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Abstract

Large-scale molecular annotation of epithelial ovarian cancer
(EOC) indicates remarkable heterogeneity in the etiology of that
disease. This diversity presents a significant obstacle against inter-
vention target discovery. However, inactivation of miRNA bio-
genesis is commonly associated with advanced disease. Thus,
restoration of miRNA activity may represent a common vulnerabil-
ity among diverse EOC oncogenotypes. To test this, we employed
genome-scale, gain-of-function, miRNA mimic toxicity screens in a
large, diverse spectrum of EOC cell lines. We found that all cell
lines responded to at least some miRNA mimics, but that the
nature of the miRNA mimics provoking a response was highly
selective within the panel. These selective toxicity profiles were
leveraged to define modes of action and molecular response indi-
cators for miRNA mimics with tumor-suppressive characteristics
in vivo. A mechanistic principle emerging from this analysis was
sensitivity of EOC to miRNA-mediated release of cell fate specifi-
cation programs, loss of which may be a prerequisite for develop-
ment of this disease.
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Introduction

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malig-

nancy in the United States (Siegel et al, 2012). Recent advances in

treatment of this disease have been limited to empirical optimiza-

tion of chemotherapeutic agents and improved delivery of drugs

(Armstrong et al, 2006). While these have yielded measurable

improvements in overall survival of ovarian cancer patients, there is

an urgent need for novel treatment modalities. A greater under-

standing of the linchpin biology of this disease would likely help

provide inroads toward the development of new therapies.

Multiple public and private efforts have focused on large-scale

annotation of the landscape of genomic alterations associated with

EOC. These studies have detected over 60 tumor-acquired mutations

per patient. Though mutation of the p53 tumor suppressor has been

identified as an almost universal characteristic (95% of ovarian

tumors), all other somatic mutations have been found to occur in

3–6% of tumors or less (Kan et al, 2010; Cancer Genome Atlas

Research, 2011). In combination with this diversity of somatic

nucleotide variation, pervasive and recurrent copy number variation

has been detected (Etemadmoghadam et al, 2009; Cancer Genome

Atlas Research N, 2011), giving rise to the notion that ovarian tumor

progression is driven by a “turbulent genome”.

The seemingly enormous diversity of molecular etiology of EOC

poses a significant challenge to intervention target discovery and is

fueling efforts to identify common biological vulnerabilities that

occupy the nexus of diverse EOC genomes. A compelling candidate

is defective miRNA biogenesis and function. When measured by

quantitative PCR, Dicer and Drosha, the RNases required for miRNA

processing, show decreased expression in over half of ovarian

tumors sampled, and high Dicer expression correlates with remark-

able patient survival (Merritt et al, 2008). However, we note that

microarray-based tools have failed to uncover this relationship in

larger cohorts (Gyorffy et al, 2013; Madden et al, 2014). Dicer is a

haploinsufficient tumor suppressor in mice, and compound deletion

of Dicer and the PTEN tumor suppressor is sufficient to induce spon-

taneous epithelial ovarian cancer (Kumar et al, 2009; Kim et al,
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2012). Together, these observations indicate miRNA production

may be generally deleterious to ovarian tumor initiation and/or

progression, perhaps through translational suppression of tumor

promoting gene products. Of note, the 30-untranslated regions

(30-UTRs) of many mRNAs are clipped in some cancer cell types,

which can release oncogenes from miRNA regulation (Mayr & Bartel,

2009). Thus, sensitivity to restoration of miRNA activity may repre-

sent a common vulnerability among diverse EOC oncogenotypes.

To test the commonality of sensitivity to miRNA activity in EOC,

we examined the consequence of introducing each of 400 miRNA

mimics on the viability of each of 16 ovarian cancer cell lines,

telomerase-immortalized ovarian surface epithelial cells, and hepa-

tocytes. Selectively toxic mimics were recovered across the panel,

the majority of which displayed highly individualized activity. Clini-

cal correlations and mechanistic follow-up in multiple disease

lineages indicated that the idiosyncratic miRNA mimic toxicity pro-

files were a consequence of fractional representation of biologically

relevant ovarian cancer subtype/miRNA relationships that are more

commonly encountered in other disease sites. Rare mimics targeting

common vulnerabilities in the EOC panel corresponded to miR-517a

and miR-124. miR-517a toxicity was primarily accounted for by its

target ARCN1, a component of the COPI complex, and effectively

impaired xenograft tumor growth when administered in vivo.

miR-124 toxicity was primarily accounted for by its target SIX4, a

homeobox transcription factor, which was also validated in vivo. A

convergent mechanistic principle derived from this analysis was

the common vulnerability of EOC to miRNA-mediated release of

aberrant cell differentiation programs, loss of which may be a

prerequisite for development of disease.

Results

A genomewide screen for miRNAs with antineoplastic potential
in ovarian cancer

For broad-scale interrogation of the selective consequences of gain-

of-function microRNA activity, in ovarian cancer cell regulatory

contexts, we combined a genome-scale synthetic miRNA collection

with a panel of ovarian cancer cell lines representative of the

genomic diversity found in this disease. The miRNA mimic collec-

tion corresponded to 400 unique human miRNA annotated in

miRBase8-10 (Dataset EV1). As a test-bed within which to assess

selective inhibition of cancer cell viability, we collected a panel of

16 ovarian tumor-derived cell lines together with non-tumorigenic

telomerase-immortalized ovarian surface epithelial cells and sponta-

neously immortalized hepatocytes. This panel included commonly

employed laboratory lines, a matched pair of chemoresponsive and

chemoresistant lines from the same patient (PEO1, PEO4), and

newly derived low-passage non-clonal cultures isolated from the

malignant peritoneal effusions of 3 patients with high-grade serous

papillary adenocarcinoma of the ovary (HCC5012, HCC5019,

HCC5030, Table EV1). Each miRNA mimic was introduced into each

cell line using optimized transient transfection protocols (Fig EV1A,

Table EV1), and consequent effects on cell viability were measured

120 h later from biological triplicates. Standard deviation distribu-

tions indicated high reproducibility among biological triplicates

across the cell line panel (Fig EV1B, black curve), and high

phenotypic correlation among miRNA seed family members

(Fig EV1B, red curve) relative to the total phenotypic variation

(Fig EV1B, blue curve). Mean viability scores were normalized

against position and batch effects and converted to z-scores to facili-

tate inter-line comparisons (Ho et al, 2012; Ward et al, 2012; Singh

et al, 2013) (Dataset EV1). Affinity propagation clustering (APC)

(Frey & Dueck, 2007; Witkiewicz et al, 2015) was used to delineate

deterministic patterns of commonality among the miRNA mimic

phenotypes across the cell line panel (Fig EV1C and Dataset EV11)

and among the cell line responses to the miRNA mimic library

(Fig EV1D). At least 50 phenotypic miRNA clusters were recovered

which corresponded to five distinct cell line clusters (Fig EV1). APC

of available whole-genome transcript profiles (Barretina et al, 2012)

suggested at least 4 expression subtypes are present within the cell

panel (Fig EV1E). However, these clusters had unimpressive

correspondence to miRNA viability phenotype-based clusters

(Fig EV1F) indicating global gene expression phenotypes, consid-

ered as a whole, did not specify selective response to the miRNA

mimic library.

A total of 108 miRNA mimics, corresponding to 94 unique

mature microRNA sequences, reduced cell viability two standard

deviations below the mean (z-score ≤ �2) in at least one cell line

screened (Dataset EV1). Activity profiles, as visualized by two-way

unsupervised hierarchical clustering, indicated a wide variation of

selectivity patterns and potencies (Fig 1A). Of note, the most

common miRNA mimic phenotype was idiosyncratic activity

within the panel. About 80% of the miRNA mimics recovered in

the screen significantly reduced the viability of only 1 or 2 cell

lines, and no mimic reduced viability in more than 9 cell lines

(Fig 1B). We considered the possibility that the selective activity

profiles may be a consequence of fractional representation of

biologically relevant ovarian cancer subtype/miRNA relationships

within the test-bed, a consequence of artificial diversity from

clonal genetic divergence in vitro, or a combination of the two. To

help evaluate this, we first queried patient outcome data for the

presence of significant clinical correlations to miRNAs with selec-

tive activity against the most resistant (and therefore least prone

to noise from multiplicity of testing) cell line screened, SKOV3

(Fig EV2A). The expression of miRNAs corresponding to the top

5% of miRNA mimics with selective toxicity in SKOV3 (Dataset

EV1) was evaluated in tumors from two independent ovarian

cancer patient cohorts. We found that patients with higher expres-

sion of miR-146a and miR-505 have significantly increased overall

survival with median overall survival times of 17.1 months and

10.4 months, respectively (Figs 1C and EV2D and E). The selective

activity of miR-146a and miR-505 in SKOV3 was independent of

transfection efficiencies or endogenous miR expression (Fig EV2B

and C). Notably, recent studies indicate that both miR-146a and

miR-505 have antitumorigenic activities in cell models of breast

and lung cancer (Verduci et al, 2010; Yamamoto et al, 2011; Chen

et al, 2013a). Next, we focused on miRNA mimics that selectively

inhibited viability of the non-clonal short-term ascites-derived

cultures (HCC5030, HCC5012, HCC5019), which should be least

prone to in vitro genetic drift. We found significant enrichment

(P < 0.05 by hypergeometric density distribution) of the miRNAs

corresponding to these mimics among those miRNAs demonstrated

to be downregulated in human serous ovarian tumors (Iorio et al,

2007) (Fig 1D). The clinical correlations of idiosyncratic hits, with
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patient prognosis or molecular features from patient samples,

suggest they can reflect germane ovarian tumor biology.

miR-155 and miR-181b sensitivity is specified by intolerance to
epithelial/mesenchymal transition

To begin to define mechanisms underpinning selective sensitivity to

miRNA mimic exposure, we first focused on the patient-matched

PEO1 and PEO4 cell lines. Derived later in the patient’s treatment,

the PEO4 cell line is a model for recurrent, platinum-resistant EOC

(Fig EV3A). Cytogenetic analyses indicate these cell lines descended

from a common ancestor as opposed to arising through direct linear

descent (Wolf et al, 1987; Cooke et al, 2010; Stronach et al, 2011).

Thus, these two cell lines provide a unique opportunity to investi-

gate acquired vulnerabilities within a model of a single patient’s

recurrent disease. A scatter plot of the z-scores of each mimic from

the PEO1 and PEO4 viability screens revealed two remarkably

distinct tails of activity predominantly corresponding to miRNA-

induced inhibition of viability in only one line or the other

(Fig EV3B).

To examine whether differential miRNA mimic responsiveness

corresponded to differential expression of the corresponding

endogenous miRNAs, global miRNA expression in PEO1 and PEO4

was quantitated by Illumina array relative to that observed in non-

tumorigenic human ovarian surface epithelium (HOSE) cells (GEO

Reference GSE67329). miRNA toxicity was not solely a function of

its presence or absence in either cell line (Fig EV3C and D).

Although numerous significant differences in miRNA expression

between PEO1 and PEO4 were identified (Datasets EV2 and EV8),

there was no detectable correlation with selective miRNA mimic

viability phenotypes (Fig EV3E). This suggests that the specificity of

mimic toxicity was not defined by the relative presence or absence

of the corresponding endogenous miRNA. Gross miRNA mimic

dosage effects were also unlikely to account for specificity, as selec-

tive responses to miR-210 were preserved across a 10-fold dose

response curve (Fig EV3F).

These cumulative observations suggest that distinct miRNA

sensitivities are reflecting the presence of distinct acquired molecu-

lar vulnerabilities within the PEO1 and PEO4 regulatory frame-

works. To help define the nature of these vulnerabilities, we used

whole-exome hybridization-capture sequencing (70× average read

depth) to estimate cell line-specific somatic mutations and genomic

copy number variation together with RNAseq to quantitate relative

mRNA expression profiles (Fig EV4A, Datasets EV3, EV4, and EV5,

SRA Accession SRP065357). Due to the absence of patient-matched

constitutional DNA, we filtered single nucleotide variation (SNV)

calls through 16 normal human exomes to quell the detection of

common germline polymorphisms to some extent. Gene-level copy

number variation (CNV) was defined using exon read depth at

each locus relative to a non-tumorigenic reference cell line. While

clearly highly related at the genome level (437 shared SNVs and

2,817 shared focal copy number alterations), 879 cell line-specific

SNVs were detected (519 in PEO1 and 360 in PEO4) together with

extensive differences in copy number that closely correlated with

mRNA expression. We next used these molecular annotations to

help inform the biology underlying PEO4-specific miRNA vulnera-

bilities.

miR-155 and miR-181b mimics were the top-ranked reagents that

selectively reduced cell viability in PEO4 cells and were largely

innocuous when transfected into immortalized human hepatocytes

(IHH), HOSE cells, or human bronchial epithelial cells (HBECs)

(Fig 2A). Notably, miR-155 expression is decreased in both ovarian

tumors and ovarian cancer cell lines relative to normal tissues and

non-tumorigenic cell lines, respectively (Dahiya et al, 2008; Zhang

et al, 2008). The matching phenotypic profiles of miR-181b and

miR-155, together with their distinct mRNA targeting sequences,

afforded an opportunity to detect predicted targets enriched in over-

lapping cellular processes. Two independent computational tools,

miRPath v1.0 and miRSystem, which determine whether seed-

predicted targets of a given miRNA or group of miRNAs are enriched

for a particular biological process (using KEGG, Reactome, Biocarta,

Pathway Interaction DB), predicted that miR-155 and miR-181b both

target insulin signaling (Papadopoulos et al, 2009; Lu et al, 2012).

TargetScan (Lewis et al, 2003) predictions of miR-155- and miR-

181b-responsive mRNAs included multiple nodes in the AKT and

MAPK signaling pathways, both of which are engaged downstream

of insulin receptor activation (Fig EV5A). Cell line-specific somatic

mutations and copy number alterations predicted reduced AKT

pathway responsiveness in PEO4 relative to PEO1 (Fig EV5B). This

prediction was validated by examination of serum-induced accumu-

lation of AKT active site phosphorylation (Fig EV5C). Testing in

PEO1 cells revealed potent inhibition of AKT activation by these

miRNAs that was consistent with mRNA target predictions (Fig 2B).

However, direct chemical inhibition of AKT signaling was not suffi-

cient to recapitulate the specificity of mimic expression (Fig EV5D),

suggesting that additional activities of miR-155 and miR-181b contri-

bute to selective toxicity. On the other hand, when miR-155 and

miR-181b activity was examined in AKT-dependent breast cancer

lines, we found a strong correlation of selective sensitivity to these

miRs and previously published sensitivities to chemical inhibition of

AKT (Garnett et al, 2012) (Fig 2C). Thus, while AKT inhibition is

not sufficient to account for selective sensitivity of PEO4 cells to

miR-155 and miR-181b, these miRNA mimics can effectively target

AKT-addicted cancer cells.

▸Figure 1. Public and private miRNA vulnerabilities among ovarian cancer cell lines.

A Two-way unsupervised hierarchical cluster of z-score distributions by Euclidian distance. Any miRNA mimic with a z-score ≤ �2 in at least one cell line was included.
Seed sequences of each miRNA mimic are on the right. Bars correspond to arbitrary cluster boundaries. Seeds in red correspond to miRNAs with decreased expression
in serous, clear cell, or endometrioid ovarian cancer relative to normal tissue (Iorio et al, 2007).

B The histogram indicates the number of non-redundant hits binned according to the number of responsive cell lines.
C Expression of miRNAs miR-146a and miR-505 correlated with overall survival in ovarian cancer patients. The validation cohort (n = 150 samples) is shown. See

Fig EV1 for the training cohort.
D Intersection of miRNA sensitivities in the non-clonal short-term cultures and miRNAs with reduced expression in serous ovarian cancer (Iorio et al, 2007). P-value

from hypergeometric distribution.
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Both miR-155 and miR-181b have recently been identified as

effectors of TGFb induction of epithelial to mesenchymal transition

(EMT) downstream of SMAD transcription factor activity (Kong

et al, 2008; Cubillos-Ruiz et al, 2012; Johansson et al, 2013; Neel

& Lebrun, 2013). Examination of the cell biologic features of the

PEO1 and PEO4 cell lines revealed that PEO4 cells formed

E-cadherin positive intercellular junctions with a typical epithelial

morphology while the PEO1 cells did not. (Fig 2D). Additionally,

these discrete junctions were disrupted upon exposure to either

miR-155 or miR-181b (Fig 2D). In contrast, PEO1 cells exhibited

punctate perinuclear E-cadherin, reminiscent of a mesenchymal

phenotype, that was unperturbed by miR-155 or miR-181b

(Fig 2D). Taken together, these observations suggested that miR-

181b and miR-155 might disrupt epithelial organization, through

induction of a mesenchymal transition. Importantly, PEO4 cells

were selectively sensitive to the combinatorial effects of TGFb1
stimulation and AKT inhibition (Fig 2E), suggesting the response

to miR-155 and miR-181b can be recapitulated by inhibition of

AKT together with induction of mesenchymal transition programs.

To further investigate epithelial status as a potential feature speci-

fying cancer cell sensitivity to miR-155 and miR-181, we tested the

consequence of miR-155 and miR-181 transfection on cell viability

within a panel of 46 non-small cell lung carcinoma-derived cell

lines with molecularly defined epithelial and mesenchymal pheno-

types (Byers et al, 2013). Toxicity was selective within the panel

and the effects of the two miRs were strongly correlated (Fig 2F).

Notably, > 70% of the sensitive cell lines (defined by > 50% reduc-

tion in cell viability upon miR transfection) expressed epithelial

markers. These results, taken together with the observation that

non-tumorigenic epithelial cells are resistant to miR-155 and miR-

181b (Fig 2A), suggest that epithelial status within an oncogenic

regulatory framework is a discriminatory feature specifying sensi-

tivity to miR-155 and miR-181b and that induction of a mesenchy-

mal cell fate by these miRs leads to adverse consequences on cell

viability.

miR-517a targets a common vulnerability in EOC in vitro
and in vivo

miR-517a was one of a small cohort of miRNA mimics with activity

in the majority (53%) of the EOC cell panel that was also

innocuous in normal ovarian surface epithelial cells, hepatocytes,

and human bronchial epithelial cells (Fig 3A). Of note, native miR-

517a expression is restricted to the placenta by promoter methyla-

tion in other tissues (Yoshitomi et al, 2011; Morales-Prieto et al,

2012). Cancer cell sensitivity to miR-517a expression is not lineage

restricted as we also found a large cohort of responsive NSCLC cell

lines (Fig 3A). To validate the effects of miR-517a in SKOV3 cells,

we assessed the effects of in vivo miR-517a delivery in a nude

mouse xenograft model using a modified formulation developed for

in vivo siRNA delivery (Landen et al, 2005). Seven days following

intraperitoneal injection of SKOV3 cells, mice were randomly

divided and treated twice weekly with miRNA mimics incorporated

into DOPC nanoliposomes (i.p. administration) according to the

following treatment groups (n = 8/group): miR-NC (negative

control)/DOPC 400 lg/kg, miR-517a/DOPC 200 lg/kg and miR-

517a/DOPC 400 lg/kg. Following a 4-week treatment regimen,

mice were sacrificed and necropsied and tumors were harvested.

Treatment with miR-517a at either dose significantly reduced both

tumor weight and detectable tumor nodules relative to negative

control (Fig 3B and C).

To help identify functionally relevant targets of miR-517a, we

tested selective sensitivity to miR-517a within a panel of 12 NSCLC

cell lines (HBEC30, HCC4017, HCC44, H460, H2122, H2009, H1155,

H2073, H1395, H1993, HCC95, H1819, HCC366) for which whole-

genome siRNA-toxicity screen results were available from an inde-

pendent functional genomics effort. The miR-517a sensitivity profile

within this panel was then used to identify predicted miR-517a gene

targets with matching activity profiles in the siRNA screens. The

coatomer complex protein ARCN1 and the ubiquitin thioesterase

USP1 were identified in this way (Figs 3D and EV6A), both of which

are responsive to miR-517a-mediated suppression of expression in

ovarian cancer cell lines (Fig 3E and G). Sensitivity to ARCN1 deple-

tion in the EOC cell line panel also closely phenocopied sensitivity

to miR-517a; however, USP1 depletion was selectively toxic to PEO1

cells (Fig 3F). The selective responsiveness of PEO1 cells to USP1

depletion may be a consequence of selective coupling of USP1 to its

target protein ID1 and consequent induction of p21 in this back-

ground (Williams et al, 2011). These cumulative observations indi-

cate that limiting expression of ARCN1 is a common vulnerability in

both epithelial ovarian cancer and non-small cell lung cancer lines

that can be artificially perturbed by miR-517a (Fig EV6B).

▸Figure 2. Tumor cells with epithelial features are selectively sensitive to miR-155 and miR-181.

A The consequence of miR-155 and miR-181b mimics on cell viability, 5 days post-transfection, relative to a negative control miRNA mimic is shown across a panel of
normal and ovarian cancer cell lines as indicated. Each data point is the mean of n = 3/cell line. In the screen, miR-155 was found to reduce cell viability (z-score
< �2) in one cell line, and TCGA expression data revealed no significant change in expression of this miRNA in ovarian tumors. miR-181 was found to reduce viability
(z-score < �2) in 2 cell lines, and TCGA expression data revealed no significant change in expression of this miRNA in ovarian tumors. N, normal cell lines (IHH, HOSE,
HBEC3, HBEC13, HBEC30, and HBEC34); EOC, epithelial ovarian cancer cell lines. miR-155 data points for each cell line are shown in black, while miR-181b data points
are displayed in red.

B Immunoblots indicate suppression of serum-induced AKT phosphorylation at S473 and T308 in response to miR-155 and suppression of T308 phosphorylation in
response to miR-181b.

C miR-155 and miR-181b reduced cell viability in GDC0941-sensitive breast cancer cell lines. Error bars indicate mean � SD (n = 3).
D Differential localization of E-cadherin in PEO1 and PEO4 cells 48 h post-transfection with the indicated oligos. Cells were counterstained with phalloidin and DAPI.
E Stimulation of PEO4 cells with 10 ng/ml TGFb1 significantly sensitized the cells to AKT inhibition with AKT Inhibitor X. Each point represents the mean of 3

experiments � SD and * denotes P-value < 0.05 by Student’s t-test.
F Cell viability upon expression of miR-155 or miR-181a mimics in 41 NSCLC cell lines and 5 human bronchial epithelial cell lines. Each data point is the mean of

n = 3/cell line. R2 from Pearson correlation. P-value calculated from Student’s t-distribution.

Source data are available online for this figure.
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miR-124 targets SIX4 to release terminal cell
differentiation programs

Among the rare cohort of miRNA mimics that inhibited viability in

at least 30% of the EOC cell line panel, miR-124 was of particular

interest as it was uniformly toxic to all three short-term tumor

ascites cultures (HCC5012, HCC5019, and HCC5030, Fig 1A), inert

in ovarian surface epithelial cells and hepatocytes (Fig 4A), and is

under-represented on average 3.23-fold in serous ovarian tumors

relative to normal tissues (Iorio et al, 2007). To help identify the

mechanistic basis of ovarian cancer cell sensitivity to miR-124, we

first examined the effects of miR-124 on the genomic expression

profiles of PEO1 and PEO4 cells (GEO Reference GSE673297 and

GSE673298). These lines were chosen given their sensitivity to miR-

124 and their association with extensive molecular annotations

(Fig EV4A). Seventy-two hours post-transfection with the miR-124
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Figure 3. miR-517a attacks a common molecular vulnerability in ovarian cancer cells.

A Consequence of miR-517a on EOC cell viability and 41 NSCLC cell lines (as in Fig 2A). N, normal cell lines (IHH, HOSE, HBEC3, HBEC13, HBEC30, and HBEC34). miR-
517a was found to significantly reduce cell viability (z-score < �2) in 5 cell lines in the screen, and TCGA expression data revealed no significant change in
expression of this miRNA in ovarian tumors.

B, C In vivo delivery of neutral liposome-incorporated miR-517a mimic reduced tumor burden by weight (B) and nodule number (C) in an orthotopic xenograft model
using SKOV3 cells. Box-and-whisker plot of tumor weights (B) or tumor nodule number (C) from n = 8 mice per condition. **P-value from Student’s t-test. LD, low-
dose (200 lg/kg); HD, high-dose (400 lg/kg).

D Correlation of the consequence of ARCN1 depletion and miR-517a sensitivity in 12 NSCLC cell lines (plot as in Fig 2F). P-value calculated from Student’s t-distribution.
E Immunoblots indicate miR-517a-induced depletion of ARCN1 and USP1 in the indicated cell lines.
F Consequence of the indicated siRNAs and miR-517a on the viability of the indicated cell lines.
G Immunoblots indicate that miR-517a suppresses expression of ARCN1 in multiple miR-517a-sensitive cell lines.

Source data are available online for this figure.
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mimic, close to 3,000 genes were detected with altered expression

in PEO1 or PEO4 cells (Datasets EV6 and EV9). A major develop-

mental occupation of miR-124 is the promotion of a neuronal dif-

ferentiation program. The direct suppression of PTBP1 and CTDSP1

by miR-124 can be sufficient to induce the expression of neuronal

markers in diverse cell types (Makeyev et al, 2007; Visvanathan

et al, 2007). Consistent with this, we observed miR-124-dependent

suppression of PTBP1 and CTDSP1 in PEO1 and PEO4 cells with

concomitant induction of the neuronal proteins Tuj1 and MAP2

(Figs 4B and EV7A and B). Extensive evidence indicates that among

other described mechanisms of miRNA-mediated regulation (such

as inhibition of translation), the direct mRNA targets of miRNAs are

depleted upon engagement by a miRNA, with a median downregula-

tion of approximately 2-fold relative to control samples (Lim et al,

2005). Remarkably, of the 1,131 miR-124-responsive genes in PEO1

cells, 460 were predicted to be direct seed-driven targets (Lewis

et al, 2003). Furthermore, there was a strong correlation between

total context score (a numerical evaluator of the likelihood that a

predicted target is a bona fide target) and the probability of

decreased expression of a gene on the microarray. Expressed

predicted targets with context scores ≤ �0.2 had a 41% probability

of displaying a 2-fold decrease in expression in response to miR-124

(Fig 4C). These observations indicate that supraphysiological

concentrations of miRNAs have highly pleiotropic consequences on

cellular gene expression programs, and therefore likely influence

biological processes via highly combinatorial mechanisms.

Among the cohort of predicted miR-124 targets with the top

context scores and robust responsiveness to miR-124 was the home-

odomain transcription factor SIX4 together with the eyes absent

family (EYA) of SIX protein transcriptional coactivators (Ohto et al,

1999) (Fig EV7C). Of note, increased SIX4 expression has been

implicated in the suppression of tissue differentiation programs

(Yajima et al, 2010), and SIX4 is significantly overexpressed in ovar-

ian tumors relative to normal ovarian tissue (Fig EV7D). SIX4
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Source data are available online for this figure.
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B Consequence of SIX4 depletion on EOC cell viability (as in Fig 2A, N, normal cell lines: HOSE, HBEC30).
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Source data are available online for this figure.
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protein levels decreased upon miR-124 expression in multiple ovar-

ian cancer cell lines (Fig 5A), and siRNA-mediated SIX4 depletion

was selectively toxic within the EOC cell line panel (Figs 5B

and EV7E). Expression of a SIX4 gene lacking its 30-UTR, and thus

miR-124 target sites, partially abrogated miR-124-induced toxicity in

PEO1 cells (Fig EV7F). Tumor responsiveness to SIX4 depletion

in vivo was modeled using ES2 cell xenografts. Tumors were

allowed to form in the peritoneum over the course of 7 days before

delivery of DOPC neutral liposomes incorporating SIX4 siRNA

(N = 8 mice) or negative control siRNA (N = 7 mice). Following a

4-week treatment regimen, SIX4 siRNA-treated animals displayed

significantly decreased total tumor weight and concomitantly

reduced ascites (Fig 5C).

To help elaborate the mechanistic consequences of SIX4 inacti-

vation, we examined the effect of SIX4 depletion on PEO1 and

PEO4 genomic expression profiles (Datasets EV7 and EV10).

Reduced expression of multiple cyclins correlated with reduced

cell cycle progression and accumulation of cells in G1 (Fig EV7G

and H). In addition, we observed significant induction of STRADB

(Fig EV7I). STRADB stabilizes LKB1 to promote activation of

AMPK. One consequence of STRAD-induced AMPK signaling is

mesenchymal to epithelial transition accompanied by the forma-

tion of E-cadherin-positive adherens junctions (Zhang et al, 2006).

We observed a marked increase in E-cadherin-positive cell junc-

tions, 48 h post-SIX4 depletion in PEO1 cells, suggesting SIX4

depletion was sufficient to re-establish an epithelial phenotype in

these cells (Fig 5D). This was accompanied by LKB1 accumula-

tion, and AMPK pathway activation (Fig 5E). These observations

suggest that SIX4 expression in ovarian cancer cells both promotes

cell cycle progression and inhibits tumor-suppressive AMPK path-

way activity (Fig EV7J).

Discussion

Accumulating evidence indicates an association of loss of micro-

RNA biogenesis with the development of ovarian cancer. Here, we

have employed micro-RNA mimic toxicity screens to evaluate the

sensitivity of ovarian epithelial cancer cell lines to individual mature

miRNAs. A striking feature of the resulting toxicity profile was the

robust but idiosyncratic vulnerabilities displayed within the cell line

panel. Modeling of these idiosyncratic responses with patient data,

and in other tumor lineages, suggests they are reflective of fractional

representation of diverse phenotypes in EOC. This behavior is

consistent with a common sensitivity of EOC to miRNA production,

which, however, is driven by private miRNA species as a conse-

quence of the diverse molecular etiologies found in this disease.

Despite the preponderance of idiosyncratic activity, a small

cohort of commonly toxic mimics was identified. The mature

sequence from hsa-miR-517a inhibited viability in 53% of the EOC

lines tested and was innocuous in telomerase-immortalized ovarian

epithelial cells and hepatocytes. ARCN1 was identified as a miR-

517a target associated with miR-517a sensitivity. This protein is part

of the COPI complex, which otherwise supports retrograde trans-

port, acidification of autophagolysosomes, and is a CDC42 effector

required for CDC42 transformation (Wu et al, 2000; Razi et al,

2009; Huotari & Helenius, 2011). Notably, direct ARCN1 depletion

phenocopied the miR-517a toxicity profile in both ovarian and lung

cancer cell lines, suggesting ARCN1 function is limiting in a large

cohort of cancer cells and can be artificially targeted by miR-517a.

An additional common vulnerability was identified with miR-

124, a microRNA that has been extensively studied in relation to its

role in specification of neuronal cell fate. miR-124 expression is

under-represented in multiple tumor types as compared to corre-

sponding normal tissues, including serous ovarian adenocarcinoma.

We found that miR-124 has an extensive mRNA target space in

ovarian epithelial cancer cells; however, suppression of the home-

obox transcription factor SIX4 was sufficient to mimic the conse-

quences of miR-124 on ovarian cancer cell proliferation. SIX4 is

overexpressed in ovarian tumors relative to normal tissue and main-

tains cancer cell proliferation, at least in part, by supporting cyclin

gene expression and suppressing AMPK pathway activation. SIX4

depletion resulted in induction of cell differentiation programs

concomitant with terminal cell cycle arrest. Systemic delivery of

siRNA targeting SIX4 effectively inhibited xenograft tumor growth,

nominating SIX4 and/or SIX4 target genes as an ovarian cancer

intervention target.

Deleterious mobilization of cell differentiation programs was a

shared mechanism underpinning the antitumorigenic activity of

many of the miRs studied here. miR-155, miR-181, miR-517a, and

miR-124 have been implicated in the differentiation of hematopoi-

etic cells, adipocytes, osteoblasts, embryoid tissue, and neurons

(Chen et al, 2004, 2013b; Bhushan et al, 2013; Eguchi et al, 2013).

As a class, miRs are intimately associated with differentiation

programs, exhibit tissue-specific expression, and can be sufficient to

induce anomalous expression profiles in heterologous contexts that

are reminiscent of the miRNA’s tissue of origin (Lagos-Quintana

et al, 2002; Lim et al, 2005; Landgraf et al, 2007). Thus, the

common loss of miRNA expression and maturation in ovarian

cancer cells might serve to deflect anomalous engagement of cellular

differentiation programs in response to oncogene activation, offering

differentiation therapy for consideration as a potential treatment

modality for ovarian cancer. Though distinct from the solid tumor

context, perhaps the most well-known example of differentiation

therapy is the treatment of acute promyelocytic leukemias (APMLs)

with all trans-retinoic acid (ATRA). APML is associated with rela-

tively simple genetic background, where almost all patients share a

distinct chromosomal rearrangement that confers ATRA sensitivity

(Larson et al, 1984). The observations presented here suggest that

vulnerability to differentiation programs may also lie at the nexus of

the diverse oncogenotypes associated with EOC, and therapeutic

agents modeled on miR-155/181, miR-517a, and miR-124 may there-

fore offer intervention opportunities for large cohorts of the ovarian

cancer patient population.

Materials and Methods

Cell culture

PEO1 and PEO4 cells were generously provided by Hani Gabra

(University of Edinburgh Cancer Research Center). ES2 and

TOV112D cell lines were purchased from the ATCC. SKOV3, Hey,

OC316, OVCAR3, A2780, EFO21, EFO27, OAW42, and UPN251 cell

lines were generously provided by Dr. Robert Bast (MD Anderson

Cancer Center). IHH cells were generously provided by Dr. John
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Abrams (UT Southwestern). HOSE cells were generously provided

Dr. William Hahn (Dana Farber Cancer Institute, Harvard). PEO1,

PEO4, SKOV3, ES2, TOV112D, Hey, OC316, OVCAR3, A2780,

EFO21, EFO27, OAW42, and UPN251 cell lines were grown in RPMI

medium with L-glutamine and 25 mM HEPES (Gibco) supplemented

with 10% fetal bovine serum (Atlanta Biologicals) and 100 U/ml

penicillin and 100 lg/ml streptomycin (Gibco). HCC5012, HCC5030,

and HCC5019 were grown in ACL4 medium supplemented with 5%

fetal bovine serum (Atlanta Biologicals). HOSE cells were grown

in Keratinocyte Serum Free Medium with supplements (Gibco) and

100 U/ml penicillin and 100 lg/ml streptomycin (Gibco). IHH

cells were grown in DMEM medium (Gibco) supplemented with

10% fetal bovine serum (Atlanta Biologicals) and 100 U/ml

penicillin and 100 lg/ml streptomycin (Gibco). Upon receipt, the

identity of all cell lines was confirmed via short-tandem repeat DNA

fingerprinting that was then compared to a database of known

samples. Transfections were performed as described in the miRNA

mimic screens.

miRNA mimic screens and transfection

All cell lines were screened using a collection of miRNAs consisting

of the intersection of two Dharmacon miRIDIAN Mimic Libraries

inclusive of all miRNAs annotated in miRBase 8.0 and miRBase

10.1, respectively (www.mirbase.org). Screens were performed

similarly to those previously described with slight modifications

(Whitehurst et al, 2007; Ganesan et al, 2008). The transfection

conditions for each cell line were optimized by varying transfection

reagent and cell number plated while keeping the mass of RNA

transfected constant to ensure minimal transfection-related toxicity

and maximal transfection efficiency. Transfection-related toxicity

was assessed by transiently transfecting in a negative control

mimic and normalizing cell viability values to non-transfected

wells 120 h post-transfection using the same Cell Titer Glo

endpoint as the screen. Transfection efficiency and dynamic range

were assessed in a similar manner by transiently transfecting each

cell line with the pan-toxic siRNA siUBB and then using the Cell

Titer Glo endpoint assay 120 h post-transfection. 10 picomoles of

miRNA mimic per well were delivered in 30 ll serum free medium

to 96-well microtiter plates using a Biomek FX robotic liquid

handler (Beckman Coulter). A total of 9.8 ll of serum free medium

containing 0.2 ll of RNAiMAX transfection reagent was then added

to each well using a TiterTek multidrop (except for PEO4 where

0.2 ll of DharmaFECT 3 was used) followed by a 20- to 30-min

incubation at room temperature. Single-cell suspensions were then

delivered to each well using a TiterTek multidrop to a total volume

of 150 ll. The total number of cells per well varied according to

the optimal transfection conditions for each cell line as follows:

PEO1 (10,000), PEO4 (10,000), SKOV3 (5,000), A2780 (20,000),

OC316 (5,000), EFO21 (5,000), Hey (5,000), OVCAR3 (12,500),

IGROV1 (12,500), EFO27 (15,000), UPN251 (10,000), OAW42

(10,000), CAOV3 (5,000), HCC5012 (3,000), HCC5030 (5,000), and

HCC5019 (5,000). All cells were plated in the media in which they

were cultured as described above. Plates were then centrifuged at

500 rpm for 1 min and incubated in a 37°C/5% CO2 incubator.

Seventy-two hours after plating cells, 50 ll of fresh media was

added to each well using a TiterTek multidrop. About 120 h after

plating, 15 ll of CellTiter-Glo Reagent (Promega) was added to each

well and incubated per manufacturer’s protocol. Luminescence

values for each well were then recorded using an Envision

Plate Reader (Perkin Elmer). Each transfection was performed in

triplicate. Raw luminescence values for each well were normalized

to allow for comparisons from well to well and plate to plate. Each

well in a row was normalized to the median value for the row. The

z-score for each well was then derived using siMACRO macro for

Excel (Singh et al, 2013). Transfection of siRNAs was performed as

described above using 10 pmoles of a pooled siRNA instead of

miRNA mimic. HOSE and IHH transfection were performed as above

plating 10,000 cells per well and 2,000 cells per well, respectively.

miRNA mimic and siRNA oligo sequences can be found in

Table EV2.

To evaluate the capacity of ectopic miRNA target expression to

rescue miRNA mimic toxicity, the relevant oligo was transfected into

cells as described above. 24 h after mimic transfection, relevant

plasmids expressing miRNA target cDNA or an empty vector was

transfected into cells via PolyJet (Signagen). Twenty-four hours

later, fresh medium with 0.3 lg/ml puromycin was added to each

well. The experiment was terminated 120 h after the mimic transfec-

tion and cell viabilities were assessed using Cell Titer Glo as above.

Data processing

Clustering analysis was performed with the affinity propagation

clustering (APC) algorithm using the “apcluster” package in R. APC

is a deterministic clustering method which identifies the number of

clusters, and cluster “exemplars” (i.e., the cluster centroid or the

data point that is the best representative of all the other data points

within that cluster) entirely from the data (Frey & Dueck, 2007),

giving it an advantage over non-deterministic methods subject to a

biased randomized initialization step, such as Hierarchical Cluster-

ing, or methods in which the number of clusters has to be pre-

specified, such as k-means clustering.

Affinity propagation clustering performs clustering by passing

messages between the data points. It takes as input a square matrix

representing pairwise similarity measures between all data points

(either Euclidean distance or Pearson correlations). The algorithm

views each data point as a node in a network and is initialized by

connecting all the nodes together where edges between nodes are

proportional to Pearson correlations. The algorithm then iteratively

transmits messages along the edges, pruning edges with each itera-

tion, until a set of clusters and exemplars emerges.

Two real-valued messages are passed between nodes. The

“responsibility” message computes how well suited it is for point i

to choose point k as an exemplar, given all the other candidate

exemplars, k0, and is updated by:

rði; kÞ  sði; kÞ �maxk0 st k0 6¼kfaði; k0Þ þ sði;k0Þg

The availability message, a(i, k), computes how appropriate it is

for point i to select point k as an exemplar, taking into account all

the other points for which k is an exemplar, i0, and is given by:

aði;kÞ  min 0; rðk; kÞ þ
X

i0 st i0 62fi;kgmaxð0; rði0;kÞ
n o

In the above equation, a(i, k) is set to the self responsibility,

r(k, k), plus the sum of the positive responsibilities candidate
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k receives from other points. The entire sum is thresholded at 0,

and a negative availability indicates that it is inappropriate for

point i to choose point k as an exemplar and the tie is severed.

The self-availability, a(k, k), reflects the accumulated evidence

that point k is an exemplar and is updated with the following

rule, which reflects the evidence that k is an exemplar based on

the positive responsibilities sent to k from all points, and is

updated by:

aðk; kÞ  
X

i0sti0 62fi;kgmaxð0; rði0; kÞ

In the first iteration, all points are considered equally likely to be

candidate exemplars, and a(i, k) is set to 0 and s(i, k) is set to the

input similarity measure between points i and k. The above rules

are then iteratively updated until a clear, stable set of clusters and

exemplars emerges.

In our implementation of the algorithm, we first ran the algo-

rithm to identify an initial set of exemplars and clusters from the

data. The exemplars were then clustered together and this proce-

dure was repeated until no more clusters emerged to identify a hier-

archical structure of clusters. Networks were drawn with cytoscape

(Shannon et al, 2003).

RNASeq data for 7 cell lines collected from the CCLE (Barretina

et al, 2012) (http://www.broadinstitute.org/ccle) and 2 cell lines

from this study (Dataset EV5) were combined. The RNASeq data

was first filtered to contain only the top 20% of the most highly

variant genes (2,686 genes total). The cell lines were then clustered

using hierarchical APC clustering (described above) based on a

Euclidean distance metric.

The 400 microRNAs were clustered together based on their

z-scores across 16 cell lines using a Euclidean distance metric, and

the 16 cell lines were clustered together based on their z-scores

across 400 miRs using a Pearson correlation metric.

For each microRNA mimic, a standard deviation value was calcu-

lated for viability across the panel of cell lines. For all miRNAs in

the same seed family, a standard deviation value was calculated for

viability across the panel of 16 cell lines. Lastly, a within-replicate

standard deviation value was calculated. A kernel density estima-

tion was fit to each of the three standard deviation distributions and

plotted.

Identification of potentially active miR-517a targets was

achieved as follows. A total of 52 miR-517a target genes were

predicted by TargetScan 6.0 (www.targetscan.org). These predicted

targets were then filtered for activity (relative cell viability < 0.5,

N = 10) in a miR-517a-sensitive cell line, H2122, that had also

previously undergone a genomewide siRNA toxicity screen.

Toxicity in response to depletion of each of these 10 predicted

targets, with two independent siRNA pools, was then assessed for

correlation with toxicity upon transfection with miR-517a mimic in

a panel of 13 NSCLC lines. Only 2 predicted targets, USP1 and

ARCN1, demonstrated a positive correlation with miR-517a

(R2 > 0.35) using siRNA oligos from both Dharmacon and

Ambion.

Statistical analysis of data was performed using mainly nonpara-

metric tests. However, parametric tests (i.e. t-test) were used when

performed on data with a normal distribution. Standard deviation

from the mean was used to assess variance within a data set and to

ensure variance between data sets was similar.

Derivation of new cell lines

Because cell lines may lose phenotypic properties during long term

culture (Gillet et al, 2013), we derived new ovarian cell lines and

cryopreserved working stocks from them at early time points after

culture initiation (3–8 months). Malignant ascites fluid from

patients with untreated high-grade papillary ovarian carcinoma

were treated with hemolysis agents to remove red blood cells and

then enriched for tumor cells by a series of differential low speed

centrifugations and differential attachment to culture dishes, and

plated into culture flasks with ACL4 medium and 5% fetal bovine

serum. Cell lines were cryopreserved as soon as continuous growth

for 3–4 passages occurred. Cell lines were epithelial in morphology

and over 80% of the cells expressed epithelial cell adhesion mole-

cule (EPCAM) (van der Gun et al, 2010). Derivation of cell lines

was approved by the UT Southwestern IRB, and informed consent

was obtained from all individuals involved.

Antibodies and compounds

Antibodies were purchased from Cell Signaling (pAKT (T308)

#2965, pAKT (S473) #4060, panAKT #4691, pGSK3b (S9) #9327,

GSK3b #9315, p27 #3686, TSC2 #3635, pMEK (S217/221) #9121,

MEK1/2 #9122, ERK1/2 #9102, pERK (T202/Y204) #4370, SMAD4

#9515, pSMAD3 (S423/425) #9520, SMAD3 #9523, SMAD2 #5339,

USP1 #8033, p21 #2947, LKB1 #3050, pAMPK (T172) #2535, AMPK

#2532, pACC (S79) #3661, ACC #3676, Claudin-1 #4933, Vimentin

#5741), Sigma (b-actin #A1978), Millipore (pSMAD2 (S465/467)

#AB3849), Santa Cruz (ID1 #SC-488 and ID2 #SC-489), Novus (SIX4

#51804-M09 and ARCN1 #NBP1-32377), and Epitomics (MO25

#2027-1). HRP-conjugated secondary antibodies were purchased

from Jackson Immunolaboratories, and ECL reagents were

purchased from ThermoScientific. AKT Inhibitor X was purchased

from EMD Millipore (Cat #124039). LY2940092 was purchased from

Sigma (Cat #L9908). TGFb1 protein was purchased from Peprotech

(Cat #100-21).

Immunofluorescence

siRNAs and miRNAs were delivered by reverse transfection as

described above and seeded on coverslips. After 48 h, cells were

washed with PBS and fixed with 4% methanol-free formaldehyde

(Fisher). Cells were then permeabilized with 0.5% Triton X-100 in

PBS. Manufacturer’s protocols were then followed for blocking and

incubation with primary antibodies except all primary antibodies

were used at 1:100 dilution. Primary antibodies were purchased from

BD Biosciences (E-cadherin #610181) and Covance (Tuj1 #MMS-

435P and MAP2 #SMI-52R). Cells were then incubated with Alexa

488-conjugated secondary antibodies (Invitrogen) at 1:500 for 1 h at

room temperature. Coverslips were then stained with Texas Red-X

phalloidin per manufacturer’s protocol (Invitrogen #T7471). Cover-

slips were then mounted onto slides using Vectashield (Vector Labs)

mounting medium containing DAPI. Slides were imaged using the

Leica TCS SP5 confocal microscope (Leica Micro-systems, CMS

GMBH) with custom software (Leica Micro-systems LAS AF) using a

sequential 3-channel scan. All images were captured using the same

electronic settings. Images were then imported in ImageJ (http://

rsb.info.nih.gov) using the LOCI Bio-formats plug-in (University of
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Wisconsin, Madison). Tuj1 and MAP2 staining was imaged using a

Zeiss Axioplan 2E with a Hamamatsu monochrome digital camera.

OpenLab (Improvision) software was used for image acquisition on

the Zeiss microscope. All image processing was performed in ImageJ.

Animals, orthotopic in vivo model and tissue processing

Female athymic nude mice were purchased from the National

Cancer Institute, Frederick Cancer Research and Development

Center (Frederick, MD). These animals were cared for according to

the guidelines set forth by the American Association for Accredita-

tion of Laboratory Animal Care and the U.S. Public Health Service

policy on Human Care and Use of Laboratory Animals. All mouse

studies were approved and supervised by the M.D. Anderson Cancer

Center Institutional Animal Care and Use Committee. All animals

used were between 8 and 12 weeks of age at the time of injection. A

standard power calculation for detection of a 50% effect size was

used to determine sample size. For the miR-517a experiment,

SKOV3ip1 cells were trypsinized, washed, and resuspended in

Hanks’ balanced salt solution (Gibco, Carlsbad, CA) and injected

intraperitoneally into mice (SKOV3ip1: 1 × 106 cells/ animal). Simi-

larly, for the SIX4 siRNA experiment, ES2 cells (2.5 × 105 cells/

animal) were prepared and injected intraperitoneally. For both

experiments, 7 days after the tumor cell injection, mice were

randomly divided and treated with oligonucleotides incorporated in

neutral nanoliposomes (intraperitoneal [IP] administration). For the

miR-517a experiment, mice were randomized to the following three

groups (n = 10/group): negative control miRNA/DOPC or miR-

517a/DOPC at either 200 lg/kg or 400 lg/kg. For the SIX4 experi-

ment, mice were randomized to the following two groups (n = 10/

group): negative control siRNA or SIX4 siRNA. For both experi-

ments, twice weekly treatments continued for 4–5 weeks at which

point, all mice in the experiment were sacrificed and necropsied,

and tumors were harvested. Tumor weights, number, and location

of tumor nodules were recorded. Tumor tissue was either fixed in

formalin for paraffin embedding, frozen in optimal cutting tempera-

ture (OCT) media to prepare frozen slides, or snap-frozen for lysate

preparation. Researchers were not blinded to treatment group.

Liposomal preparation

miRNA for in vivo delivery was incorporated into DOPC as previ-

ously described (Landen et al, 2005). DOPC and miRNA were mixed

in the presence of excess tertiary butanol at a ratio of 1:10 (w/w)

miRNA/DOPC. Tween 20 was added to the mixture in a ratio of

1:19 Tween 20:miRNA/DOPC. The mixture was vortexed, frozen in

an acetone/dry ice bath, and lyophilized. Before in vivo administra-

tion, this preparation was hydrated with PBS at room temperature

at a concentration of 200 lg/kg per injection.

Exome sequencing

For each cell line, 5 lg of genomic DNA was isolated for

whole-exome capture sequencing. In brief, DNA was fragmented

(150–250 bp) and ligated to the paired-end adaptors. The adaptor-

ligated fragments were then amplified by PCR and purified.

Exon-containing fragments in these libraries were hybridized to the

SureSelect Human All Exon Kit from Agilent technologies. This kit

targets 165,637 exons (~18,003 genes), totaling approximately

38 Mb of genomic DNA. The hybridized fragments were then

captured using streptavidin-coated magnetic beads and amplified

and each sample was sequenced in the UT Southwestern Genomics

Core Facility in two lanes of an Illumina GAIIx using a standard

75-bp paired-end protocol. The image analysis and base calling were

performed using the Illumina pipeline with default settings. Prior to

analysis, duplicate reads (multiple fragments from the same ampli-

con), identified on the basis of having the same start position for

both end reads, were removed from the sequence analysis. For copy

number analysis, a total of 88 million read pairs (2 × 74 bp) for

PEO1 and 89 million read pairs for PEO4 passed QC, and 148 million

reads from each of the two lines were uniquely aligned to NCBI

human genome build 37 by Bowtie 0.12.5 (Langmead et al, 2009)

allowing up to 2 mismatches per read. Genomewide copy number

variation was analyzed for the pair of cell lines separately using

completely unrelated normal tissue data obtained by others with the

same exome capture kit as a reference for normalization.

RNA sequencing

RNA was isolated in triplicates from PE01 and PE04 cell lines using

the RNeasy Kit (Qiagen), and the quality of RNA was checked using

a Bioanalyser. From each sample, 5 lg of RNA was used to perform

RNA-Seq using the Illumina mRNA Sequencing Sample Preparation

Guide (Illumina, Cat # RS-930-1001). First poly-A containing mRNA

was purified using poly-T oligo-attached magnetic beads and then

fragmented using divalent cations under elevated temperatures.

Then, the first and second strand cDNA was synthesized using

random primers, end-repaired, adenylated, and ligated with paired-

end adapters. The products were then purified and enriched with

PCR to create the final cDNA library. The library from each sample

was sequenced in a single lane of an Illumina GAIIx using a stan-

dard 40-bp paired-end protocol. Reads were mapped to the UCSC

Homo sapiens reference genome hg19 and their relative expression

values were calculated in RPKM using CLC Biosystems Genomic

Workbench software.

Whole-genome expression microarrays

RNA was isolated from cells 72 h post-transfection using an RNeasy

kit (Qiagen). Illumina HumanWG-6 V4 BeadChip (Illumina, Inc.)

human whole-genome expression arrays, which contain 47,231

probes on each array, were used. Each RNA sample was amplified

by Ambion TotalPrep RNA amplification kit with biotin UTP (Enzo)

labeling, using 500 ng of total RNA. The Ambion Illumina RNA

amplification kit uses T7 oligo(dT) primer to generate single-

stranded cDNA followed by a second-strand synthesis to generate

double-stranded cDNA which is then column-purified. In vitro tran-

scription with T7 RNA polymerase generated biotin-labeled cRNA.

The cRNA was then column-purified, checked for size and yield

using the Bio-Rad Experion system, and then 1.5 lg of cRNA was

hybridized to each array using standard Illumina protocols with

streptavidin-Cy3 (Amersham) being used for detection. Slides were

scanned and fluorescence intensity captured using an Illumina

BeadStation. Expression values from were extracted using Bead-

Studio v3.3. The data were background subtracted and quantile-

normalized using the MBCB algorithm (Ding et al, 2008; Allen et al,
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2009; Xie et al, 2009). The labeling and hybridization of miRNA

was performed according to the miRNA Expression Profiling Assay

Guide from Illumina Inc. Briefly, 1 lg of total RNA was polyadeny-

lated. The RNA was then converted to cDNA with oligo-dT primers

and a universal PCR sequence. The cDNA was captured by using a

pool of oligonucleotides that have miRNA-specific sequences. The

captured cDNA containing miRNA sequences were amplified by

PCR. The strands that have complementary sequences to the probes

on the array were labeled with Cy3. A single-stranded PCR product

that is fluorescent-labeled was finally prepared and hybridized on

Illumina Universal-12 BeadChip Human MI v2 miRNA arrays. After

hybridization, the array slides were scanned on an Illumina Beadsta-

tion. Signal intensities of microarrays were summarized using

BeadStudio v3.3 (Illumina, Inc). Background subtraction and quan-

tile normalization were performed using the MBCB algorithm.

Clinical outcomes and associations

We downloaded and analyzed data publicly available from the

Cancer Genome Atlas Project (TCGA; http://tcga-data.nci.nih.gov/)

for patients with ovarian serous cystadenocarcinoma. Level 3 Illu-

minaHiSeq miRNASeq and Agilent MicroRNA microarray data were

used for miRNA expression. For miRNASeq data, we derived from

the “isoform_quantification” files containing the “reads_per_mil-

lion_miRNA_mapped” values for mature forms for each microRNA.

Survival analyses were performed in R (version 2.14.2), and the

statistical significance was defined as a P-value less than 0.05. The

Log-rank test was employed to determine the relationship between

expression and overall survival, and the Kaplan–Meier method was

used to generate survival curves. We randomly split the entire

population into training/validation cohorts (2/3, 1/3). For each

miRNA, we checked for a relation with the survival as follows. In

both cohorts, patients were divided into percentiles according to

the miRNA expression. Using the training set, we considered any

cutoff between the 25th and 75th percentile that significantly split

the samples and verified the statistical significance in the validation

set.

For SIX4 expression analysis, we used the gene expression data

run by UNC on Agilent Expression 244K microarrays measuring

17,814 genes. The data involve 598 samples, of which 36 samples

were run by one batch and the remaining 563 were run by the other

batch. We performed principal component analysis (PCA) on the

combined expression data and found no obvious batch effect. Of the

598 samples, 573 are primary solid tumors, 17 are recurrent solid

tumors and 8 are normal solid tissue samples. We extracted the

expression levels of SIX4 from all samples and generated a box plot.

The data processing and statistical analyses were performed in R

(R-Core-Team, 2012).

Cell cycle and growth assays

For evaluation of caspase 3/7 activation in cells, we transfected cells

as above except cells were plated in a total volume of 100 ll. After
48 h, cells were incubated with 50 ll of CaspaseGlo 3/7 reagent

(Promega) per manufacturer’s protocol. Luminescence values were

read on a PheraStar plate reader (BMG LabTech), and raw lumines-

cence values were normalized to a negative control siRNA contained

on each plate. BrdU incorporation assays were performed by

incubating cells with 10 lM BrdU for 4 h, 48 h after transfection as

described above. After incubation, cells were fixed with 3.7%

paraformaldehyde. DNA was denatured using 0.5 N HCl, and cells

were stained with anti-BrdU antibody conjugated to Alexa-488

(Invitrogen) per manufacturer’s instructions. Hoechst dye (Invitro-

gen) with then diluted in PBS per manufacturer’s protocol and

added to each well. Plates were read using a BD Pathway 855

microscope (BD Biosciences). Using AttoVision software (BD

Biosciences), cells were segmented and Hoechst-positive and FITC-

positive nuclei were automatically counted. Cutoffs to segregate

positive nuclei were empirically determined and constant for the

entire plate. DNA content analysis was performed 48 h after trans-

fection. Cells were stained with propidium iodide (PI) using a PI/

RNase Buffer (BD Biosciences) following manufacturer’s protocol.

Samples were run on a FACSCalibur flow cytometer and acquired

with CellQuest Pro (Becton Dickinson, San Jose, CA).

Samples were analyzed with FlowJo (Treestar). Gating was

performed to gate out dead cells and doublets and then Dean/Jet/

Fox modeling was applied.

Plasmids

pRK5-Myc-SIX4 contains the human SIX4 coding sequence (nu-

cleotides 1–2,283, from pANT7-SIX4-cGST (dnasu.org)) inserted in

the BamHI/XbaI sites of pRK5-Myc (Clontech). pRK5-Myc-ARCN1

contains the human ARCN1 coding sequence (nucleotides 1–1,536

plus “TACCAAGAAGAGGGAGC”, a 17 bp 30-UTR fragment immedi-

ately downstream the ARCN1 cDNA from MGC Human ARCN1

Sequence-verified cDNA (Thermoscientific)) inserted in the BamHI/

XbaI sites of pRK5-Myc (Clontech). The small 30-UTR fragment was

included to facilitate the PCR primer design and it does not contain

a miR-517a target site.

Quantitative PCR

Expression level of endogenous miRNA or those reversely trans-

fected as described above was analyzed as follows. Total RNA was

isolated with the TRIzol reagent according to the manufacturer’s

instructions (Life Technologies, Cat# 15596018) and transcribed into

complementary DNA (cDNA) with TaqMan microRNA Reverse

Transcription kit (Life Technologies, Cat# 4366596). Gene expres-

sion was quantified by TaqMan Gene Expression Master mix (Life

Technologies, Cat# 4369016) on a LightCycler 4800 RT–PCR System

(Roche Applied Science, Germany). Relative amounts of miRNA

between samples were calculated with the comparative CT method

with normalization to the RNU6B control CT value. TaqMan probes

used: hsa-miR-146a-5p (Life Technologies, Assay ID 000468, Cat#

4427975); has-miR-505-3p (Life Technologies, Assay ID 002089,

Cat# 4427975); and RNU6B (Life Technologies, Assay ID 001093,

Cat# 4427975).

Data availability

Primary data

In addition to the provided dataset files, source data in this study
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Expression Omnibus (GEO). Accession Number: GSE67330.

Exome sequencing data are available at the NCBI SRA Accession

number: SRP065357.

CCLE data: http://www.broadinstitute.org/ccle

Barretina J et al, The Cancer Cell Line Encyclopedia enables

predictive modeling of anticancer drug sensitivity. Nature 2012 Mar

29; 483(7391): 603–607.
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