation. Although proteomic analysis has been performed in porcine oocytes

during in vitro maturation, there is still no full data because of the technical limitations

at that time. Here, a novel tandem mass tag (TMT)-based quantitative approach was

used to compare the proteomic profiles of porcine immature and in vitromature oocytes.

The results of our study showed that there were 763 proteins considered with significant

difference−450 over-expressed and 313 under-expressed proteins. The GO and KEGG

analyses revealed multiple regulatory mechanisms of oocyte nuclear and cytoplasmic

maturation such as spindle and chromosome configurations, cytoskeletal reconstruction,

epigenetic modifications, energy metabolism, signal transduction and others. In addition,

12 proteins identified with high-confidence peptide and related to oocyte maturation

were quantified by a parallel reaction monitoring technique to validate the reliability of

TMT results. In conclusion, we provided a detailed proteomics dataset to enrich the

understanding of molecular characteristics underlying porcine oocyte maturation in vitro.

Keywords: porcine oocytes, in vitro maturation, proteome, TMT, PRM

INTRODUCTION

The domestic pig, as an important livestock species, has been thought to be an ideal large animal
model for health and disease research due to its similar organ sizes and physiology to humans
(1, 2). It is therefore imperative to generate various types of specially designed pigs for applications
in agricultural and biomedical research (3), which is dependent on the constant development of
reproductive techniques. Moreover, oocytes occupy a vital position in these technical procedures
and directly determine their efficiencies (4). The acquirement of high-quality oocytes through
in vitro maturation (IVM) technique has become increasingly prominent because the potential
of oocytes matured in vitro still remain in a compromised state due to incomplete cytoplasmic
maturation (5, 6). Currently, numerous studies have been conducted to elucidate the complex
regulatory mechanisms underlying oocyte maturation in order to improve the IVM efficiency (7),
but the existing mechanisms are not comprehensive enough.
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Oocyte maturation is the final step of mammal oogenesis
during which meiotic resumption occurs as a progression from
initial germinal vesicle (GV) breakdown into metaphase II
(MII) arrest (8). This process is accompanied by the deposition
of maternal RNAs and proteins regarded as one part of the
cytoplasmic maturation for successful oocyte maturation, zygotic
genome activation and early embryo development (9, 10). The
transcriptome allows an overview of gene expression profile to
improve our understanding toward molecular mechanisms of
oocyte maturation (11). However, the transcriptional activity
is minuscule during oocyte maturation (12), and mRNA and
protein levels are rarely correlated well, particularly in oocytes
(13). Conversely, a large number of proteins are activated or
inactivated by post-translational modifications to employ in
oocyte maturation such as nuclear reorganization, cytoskeleton
rearrangement, organelle architecture, etc (14). These events are
accurately controlled by a network of protein interactions and
functions. Therefore, more in-depth proteomic research is of
great significance for further elucidating the molecular processes
during oocyte maturation.

During the past decade, proteomic strategies have been widely
applied to explore the maturation mechanisms of mammalian
oocytes including human (15), mouse (16, 17), pig (13, 18–20),
cattle (21, 22) and buffalo (23, 24). However for porcine oocytes,
all previous studies were conducted by two-dimensional gel
electrophoresis (2-DE) to identify the protein composition. But
this 2-DE technique remains very difficult to detect lowmolecular
weight and low abundance proteins, with a disadvantage in
the accurate quantitation from multiple samples (25). So, in
these studies there is a maximum of no more than 1,000
proteins identified in porcine oocytes during IVM. An alternative
approach with high-throughput technology is necessary to
achieve the comprehensive identification and quantification of
proteins for porcine oocytes.

Currently, tandem mass tag (TMT) labeling coupled with
liquid chromatography tandem mass spectrometry (LC-MS/MS)
is becoming a mainstream proteomic technique attracting
tremendous attention in various research fields, due to its
advantages of high throughput, sensitivity, accuracy, and stability
(26, 27). In addition, a novel targeted method, parallel reaction
monitoring (PRM) is applicable to the identification and
quantification of low abundant proteins with good selectivity and
sensitivity (28), and thus has been used to validate the candidate
proteins. In our previously published work, these techniques
have already been employed to analyze the proteomic changes
of porcine oocytes after vitrification (29). Combining these
data, the present study aimed to further acquire the proteomic
characteristics of porcine oocytes during meiotic maturation in
vitro, in order to better understand the potential mechanisms
underpinning this process with the protein dimension.

MATERIALS AND METHODS

All chemicals and reagents used in this study were purchased
from Sigma-Aldrich Chemical Company (Shanghai, China)
unless otherwise specified.

Oocyte Collection and IVM
In this study, medium and procedures for oocyte collection and
IVMwere as described previously (30). Pre-pubertal ovaries were
obtained from a local abattoir and transported to the laboratory
in saline at 35–37◦C within 2 h. Follicular fluid was aspirated
from 3–8mm antral follicles using a syringe with an 18-gauge
needle. Cumulus-oocyte complexes (COCs) in sediments were
washed two times in Tyrode’s lactate-HEPES-polyvinyl alcohol
medium (31), then selected under a stereomicroscope (Olympus,
Tokyo, Japan). After washing three times in IVM medium, 50–
70 COCs with uniform oocyte cytoplasm and over 3 layers
of compact cumulus cells were cultured in each well of a 24-
well plate (Costar, Corning, NY, USA) containing 500 µL IVM
medium for 42–44 h at 39◦C in an atmosphere of 5% CO2

with saturated humidity. The composition of IVM medium
was a tissue culture medium-199 (ThermoFisher Scientific,
Grand Island, NY, USA) supplemented with 3.05mM D-glucose,
0.57mM cysteine, 0.91mM sodium pyruvate, 10% (v/v) porcine
follicular fluid, 10 ng/mL epidermal growth factor, 0.5µg/mL
each follicle-stimulating hormone, and luteinizing hormone.

Protein Extraction, Digestion and TMT
Labeling
For collecting GV oocytes, COCs were incubated in 0.1%
hyaluronidase for 10min at 39◦C and thenmechanically stripped
of cumulus cells by repeated aspiration with a 200-µL pipette.
In addition, after 42–44 h of IVM, oocytes were also freed from
cumulus cells, and those with a first polar body (a characteristic of
MII stage) were used for experiments. Both GV and MII oocytes
were washed three times in cold Dulbecco’s phosphate buffered
saline containing 0.3% (w/v) polyvinyl alcohol and stored at
−80◦C. Three biological replicates were carried out and about
1,500 oocytes were used for each sample.

For protein extraction, these samples were lysed on ice in
8M urea containing 1% protease inhibitor cocktail through
a high intensity ultrasonic processor and then centrifugated
at 12,000 g at 4◦C for 10min to obtain the supernatant.
Protein concentration was measured by a bicinchoninic acid
protein assay kit (Pierce, Rockford, IL, USA) following the
manufacturer’s instructions. Moreover, the protein solution was
reduced with 5mM dithiothreitol at 56◦C for 30min, alkylated
with 11mM iodoacetamide at room temperature for 15min,
and diluted to ensure the urea concentration was less than 2M.
Trypsin was added at 1:50 mass ratio (trypsin: protein) at 37◦C
overnight for the first digestion and continuously at 1:100 mass
ratio (trypsin: protein) for 4 h to complete a post-digestion.
After digestion, peptides were desalted on a Strata X C18 SPE
column (Phenomenex, Torrance, CA, USA), vacuum-dried, and
reconstituted in 0.5M TEAB. For TMT labeling, one unit of
TMT reagent (Thermo Fisher Scientific, Waltham, MA, USA)
was reconstituted in acetonitrile to mix with peptides at room
temperature for 2 h. Peptides derived from MII oocyte samples
were labeled TMT tags of 126, 127N and 127C, and peptides
derived from GV oocyte samples were labeled with TMT tags of
128N, 129N and 129C. Finally, the labeled peptide mixtures were
desalted and dried under vacuum centrifugation.
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LC-MS/MS Analysis
Firstly, tryptic peptides were separated at a gradient of 8–32%
acetonitrile (pH 9.0) over 60min into 60 fractions using high
pH reverse-phase high performance liquid chromatography with
an Agilent 300 Extend C18 column (5µm particles, 4.6mm
ID, 250mm length; Agilent, Santa Clara, USA), followed by
combining into 9 fractions and vacuum-drying. After dissolving
in solvent A (0.1% formic acid), these peptides were directly
loaded onto a home-made reversed-phase analytical column (15-
cm length, 75µm i.d.) to elute with gradient solvent B (0.1%
formic acid in 98% acetonitrile). The linear gradient settings
were as follows: 7–16% over 50min, 16–30% in 35min, 30–
80% in 2min and 80% for the last 3min, which was performed
on an EASY-nLC 1,000 ultraperformance liquid chromatography
(UPLC) system (Thermo Fisher Scientific, Waltham, MA, USA)
at a flow rate of 400 nL/min.

The peptides were subjected to nanospray ionization at 2.0
kV voltage and then detected with tandem mass spectrometry
(MS/MS) in Q ExactiveTM Plus (Thermo Fisher Scientific,
Waltham, MA, USA) coupled online to the UPLC system.
Precursor and fragment ion spectra were acquired in the high-
resolution Orbitrap with 350–1,550 m/z at a resolution of
60,000 and 100 m/z at a resolution of 30,000, respectively. A
data dependent scanning mode was used to acquire a mass
fragmentation date. Each full mass spectrometry (MS) scan
was followed by 20 MS/MS scans (30.0 s dynamic exclusion)
corresponding from the ten most abundant precursor ions
of full MS for higher-energy collisional dissociation (HCD)
fragmentation with 32% normalized collision energy (NCE). In
addition, automatic gain control (AGC) was set at 5E4, and
maximum injection time (max IT) was 70 ms.

Database Processing
The resulting MS/MS spectra were processed using Maxquant
search engine (v1.5.2.8) against the Sus scrofa UniProt proteome
database (40,708 sequences). Moreover, we added a reverse
decoy database to reduce the false positive identification results.
Trypsin/P was specified as the cleavage enzyme, allowing up
to two missing cleavages. The minimum peptide length was
specified as seven amino acids, with a maximum of five
modifications per peptide. Precursor mass tolerance was 20 ppm
and fragment mass tolerance was 5 ppm. Carbamidomethylation
on cysteine was specified as fixed modification and oxidation on
methionine and N-terminal acetylation as variable modification.
The false discovery rate for each peptide was adjusted to <1%,
and minimum score for peptides was set to >40. Student’s t-test
was used to analyze statistical significances between two samples,
and P-value of <0.05 and fold change of ≥ 1.20 or ≤ 0.83 were
set as the threshold for differentially expressed proteins (DEPs).

Bioinformatics Analysis
Gene Ontology (GO) annotation proteome was derived from the
UniProt-GOA database (http://www.ebi.ac.uk/GOA/) based on
biological process, cellular component and molecular function
(32). Proteins were further searched with the InterProScan
software (http://www.ebi.ac.uk/interpro/) if they were not
annotated by the UniProt-GOA database. The online service

tool KAAS4 was used to annotate the Kyoto Encyclopedia of
Genes and Genomes (KEGG) description (33). Furthermore,
enrichment analysis was also carried out by using the Metascape
software (http://metascape.org) (34).

PRM Validation
For PRM analysis, we carried out three biological replicates with
at least 1,000 oocytes used for each sample. The tryptic digested
peptides were prepared according to the procedures described
above. Similarly, peptides were dissolved in solvent A and then
eluted with gradient solvent B (6–25% over 40min, 25–35%
in 12min, climbing to 80% in 4min, and holding at 80% for
the last 4min), at a flow rate of 500 nL/min. Subsequently, the
eluted peptides were subjected to a nanospray ionization source
(2.2 kV electrospray voltage) followed by Q ExactiveTM Plus
coupled online to the UPLC. A data-independent acquisition was
conducted on an Orbitrap as follows: full MS scan at a resolution
of 70,000 with 350–1,060 m/z (AGC, 3E6; max IT, 50ms)
followed by 20 MS/MS scans at a resolution of 17,500 (AGC,
1E5; max IT, 120ms; isolation window, 1.6 m/z). In addition, 27%
NCE with HCD was used to fragment precursor ions. Acquired
PRMdata were processed through a Skyline software (version 3.6,
MacCoss Lab, University of Washington, USA) (35). The target
proteins were quantified according to the fragment ion peak
area for confirming the TMT results. We selected 12 proteins
according to high-confidence peptide and functional importance,
including wee1-like protein kinase 2 (WEE2), kinesin-like
protein (KIF20A), ubiquitin conjugating enzyme E2C (UBE2C),
DNA (cytosine-5)-methyltransferase (DNMT1), proliferating
cell nuclear antigen (PCNA), CD59 glycoprotein (CD59), growth
differentiation factor 9 (GDF9), coronin (CORO1C), tudor
and KH domain-containing protein (TDRKH), tropomyosin

FIGURE 1 | A volcano plot of differentially expressed proteins. Proteins with

fold change of ≥ 1.20 or ≤ 0.83 and P < 0.05 were considered statistically

significant. Red blocks indicate significant over-expressed proteins, blue

triangles indicate significant under-expressed proteins, while gray circles

indicate proteins without differences. The X-axis represents fold change, Y-axis

means P-value.
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alpha-4 chain (TPM4), annexin (ANXA1) and cytoplasmic
polyadenylation element-binding protein 1 (CPEB1).

RESULTS

Protein Identification
After a stringent criteria for quality control (TMT labeling
efficiency of 98.42%, peptide mass error within 5 ppm),
we obtained a total of 3,823 proteins with quantitative
information and the detailed description is provided
in Supplementary Table S1. Moreover, a principal
component analysis of all quantified proteins showed
two completely independent clusters, indicating that the
replicates from each treatment were very close to each
other (Supplementary Figure S1). Among these proteins,
763 proteins (P-value < 0.05, fold change of ≥ 1.20 or ≤

0.83) were considered as the DEPs, and 450 proteins were
over-expressed, and 313 proteins were under-expressed
in the MII oocyte (Supplementary Table S2). A volcano
plot indicated the repartition of each protein abundance
(Figure 1). In addition, there were 144 DEPs with fold

change more than two, including 101 over-expressed and 43
under-expressed proteins.

Functional Classification Analysis
First, we performed a GO functional classification on the DEPs
and showed 32 terms including 16 biological processes, 8
cellular components and 8 molecular functions (Figure 2 and
Supplementary Table S3). For the biological process, the top
five GO terms consisted of “cellular process” (343 proteins),
“single-organism process” (239 proteins), “metabolic process”
(237 proteins), “biological regulation” (228 proteins) and
“cellular component organization” (146 proteins). In the cellular
component, the most abundant terms were “cell” and “organelle”
with 349 and 304 proteins, respectively. The “binding” (536
proteins) and “catalytic activity” (186 proteins) were the largest
two terms for molecular function.

In addition, functional classification based on the COG/KOG
database was also used to analyze the protein function and
characteristic. These DEPs were assigned to 25 COG/KOG
categories (Figure 3 and Supplementary Table S4). The largest
category was “signal transduction mechanisms” (105 proteins),

FIGURE 2 | Gene Ontology (GO) classification analysis of differentially expressed proteins (DEPs) in terms of biological process, cellular component and molecular

function. Each bar represents the number of DEPs.
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FIGURE 3 | COG/KOG functional classification analysis of differentially expressed proteins (DEPs). The DEPs were aligned to COG/KOG database and classified into

20 functional clusters. Each bar represents the number of DEPs.

followed by “general function prediction only” (88 proteins)
and “cytoskeleton” (66 proteins). Moreover, some DEPs were
clustered in important categories related to oocyte meiosis such
as “cell cycle control, cell division, chromosome partitioning” (30
proteins), “chromatin structure and dynamics” (16 proteins) and
“nuclear structure” (12 proteins).

Functional Enrichment Analysis
First of all, the detailed information of GO functional enrichment
is shown in Figure 4 and Supplementary Table S5. Within the
molecular function, a number of over-expressed DEPs were
enriched for microtubule-related terms including “microtubule
binding,” “microtubule motor activity” and “tubulin binding,”
whereas “actin filament binding” and “actin binding” terms were
under-expressed. A molecular function analysis showed that
most of the over-expressed DEPs were involved in the regulation
of the nucleus and chromosome, and the under-expressed
terms were concerned with “cell junction,” “adherens junction”
and “anchoring junction.” Regarding the biological process
from over-expressed DEPs, almost all terms related to the cell
cycle networks were “mitotic cycle process,” “nuclear division,”
“regulation of cell cycle process,” “mitotic nuclear division,”
“chromatin organization,” etc. Still there were some under-
expressedDEPs associated with “actin cytoskeleton organization”
and “actin filament organization” terms.

We next used KEGG pathway analysis to delineate the protein
functions (Figure 5 and Supplementary Table S6). Several
signaling pathways related to oocyte maturation were enriched
including “oocyte meiosis,” “progesterone-mediated oocyte

maturation,” “thyroid hormone signaling pathway,” “insulin
signaling pathway,” “MAPK signaling pathway,” etc. Moreover,
the under-expressed DEPs enriched the many significant
pathways associated with “cell adhesion molecules,” “adherens
junction,” “tight junction” and “regulation of actin cytoskeleton.”

Based on the Metascape software, the enriched clusters for
DEPs included those of “cell cycle,” “mRNA processing,” “cell
division,” “organelle localization,” “actin filament-based process”
and others (Figure 6 and Supplementary Table S7).

PRM Validation
As shown in Figure 7 and Supplementary Figure S2, the
expression patterns of these proteins quantified by PRM and
TMT were completely consistent, although the fold change in
protein expression levels varied between the two techniques.

DISCUSSION

There is a large pool of protein composition stored in GV
oocytes, which exhibits dynamic changes during the process
of meiotic resumption. Accumulation of maternally derived
proteins in cytoplasm is critical to oocytematuration, fertilization
and embryo development (36). Thus, an investigation of oocyte
proteome variations during the GV to MII transition is of
great significance to uncover regulatory proteins and related
functional phenotypes of oocyte maturation. The present results
showed a series of differential proteins between GV and MII
oocytes. A substantial number of known proteins associated
with both nuclear and cytoplasmic maturation were further
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FIGURE 4 | Gene Ontology (GO) enrichment analysis of differentially expressed proteins (DEPs). The over-expressed and under-expressed DEPs were enriched into

cellular component, molecular function and biological process. The bar represents the enrichment score associated with each term, and score value is shown as

-log10 (Fisher’s exact test P-value).

confirmed by the current study. We also found that some
novel proteins were supposed to take part in oocyte maturation.
Furthermore, bioinformatics interrogation revealed important
changes in protein regulation of multiple cellular functions in
porcine oocytes during IVM.

Regarding the porcine oocytes, high-throughput technology
has not been used for proteome analysis. Our study obtained
763 quantified proteins considered as significant difference in
the MII oocytes through TMT-based proteomic approach, which
is far more than date of Kim et al. who have reported 16
over-expressed and 12 under-expressed proteins using 2-DE
analysis (13). Another study also found only 16 proteins that
were differentially expressed during IVM of porcine oocytes
(19). Moreover, almost all of these DEPs identified in previously
reported studies were not detected in the current study.

Cellular metabolism is vital for oocyte maturation because
the large-scale reorganizations of nucleus and cytoplasm require
a massive amount of energy from various substrates such as
carbohydrates, amino acids, and lipids (37). Currently, both
glucose and pyruvate are commonly added to IVM medium to

support porcine oocyte maturation and subsequent early embryo
development (38). In the present study, there were 237 DEPs
classified in the “metabolic process,” some of which were assigned
to “energy production and conversion,” “carbohydrate transport
and metabolism,” “amino acid transport and metabolism,”
“lipid transport and metabolism” and so on, according to
COG/KOG categories. These proteins play a crucial role in
the regulation of energy metabolism during oocyte maturation.
For instance, monocarboxylate transporter 1 (SLC16A1) and
solute carrier family 16 member 3 (SLC16A3), belonging to
a family of proton-linked monocarboxylate transporters, are
involved in the movement of lactate, pyruvate, acetate and
ketone bodies, and their regulation and function have been
confirmed in preimplantation mouse embryos (39). Thioredoxin
domain containing 9 (TXNDC9), as a prominent member
of thioredoxins, can maintain the redox state and regulate
the folding of actin and tubulin (40). It has been reported
that TXNDC9 is required for mouse oocyte maturation and
shows a higher protein expression in GV stage compared to
MII stage (41). However, we observed the highest level of
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FIGURE 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differentially expressed proteins (DEPs). The P-value was calculated

using a Fisher’s exact test. The X-axis represents the log2 fold enrichment, Y-axis means KEGG pathway. Bubble size corresponds to the number of DEPs for each

term.

FIGURE 6 | Top 20 clusters in the enrichment network of differentially expressed proteins (DEPs). Metascape is used for annotation and enrichment visualization of

DEPs. Each circle represents an enriched term and is colored according to cluster identity. Terms with a similarity score >0.3 are linked by edges.
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FIGURE 7 | Validation of differentially expressed proteins (DEPs) using parallel reaction monitoring (PRM) analysis. There are 12 candidate DEPs obtained to verify the

tandem mass tag (TMT) results.

TXNDC9 protein in porcine oocytes after IVM. Conversely,
there are a large number of lipid droplets in porcine oocyte
cytoplasm, which have been demonstrated to play a fundamental
role in the oocyte maturation process by providing an energy
source from lipid metabolism (42, 43). Based on our results,
many proteins were uncovered to participate in the signaling
pathway of lipid metabolism during oocyte maturation such
as methylsterol monooxygenase 1 (MSMO1), phospholipase A2
activating protein (PLAA), phosphatidate phosphatase (LPIN2),
acetyl-CoA carboxylase 1 (ACACA), etc. LPIN2 promotes the
accumulation of lipid droplets and its degradation is essential
for lipolysis activation (44). The under-expressed expression of
LPIN2 protein inMII oocytes may also suggest a marked increase
in lipid metabolism during the IVM process.

In the biological process, the over-expressed proteins were
mainly enriched in the GO terms associated with cell cycle
regulation, indicating that they might play a key role in
the meiotic progression of oocytes. The KEGG enrichment
analysis also identified two pathways, “cell cycle” and “oocyte
meiosis,” as significantly enriched. As expected, the present
study found some known proteins including CPEB1, KIF20A,
kinetochore complex component (NDC80), mitotic checkpoint
protein BUB3 (BUB3), UBE2C and others. Previous studies have
showed that these proteins mentioned above are essential for

meiotic resumption of porcine oocytes such as regulating spindle
formation and chromosome alignment (45–49). Incidentally, we
observed that securing (PTTG1) expression was over-expressed
4.1-fold in MII oocytes, which may participate in the processes
of oocyte maturation and zygotic genome activation as a
maternal protein (50). Conversely, several proteins that have
not yet been studied in porcine oocytes were also identified
to be involved in the cell cycle. For example, WEE2 protein
is an oocyte specific tyrosine kinase and is critical for exit
from MII arrest and promotes pronuclear formation (51).
Structural maintenance of chromosomes protein (SMC1B), a
meiosis specific component of cohesin complex, is considered
essential for meiotic chromosomal segregation (52). CHEK1 is an
uncharacterized protein in pigs whose functionmay be associated
with cell cycle arrest (53). In a word, all of these proteins
contained in the above terms and pathways may play their
respective roles in order to assure normal nuclear maturation of
porcine oocytes.

The dynamic remodeling of cytoskeleton plays crucial roles
in spindle assembly, chromosome segregation and organelle
reorganization, ensuing proper nuclear and cytoplasmic
maturation of mammalian oocytes (54). Based on the molecular
function analysis, the terms related to microtubule regulation
mainly enriched the over-expressed proteins and the majority
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of them belong to kinesin motor family of proteins (KIF11,
KIF14, KIF15, KIF23, KIF4A, KIF18A, KIF20A, KIF20B,
KIF2C, KIFC1). These proteins are essential for the functional
mechanisms of macromolecule transport, microtubule dynamics,
cell cycle progression and cytokinesis (55). It has beenwell known
that dynamic changes in actin filaments are implicated in various
events during oocyte meiotic maturation (56). In this study,
we found that the enriched GO terms and KEGG pathways
for under-expressed proteins contained actin-based functions.
Among the proteins, myosin IB (MYO1B), myosin IE (MYO1E)
and myosin VB (MYO5B) need specific attention, because they
are numbers of the myosin family of motor proteins and also
may have important roles in actin cytoskeleton remodeling
during oocyte maturation.

It is established that the increase in progesterone induced
by a luteinizing hormone is associated with meiotic resumption
of porcine oocytes (57). As we expected, the KEGG pathways
analysis showed that a total of 8 over-expressed proteins were
involved in the “progesterone-mediated oocyte maturation”
pathway, indicating their function in regulation of oocyte
maturation. These proteins have been well elucidated as maternal
proteins necessary for oogenesis. For instance, cyclin B1
(CCNB1) and proto-oncogene serine/threonine-protein kinase
mos (MOS) are required for maturation promoting factor
activation and mitogen-activated protein kinase cascade (58).
The spindle checkpoint signaling depends on (BUB1) and
serine/threonine-protein kinase PLK (PLK1) (59). Conversely,
we found that the “cGMP-PKG signaling pathway” was
significantly under-expressed in MII compared to GV oocytes,
suggesting that this pathway was an important part of the
regulatory mechanism related to meiotic maturation. Notable
among these was the protein phosphatase 3 regulatory subunit
B, alpha (PPP3R1) acting as the regulatory subunit of calcineurin
B. It has been reported that calcineurin is present in porcine
oocytes (60), andmaymodulate the meiotic maturation of mouse
oocytes (61). Finally, another significantly enriched pathway was
the Hippo signaling pathway, which has been speculated to be
involved during oocyte maturation (62).

In this study, we also identified a series of DEPs related
to epigenetic modifications including DNA methylation,
histone acetylation and methylation. Among them, DNMT1,
lymphoid specific helicase (HELLS), tudor domain containing
1 (TDRD1), tudor and TDRKH were enriched in the “DNA
methylation or demethylation” term. It is worth mentioning
that the expression of HELLS was elevated by 2.7-fold in MII
oocytes, which as a DNA helicase is essential for genome-wide
DNA methylation (63). In addition, GO enrichment analysis
revealed the following enriched terms: “histone acetylation,”
“histone H3 acetylation,” “H4 histone acetyltransferase
complex,” and “histone acetyltransferase complex.” Both
down-regulator of transcription 1 (DR1) and transcriptional
adapter 3 (TADA3) were found to be involved in these terms,
indicating that they might have a function during meiotic
maturation in porcine oocytes through the modulation of
histone deacetylation. However, the two proteins have hardly
been studied previously in mammalian oocytes. The present
study also showed that the retinoblastoma-binding family

of proteins (RBBP4, RBBP5 and RBBP7) were linked to the
formation of “histone methyltransferase complex” based
on cellular component analysis. It has been reported that
RBBP4 and RBBP7 can regulate histone deacetylation and
chromosome segregation during mouse oocyte maturation
(64, 65).

Conversely, our proteomic data were confirmed to be entirely
reliable through PRM target validation for the selected 12
proteins. In the discussion above, WEE2, KIF20A, UBE2C,
DNMT1, TDRKH and CPEB1 have been described to exert
important roles in oocyte meiotic maturation. Moreover,
GDF9, ANXA1 and PCNA are considered as oocyte-specific
proteins and also identified in human oocytes through single-
cell proteomics (15). It has been reported that CORO1C
as an actin-binding protein is associated with cytogenesis in
oocytes and embryos (66). According to a previous report
(67), TPM4 might also be involved in the formation of
microtubule structure in porcine oocyte maturation. Finally,
our study found several cell surface glycoproteins with different
expression including CD59, CD61, CD99 and CD276, suggesting
that these proteins likely play important roles in porcine
oocyte fertilization.

CONCLUSION

In conclusion, we found 763 significantly altered proteins
in GV and MII oocytes, suggesting that they might closely
be related to oocyte maturation. Moreover, the functional
classification and enrichment analysis revealed that these
proteins were involved in multiple regulatory mechanisms
of meiotic resumption and cytoplasmic maturation, such
as spindle and chromosome configurations, cytoskeletal
reconstruction, epigenetic modifications, energy metabolism,
signal transduction and so on. All of these findings provide
a deeper insight into the molecular characteristics of
proteome in regulation of porcine oocyte maturation following
IVM process.
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