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ABSTRACT

Motivation: Permutation tests have become a standard tool to
assess the statistical significance of an event under investigation.
The statistical significance, as expressed in a P-value, is calculated
as the fraction of permutation values that are at least as extreme
as the original statistic, which was derived from non-permuted
data. This empirical method directly couples both the minimal
obtainable P-value and the resolution of the P-value to the number of
permutations. Thereby, it imposes upon itself the need for a very large
number of permutations when small P-values are to be accurately
estimated. This is computationally expensive and often infeasible.
Results: A method of computing P-values based on tail
approximation is presented. The tail of the distribution of permutation
values is approximated by a generalized Pareto distribution. A good
fit and thus accurate P-value estimates can be obtained with a
drastically reduced number of permutations when compared with
the standard empirical way of computing P-values.
Availability: The Matlab code can be obtained from the
corresponding author on request.
Contact: tknijnenburg@systemsbiology.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Permutation tests (also called randomization tests) are non-
parametric procedures for determining statistical significance based
on rearrangements of the labels of a dataset (Edgington, 1980). A test
statistic, which is computed from the dataset, is compared with the
distribution of permutation values. These permutation values are
computed similarly to the test statistic, however, under a random
rearrangement (permutation) of the labels of the dataset.

Permutation tests have become a widely used technique in
bioinformatics. The non-parametric nature of these tests rationalizes
their usability and popularity, since in many bioinformatics
applications there is no solid evidence or sufficient data to assume
a particular model for the obtained measurements of the biological
events under investigation.

For example, Significance Analysis of Microarrays (SAM)
(Tusher et al., 2001) and Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005), which detect differentially expressed
genes and gene sets, respectively, are two well-known techniques
that use permutation tests to compute statistical significance. In these
approaches, the class labels of samples from which gene expression
measurements are taken, are randomly rearranged to obtain the
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permutation values. Besides randomization over the set of samples,
permutation tests have also been performed by randomizing over
the set of genes (Breitling et al., 2004; Smyth, 2004). In this case,
the labels are binary indicator variables that indicate whether a gene
belongs to a particular gene set or not. Efron and Tibshirani (2007)
suggested to employ both permutation types to test the significance
of gene sets. Other examples of permutation tests in bioinformatics
include, but are not limited to: QTL detection (Doerge and Churchill,
1996), allelic association analysis (Zhao et al., 2000) and modeling
ChIP sequencing (Zhang et al., 2008). In the latter case, each
permutation corresponds to the simulation of a complete ChIP-seq
experiment.

As in all statistical hypothesis tests, the significance of a
permutation test is represented by its P-value. The P-value is the
probability of obtaining a result at least as extreme as the test statistic
given that the null hypothesis is true. In permutations tests, the null
hypothesis is defined as: the labels assigning samples to classes
are interchangeable (Edgington, 1980). Significantly, low P-values
indicate that the labels are not interchangeable and that the original
label configuration is relevant with respect to the data. The P-value
is assessed by performing all possible permutations and computing
the fraction of permutation values that are at least as extreme as the
test statistic obtained from the unpermuted data.

However in practical situations, it is (by far) not feasible to
perform all possible permutations. For example, class labels that
represent two classes with 50 samples each can be permuted in(100

50
)∝1029 different ways. Therefore, the P-value is approximated

by computing a limited number of permutations, say N , and then
computing the fraction of the N permutation values that are at least
as extreme as the test statistic. Usually, a pseudocount is added to
avoid P-values of zero, which occur when the test statistic is never
surpassed by the permutation values. Theoretically, a P-value of zero
is not possible in the context of permutation tests: the minimum is
1/Nall, where Nall is the number of all possible permutations. This
is because one of the permuted label configurations is identical to
the original one, under which the test statistic is computed.

This empirical approximation of computing P-values has two
direct consequences. First, the resolution of obtainable P-values is
1/N . Second and more important, the smallest achievable P-value
is 1/N . This means that a very large number of permutations is
required to accurately estimate a small P-value. In general, >N
permutations are required to reliably estimate a P-value of 1/N .
(This is shown more extensively later in the manuscript.) Especially
in bioinformatics, it is crucial to be able to accurately determine
small P-values. This is due to typically huge numbers of objects
[e.g. all genes, gene sets or single nucleotide polymorphism (SNPs)]
that are simultaneously tested, which requires large multiple testing
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corrections to prevent large numbers of false positives. Clearly, other
significance scores that are based on the P-values, such as the false
discovery rate (FDR), will be meaningless when the P-values are
not estimated correctly.

In this work, we propose to estimate the small permutation
test P-values using extreme value theory (Gumbel, 1958). The
set of extreme (very large or very small) permutation values
that forms the tail of the distribution of permutation values is
modeled as a generalized Pareto distribution (GPD). Pickands
(1975) demonstrated that the GPD approximates the distribution
of the extreme values of a set of independent and identically
distributed (i.i.d). random variables, i.e. those values that exceed
a particular (high) threshold. Applications of the GPD to model
extreme values are traditionally found in climatology to model
extreme weather, such as floods, and in financial risk management
to model extreme losses and insurance claims. In our case, the GPD,
which is fitted on the extreme permutation values, is evaluated
at the value of the test statistic to estimate the P-value of the
permutation test. Both theoretical probability distributions as well
as gene expression datasets are employed to demonstrate that the
proposed tail approximation strategy leads to an accurate estimation
of the correct P-value using far fewer permutations compared with
the standard empirical approach.

2 METHODS

2.1 Problem definition
Given test statistic x0 and set X, which contains all possible permutation
values, x∗

1 ,x∗
2 ,...,x∗

Nall
, the permutation test P-value is defined as

Pperm =

Nall∑
n=1

I(x∗
n ≥x0)

Nall
(1)

where I(·) is the indicator function. The goal is to approximate Pperm using a
randomly sampled subset Y (Y ⊂X), which contains N permutation values,
y∗

1,y∗
2,...,y∗

N . Usually, N �Nall.
Note that the P-value calculation as described above corresponds to a

right-tailed test. The P-value approximations discussed in this section will
all correspond to a right-tailed test. Conversion to the left-tailed test and the
two-tailed test is in all cases straightforward.

2.2 Empirical cumulative distribution function
approximation

The standard approximation to Pperm is computed similarly to (1).
Commonly, it includes a pseudocount to avoid P-values of zero:

Pecdf =
1+

N∑
n=1

I(y∗
n ≥x0)

N
(2)

Essentially, this approach employs the permutation values in Y to build an
empirical cumulative distribution function (ECDF). The ECDF is a step
function that increases by 1/N at the value of each (ordered) permutation
value in Y . Pecdf is obtained as 1 minus the ECDF evaluated at x0 and
then adding the pseudocount of 1/N . Figure 1 illustrates the concept of the
ECDF by approximating an F distribution using a limited number of samples
randomly drawn from this distribution.

2.3 GPD approximation
The tail of the distribution of permutation values is modeled using the GPD.
The GPD has cumulative distribution function (CDF)

F(z)=
{

1−(1−kz/a)1/k, k �=0
1−e−z/a, k =0

(3)
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Fig. 1. ECDF approximation of an F distribution. (a) From the PDF of
the F distribution, 25 samples are randomly drawn. These samples represent
the permutation values. The theoretical P-value for test statistic x0 equals the
grey area, which is 0.047. (b) The theoretical CDF is approximated by the
ECDF, which is based on the 25 permutation values. Since two permutation
values exceed x0, Pecdf is (1+2)/25=0.12 (including the pseudocount).

and probability density function

f (z)=
{

a−1(1−kz/a)1/k−1, k �=0
a−1e−z/a, k =0

(4)

The range of z is 0≤z<∞ for k ≤0 and 0≤z≤a/k for k >0. The parameters
of the GPD are a, the scale parameter, and k, the shape parameter. For
the special values k =0 and 1, the GPD becomes the exponential and
uniform distribution, respectively. When k <0 the GPD becomes the Pareto
distribution, which has a long tail. The argument of the GPD, z, are the
exceedances. In our case, these are the permutation values in Y that exceed
threshold t, which then get subtracted by t to form the exceedances. Formally,
if the values in Y are ordered, such that y∗

1 ≥y∗
2 ≥···≥y∗

N , we have a set Z
of Nexc exceedances, z∗

1,z∗
2,...,z∗

Nexc
, where z∗

i =y∗
i − t,∀i :y∗

i > t.
Maximum likelihood (ML) estimation is employed to estimate a and k

given Z as explained in Hosking and Wallis (1987) and Grimshaw (1993).
For k <1/2, Smith (1984) showed that, under certain regularity conditions,
the ML estimators are asymptotically normal and asymptotically efficient.
In this case, the asymptotic variance of the ML estimators can be derived,
which can be used to compute confidence intervals for the estimates. When
1/2<k ≤1, Smith (1984) identified the problem as non-regular, which alters
the rate of convergence of the ML estimators and possibly their existence.
This situation, i.e. k >1/2, however, rarely occurs in statistical applications.
That notion is supported by this work, where no evidence for such cases
was found in the practical applications that we analyzed. For k >1, no ML
estimate exists.

Note that there exist other techniques to estimate the GPD parameters.
We employed ML estimation, since this is the most commonly used technique
and has overall good performance on reasonably large sample sizes as used in

i162



[10:03 15/5/2009 Bioinformatics-btp211.tex] Page: i163 i161–i168

Enhanced P-value estimation for permutation tests

5 10 15 20 25

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1
C

D
F

1−N
exc

/N

Theoretical CDF

Exceedances

GPD approximation

zn
*

5 10 15 20 25
10

−5

10
−4

10
−3

10
−2

P
-v

al
ue

P
f

Pecdf

Pgpd

(b)

(a)

x
0

x
0

Fig. 2. GPD tail approximation of an F distribution. (a) From the PDF of
the F distribution (Fig. 1), 5000 samples are drawn. Samples that exceed
five are defined as the exceedances and are modeled using a GPD. The
GPD approximation of the tail (scaled to the interval [(1−Nexc/N),1] is
depicted alongside the theoretical CDF. (b) The theoretical P-value, which
is derived from the CDF of the F distribution (Pf ) is compared with the ECDF
approximation (Pecdf) and the GPD approximation (Pgpd) for values of x0 > 5.

our application (Hosking and Wallis, 1987). The two other most widely used
techniques, i.e. ‘method of moments’ and ‘probability weighted moments’,
performed comparably with ML on the theoretical distributions and practical
applications. See Supplementary Material.

Figure 2a depicts the CDF of the GPD [F(z) in (3)] fitted to the tail of
the F distribution used in Figure 1. Here, the exceedances threshold was
set to five.

The permutation test P-value of the GPD approximation is computed as:

Pgpd = Nexc

N
(1−F(x0 −t)) (5)

The factor Nexc/N compensates for the fact that F(z) is estimated only on
the tail of the distribution of permutation values, which comprises a fraction
of Nexc/N values of the complete distribution.

Figure 2b depicts Pgpd for different values of test statistic x0. Also Pecdf is
depicted. The ECDF approximation is characterized by a step-wise function
that has a lower bound of 1/N (2×10−4 in this case).

2.3.1 Exceedances threshold There is a bias-variance trade-off in
selecting the exceedances threshold. If the threshold is set too low, the
distribution of exceedances may be outside of the domain of attraction of a
generalized extreme value distribution. In that case, the tail does not follow
a GPD. If the threshold is set too high, only few samples are available and
the GPD parameter estimates will be prone to high-standard errors.

Goodness-of-fit tests can be employed to assess whether the exceedances
follow a GPD. We use a goodness-of-fit test based on the Anderson–Darling
statistic as described in Choulakian and Stephens (2001). The null hypothesis

of this test is that the exceedances come from a GPD. Small P-values (of the
goodness-of-fit test) indicate that this is not the case.

We propose to use the 250 most extreme permutation values as
exceedances, i.e Nexc =250. We choose such a large number, because the
GPD tail approximation is frequently used for extrapolation, i.e. the test
statistic is much larger than the largest permutation value. (For example,
take x0 =25 in Figure 2, where the largest permutation value is about 17.) A
highly accurate estimate of the GPD parameters is required, because small
deviations of the parameters can have a huge effect in the case of large
extrapolation. If the 250 largest permutation values do not follow a GPD
according to the goodness-of-fit test (P≤0.05), the number of exceedances
is iteratively decreased by ten until a GPD good fit (i.e. P>0.05) is reached.
If a good fit is never reached, the GPD cannot be used. However, this situation
did not occur in any of the theoretical and practical cases described in this
article.

The exceedances threshold t is set to (y∗
Nexc

+y∗
Nexc+1

)/2 (assuming that the
values of Y are ordered from high to low as before). Thus, t is right between
the smallest permutation value that is part of the exceedances, y∗

Nexc
, and the

one that just falls outside of the tail of extreme permutation values, y∗
Nexc+1

.

2.4 Proposed algorithm
The GPD approximation can only be used when the test statistic is in the range
of the extreme permutation values or when it is even larger. For example,
when 50 out of the 100 permutation values exceed the test statistic, the test
statistic is not in the tail of the distribution of permutation values and the
GPD tail approximation is useless. Furthermore, in that case the standard
empirical method to compute the P-value is adequate. Therefore, we have
developed a criterion to decide when to employ P-value estimation using the
GPD tail approximation.

This criterion is based on the fact that the number of permutation values
that exceed the test statistic follows a binomial distribution. This is because
each generated permutation value can be seen as a Bernoulli trial with
probability Pperm of success, i.e. the permutation value being larger or equal
to the test statistic. Let M be the number of permutation values that exceed
the test statistic, i.e.

M =
N∑

n=1

I(y∗
n ≥x0) (6)

Note that [from (2)] M =NPecdf if we would exclude the pseudocount. Let
P′

ecdf be Pecdf excluding the pseudocount, i.e. P′
ecdf =M/N . According to the

central limit theorem, if M ≥10 one may rely on the normal approximation
to the binomial distribution:

M ∼N(NPperm,NPperm(1−Pperm)) (7)

Substituting Pperm by its estimate P′
ecdf gives us an estimate of the confidence

bounds on P′
ecdf:

P′
ecdf ∼N(P′

ecdf,P
′
ecdf(1−P′

ecdf)/N) (8)

This procedure of determining the confidence bounds on the P-value estimate
is identical to the one described in Nettleton and Doerge (2000). Note that
the pseudocount can be omitted, because P-values of zero can no longer
occur when M >0.

Since when M ≥10 we can reliably compute P′
ecdf and its confidence

bounds, we propose the following algorithm:

Algorithm 1

Given:
test statistic x0

N permutation values y∗
1,y∗

2,...,y∗
N

Compute M

if M ≥10
Compute P′

ecdf
else

Compute Pgpd

end
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3 RESULTS

3.1 Theoretical distributions
Seven different distributions functions, ranging from light-tailed
to heavy-tailed, were employed to test the GPD approximation.
See Table 1, where distribution functions are ordered from light-
tailed to heavy-tailed with the most light-tailed one on the left.
Permutation values are obtained by randomly drawing samples
from these distributions. The theoretical permutation test P-value
can be obtained by evaluating the CDF at the value of the test
statistic. Since an infinite number of samples can be generated from
a distribution function, this theoretical P-value = Pperm from (1) in
the limit case where Nall approaches infinity. For each distribution
function, we chose a set of eight test statistics such that Pperm

assumes the following set of values: 10−2, 10−3, 10−4, 10−5, 10−6,
10−9, 10−12 and 10−15. Using a range of different numbers of
permutations values, i.e. N =10,...,1 000 000, the P-value estimates
Pecdf and Pgpd were computed. This experiment was repeated 1000
times.

Note that Pgpd is computed according Algorithm 1, i.e. if M ≥ 10
we compute P′

ecdf in stead of Pgpd. This, however, almost never
occurs in the experiments presented in this section, since we
intentionally focus on the situations were the GPD approximation
can be useful. These are the situations, where the test statistic is
larger than (almost) all permutation values, i.e. M =0 or very small.

3.1.1 P-value estimates as a function of N Figure 3 displays a
typical result. The ECDF approximation converges to the correct
P-value linearly with the number of permutations, N . This behavior
can be attributed to the effect of the pseudocount of 1/N . In
general, when N <1/Pperm, Pecdf =1/N . If this pseudocount was
omitted Pecdf would be zero, until a sufficiently large number of
permutations was performed.

In contrast, the GPD approximation converges with far fewer
permutations. In Figure 3, a decent estimate of Pperm is obtained
with ≈104 permutation values (see also Table 1). However, when
N �1/Pperm, there is a lot of variability in Pgpd, illustrated by the
large range that the P-value estimate assumes in this case. This range
can even include P-value estimates of zero. This occurs when the

range of z of the estimated GPD [in (3)] is limited, i.e. k >0, and
the original statistic falls outside of this range, i.e. x0 −t >a/k.
A large variance in the P-value estimate (including P-values of
zero) for small N are more frequently observed for the light-tailed
distributions, where, indeed, k >0. See Supplementary Material,
which contains all figures (similar to Fig. 3) for the seven distribution
functions and the eight values of Pperm.

3.1.2 Number of permutations required for convergence Table 1
provides an overview of the number of permutations necessary
before convergence to a reasonable estimate. This number, Nc, is
computed for the different distribution functions and for different
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Fig. 3. Pecdf and Pgpd for an F distribution. Median and 10th, 25th, 75th and
90th percentile values are given for both P-value estimators as a function
of N . The median and percentile values are based on 1000 repeats. The
true P-value Pperm is represented by the black dashed line. The y-axis is
logarithmically scaled from 100 to 10−10; below 10−10, it is logarithmically
scaled from 10−10 to the lowest non-zero P-value found in this experiment
(i.e. 5.5×10−29). P-value estimates of zero are set to intersect with the
x-axis.

Table 1. Minimum number of permutations (Nc) required for convergence to the correct P-value

Distribution Poisson Normal χ2 Exponential F Log-normal Cauchy
Arguments λ=106 μ=0, σ =1 d1 =3 λ=1 d1 =5, d2 =10 μ=0, σ =2 t =0, s=1
Range of k [0.01, 0.23] [0.01, 0.23] [−0.06, 0.11] [−0.05, 0.10] [−0.27, −0.07] [−0.82, −0.36] [−1.12, −0.80]

Pperm = Pecdf 9.6×103 9×103 8.7×103 9.1×103 9.7×103 9.7×103 9.6×103

10−3 Pgpd 4.4×103 4.1×103 2.2×103 2×103 1.7×103 1.1×103 8.4×102

Pperm = Pecdf 3.5×104 3.6×104 3.5×104 3.5×104 3.5×104 3.6×104 3.61×04

10−4 Pgpd 2.2×104 2.3×104 5.8×103 8×103 5.4×103 3.3×103 1.1×103

Pperm = Pecdf 2.6×105 2.6×05 2.6×105 2.6×105 2.9×105 2.6×105 2.6×105

10−5 Pgpd 7.1×104 6.2×104 3.9×104 3×104 1.4×104 2.1×104 1.3×103

Pperm = Pecdf >106 >106 >106 >106 >106 >106 >106

10−6 Pgpd 5.4×105 5.6×105 1.7×105 2.3×105 1.4×105 3.3×104 1.5×103

Pperm = Pecdf >106 >106 >106 >106 >106 >106 >106

10−9 Pgpd >106 >106 >106 >106 >106 9.8×105 1.9×103

The top three rows of the table state the names of distribution functions, their arguments and their ranges of the estimated scale parameter k. Nc is given for both estimators (Pecdf
and Pgpd) for a range of different P-values Pperm.
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values of Pperm. Three criteria were jointly employed to assess
convergence:

•
∣∣∣log10

(
P50

est(N)
P50

est(Nc)

)∣∣∣≤0.1×
∣∣∣log10

(
P50

est(Nc)
)∣∣∣,∀N ≥Nc/10

• log10

(
P75

est(N)
)
≤0.9×log10

(
Pperm

)
,∀N ≥Nc

• log10

(
P25

est(N)
)
≥1.1×log10

(
Pperm

)
,∀N ≥Nc

where Pα
est(N) is the value of the α-th percentile of the estimated

P-value Pest (either Pecdf or Pgpd) after N permutations. The
first criterion ensures that the P-value estimate has converged, i.e
the median P-value estimate after Nc permutations varies <10%

(on a log10-scale) across the interval
[
Nc/10,106

]
; 106 being the

maximum number of permutations performed. The second and third
criteria ensure sufficient accuracy; the 25th–75th percentile values of
the P-value estimate deviate <10% from Pperm (on a log10-scale).
Nc is the minimum number of permutations at which these criteria
are met. (Note that these criteria are heuristics and other stopping
criteria could be employed.)

In all cases, tail estimation using the GPD requires fewer
permutations than the standard ECDF approach. For not too small
P-values, such as from 10−3 to 10−5, about 5 to 10 times fewer
permutations are necessary. For smaller P-values, the Pecdf did not
converge within the 106 permutations that were performed, but the
Nc values from the Pgpd that did converge, suggest that orders of
magnitude fewer permutations are sufficient for a reliable estimate.
In general, the GPD approximation usually requires fewer than
1/Pperm permutations, while estimation using the ECDF always
requires more than 1/Pperm permutations.

Further for the GPD approximation, we observe that the more
heavy-tailed distributions (smaller values of shape parameter k)
converge with fewer permutations than the light-tailed distributions.
This behavior is not observed for the ECDF approximation, where
Nc does not depend on the shape of the tail. Remarkably, the
most heavy-tailed distribution, the Cauchy distribution (identical to
the Student’s t-distribution with one degrees of freedom), requires
<2000 permutations for a correct and reliable estimate of a P-value
of 10−9.

3.2 Application to gene expression data
3.2.1 Differential gene expression Permutation tests are
frequently employed to detect the differential expression of genes
between two or more conditions or classes. In these applications,
a test statistic is compared with its permutation values, which
are obtained by computing the same statistic on permuted label
configurations.

SAM (Tusher et al., 2001) is the most commonly used tool
to incorporate this strategy. The test statistic used in SAM is a
regularized T -statistic, di, where i is the index of a gene. We will
compare di with its permutation values d∗

i1
,d∗

i1
,...,d∗

iN
to estimate

the permutation test P-values. (Note that the SAM procedure to
compute P-values and FDRs is slightly different, because test
statistics and corresponding permutation values of all genes are used
simultaneously.)

The gene expression data used in this experiment consisted of
170 microarrays of yeast chemostat cultivations (Knijnenburg et al.,
2009). The arrays were separated into two classes based on the
employed oxygen regime, i.e. in 80 of these arrays yeast was grown

aerobically; for the other 90 arrays yeast was grown anaerobically.
In this experiment, we focused on the 132 genes annotated with
MIPS (Mewes et al., 1997) function category ‘respiration’, since we
expected to find many differentially expressed genes in this group.

It is computationally infeasible to compute Pperm from (1), since

Nall =
(170

80
)∝1049. Therefore, we applied the following strategy to

approximate Pperm: for each gene, we generated permutation values
until M, the number of permutation values that exceeds the test
statistic, was >25. Then, using (8) we can reliably estimate Pperm.
For 69 of the 132 genes, M <25 even after >3 billion (N >3×109)
permutations. The other 63 genes, for which Pperm was reliably
estimated, were used in the rest of the experiment.

For different values of N , we computed Pecdf and Pgpd for the 63
genes. This experiment was repeated 200 times. Figure 4 visualizes
the results for N =105. As expected, the ECDF approximation
is adequate for genes with Pperm >10−4. However, for smaller
P-values, the estimate is way off and bounded by 1/N . The
GPD approximation provides a better approximation for the small
P-values. However, for P-values >10−6, the variance of the
estimate becomes quite large and frequently P-value estimates of
zero are encountered. This behavior was also observed with the
light-tailed theoretical distributions. Accordingly, the range of the
shape parameter k estimated on the permuted SAM statistics was
[0, 0.27], similar to range of the light-tailed distributions.

In a follow-up experiment, we aimed to transform the test statistic
and its permutation values, such that k <0, i.e. the tail becomes more
heavy. Basically, any strictly increasing (and thus order preserving)
function can be applied to the test statistic and its permutation
values without changing (the definition of) Pperm. Also, such a
transformation would not influence the computation of Pecdf. And,
if the tail of the transformed permutation values still follows a GPD,
which is tested using the goodness-of-fit test, they can be used to
estimate Pgpd.

We raised all test statistics and corresponding permutation
values to the power three, i.e. d′

i = (di)3,d′∗
in

= (d∗
in

)3 ∀i,n and
recomputed Pgpd. After the transformation, the estimated range of
the shape parameter k was [−0.6,0]. Furthermore, Pgpd based on
the transformed statistic proved to be a better estimate with much
less variance (Fig. 5). Now a reasonable estimate of P-values < 10−7

can be made using only 105 permutations.
More discussion about transforming the permutation values will

follow in Section 3.2.3.

3.2.2 Enrichment of gene sets Another popular application of the
permutation test on expression data is to uncover enriched gene
sets. These are a priori defined groups of genes, e.g. functionally
related genes, that show concordant differential expression across
the different conditions or classes of a microarray experiment. In
this case, the gene-set specific test statistic is compared with the
permutation values, which are obtained by permuting the class labels
and recomputing the statistic.

GSEA (Subramanian et al., 2005) is the most widely used method
that follows this approach. The GSEA statistic is a weighted version
of the Kolmogorov–Smirnov statistic, es, where s is the index of a
gene set. GSEAuses the empirical way of estimating the permutation
P-value based on es and its permutation values e∗

s1
,e∗

s1
,...,e∗

sN
.

In comparison with SAM, GSEA is computationally very
expensive, as it involves sorting all genes based on correlation with
the class labels and then computing a running sum statistic. For some
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Fig. 4. Pecdf and Pgpd based on the SAM statistic of different genes. The
median and 25th and 75th percentile values are given for both P-value
estimators with N =105. Each data point represents the P-value estimate
(including confidence bounds) of one gene. These are compared with the
true P-value Pperm. The y-axis is logarithmically scaled from 10−2 to 10−10;
below 10−10, it is logarithmically scaled from 10−10 to the lowest non-zero
P-value found in this experiment (i.e. 9×10−19). P-value estimates of zero
are set to intersect with the x-axis.
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Fig. 5. Similar to Figure 4, except a transformed statistic was used, i.e. the
original statistic and permutation values were raised to the power three.

bioinformatics applications, dynamic programming approaches can
be used to build a suitable null distribution based on the statistic
(Newberg and Lawrence, 2009). One such approach has been
developed for GSEA (Keller et al., 2007) in order to avoid the
expensive permutations. However, this method only applies to the
unweighted version of GSEA (Mootha et al., 2003), which is not
the default setting of the GSEA algorithm.

We applied (default) GSEA to the van de Vijver et al. (2002)
breast cancer dataset consisting of >24 000 gene expression
measurements of 295 patients, 180 with poor prognosis and 115
with good prognosis. All gene sets from gene ontology (GO)
(Ashburner et al., 2000) and kyoto encyclopedia of genes and
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Fig. 6. Comparison of Cecdf and Cgpd for different values of N . (a) Median,
25th and 75th percentile values for Cecdf and Cgpd for different numbers of
permutations N . Overlapping intervals are illustrated in magenta. (b) Stacked
bar graph indicating the number of times Cecdf was larger or smaller than (or
equal to) Cgpd out of the 100 repeats.

genomes (KEGG) (Kanehisa and Goto, 2000) containing >10 genes
were analyzed.

Pperm was computed similarly to the previous section, i.e. for
each gene set we generate permutation values until M becomes >25.
Since the GSEA statistic is so computationally expensive, not more
than 1 000 000 permutations (N =106) were performed. We found
89 gene sets for which M >25 within the 106 permutations and
which had a Pperm < 0.01.

In this experiment, we focused on a different aspect of the outcome
of the permutation test, namely the order of the gene sets based on the
estimated P-value. Often, researchers are interested in the top of the
list of significant genes, gene sets, SNPs, etc., more or less regardless
of the associated significance scores themselves. These objects will
then be analyzed or investigated in order of significance, starting
with the most significant. Here, we compare the correctly ordered
list of 89 gene sets based on Pperm with the ordered lists based on
Pgpd and Pecdf. Our measure of comparison is the Spearman rank
correlation. The Spearman correlation between the ordered list based
on Pperm and Pgpd is denoted by Cgpd; the Spearman correlation
between the ordered list based on Pperm and Pecdf is denoted by
Cecdf. The experiment was performed for different values of N
ranging from 102 to 105 and was repeated 100 times.

The results are visualized in Figure 6a. For values of N < 250
the GPD approximation performs worse than the standard empirical
approach. This could be expected, since for such small values of N,
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Table 2. The 25th and 75th percentile values of Nc and the corresponding P-value estimates (Pecdf and Pgpd) for five different genes

YHR011W YDR079W YJL045W YML125C YLR044C

Pperm 9.4×10−5 9.9×10−6 9.4×10−7 6.7×10−8 1.2×10−8

log10

(
Pperm

) −4.03 −5 −6.03 −7.17 −7.91
log10

(
Pecdf

)
[−4, −3.9] [−4.9, −4.6] NA NA NA

Nc
[
3.8×104, 8.5·104

] [
1.5×105, 4.8 ·105

]
>106 >106 >106

Z = log10

(
Pgpd

)
[−4.3, −3.9] [−5.4, −4.9] [−6.6, −6.1] [−7.2, −6.9] [−7.5, −7]

1 Nc
[
6×103, 1.4×104

] [
2.9×104, 7.6 ·104

] [
1.4×105, 5.1 ·105

] [
4.4×105, 7.6 ·105

] [
4.2×105, 8×105

]
Z = log10

(
Pgpd

)
[−4.2, −3.9] [−5.3, −4.8] [−6.5, −5.9] [−7.4, −6.6] [−7.7, −7.2]

3 Nc
[
3.5×103, 1.2×104

] [
9.8×103, 8.8×104

] [
105, 3×105

] [
1.6×105, 6.3×105

] [
4.1×105, 7.3×105

]
Z = log10

(
Pgpd

)
[−4.2, −3.8] [−5, −4.7] [−6.3, −5.5] [−7.5, −6.4] [−7.4, −6.9]

5 Nc
[
3.7×103, 1.7×104

] [
1.5×104, 4.7×104

] [
4.8×104, 1.6×105

] [
7.1×104, 4.5×105

] [
1.4×105, 4.1×105

]

The power Z to which the original statistic and its permutation values were raised before GPD approximation is indicated on the left side of the table.

there are too few samples to accurately estimate the tail and
extrapolate this to the correct P-value. However, for larger values
of N , the list ordered based on Pgpd leads to a higher correlation with
the optimal ordering compared with the list ordered based on Pecdf.
When N = 1000 (the standard number of permutations in GSEA),
the Spearman correlation Cgpd is significantly >Cecdf.

The difference between Cgpd and Cecdf becomes more obvious in
Figure 6b. For each of the 100 repeats, we counted how many times
the one correlation was higher than the other. When N =1000, for
almost all of the 100 trials, the GPD approximation led to a higher
correlation, and thus to a more correctly ordered list compared with
the list based on the empirical approach, which was computed on the
same permutation values. When N increases, the difference between
Cecdf and Cgpd diminishes and in many cases they lead to identically
ordered lists. This can be attributed to the fact that amongst the
89 genes, only few have a Pperm < 10−4 and none is <2.5×10−5

(25/106). Consequently, Pecdf becomes a good approximation of
Pperm when N approaches 105.

3.2.3 Choosing N In practical applications, Pperm is not known
and no repeats are performed, i.e. only one set of permutation values
is generated for a test statistic. The convergence criteria developed
in Section 3.1.2 to decide when enough permutations have been
performed can be slightly altered to suit practical applications:

•
∣∣∣log10

(
Pest(N)
Pest(Nc)

)∣∣∣≤0.1×∣∣log10
(
Pest(Nc)

)∣∣,∀N :Nc/10≤N

≤Nc

• log10

(
P75

est(Nc)
)
≤0.9×log10

(
Pest(Nc)

)

• log10

(
P25

est(Nc)
)
≥1.1×log10

(
Pest(Nc)

)
where Pest(N) is the estimated P-value (either Pecdf or Pgpd) after
N permutations, and Pα

est(N) is the α% confidence bound on the
estimated P-value. Nc is the minimum amount of permutations at
which these criteria are met. For Pecdf it is not possible to compute
confidence bounds. In that case, only the first criterion applies.

Pecdf and Pgpd estimates (including confidence bounds) were
computed for the 63 genes of Section 3.2.1 based on their
SAM statistic and corresponding permutation values. The number
of permutations was increased until the convergence criteria
were met or when the maximum number of permutations (N =
106) was reached. This experiment was repeated 25 times.

Table 2 displays the results for the five genes, for which Pperm was
the closest to 10−4, 10−5, 10−6, 10−7 and 10−8, respectively. These
genes were chosen to present results for a large range of different
Pperm values.

From the table, it is clear that fewer permutations are necessary
to reach an accurate P-value estimate when employing the GPD
approximation compared with the standard empirical approach. For
the first two genes ∼ 5–10 times fewer permutations are necessary.
For the last three genes, convergence was not reached with the
empirical approach within 106 permutations. However, based on
the Nc values from the Pgpd estimates that did converge, we can
infer that orders of magnitude fewer permutations are sufficient for
a reliable estimate for these smaller P-values.

Additionally, we observed that the behavior of the confidence
bounds on an individual Pgpd estimate (based on one set of
permutation values) is comparable with the behavior of the
confidence bounds (percentile values) based on many Pgpd
estimates. That is, when too few permutations have been performed
for an accurate estimate, Pgpd will tend to have large confidence
bounds, and thus much uncertainty in the estimate.

With the convergence criteria, it is possible to analyze the
effect of order-retaining transformations on the test statistic and its
permutation values. From both the theoretical distributions and the
application on gene expression data, we observed that the shape of
the tail of permutation values influences the GPD estimation process.
That is, for light-tailed distributions (k >0), where the GPD has a
finite range, the estimate appears unstable and less accurate. Small
changes in k have a huge effect on Pgpd. Especially, in the case of
large extrapolation, i.e. N �1/Pperm, there is a large variance (or
large confidence bounds) on the estimator and frequently P-value
estimates of zero are encountered.

Order-retaining transformations can be applied to change the
shape of the tail of the distribution of permutation values. While
such a transformation does not affect Pperm and the computation
of Pecdf, it might provide a more robust and accurate estimate (and
prevents P-values of zero) for the GPD approximation. We applied
power transformations to the SAM statistic in order to reduce k.
The SAM statistic, which can assume both positive and negative
values, was raised to the power Z =1 (no transformation), 3 and 5.
The ranges of k for Z =1, 3 and 5 are [0, 0.27], [−0.6, 0] and
[−1.6, −0.2], respectively. Table 2 also displays the results for Z =3
and 5.
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Although the transformation is not necessary to outperform the
ECDF approximation, it does lead to convergence with even fewer
permutations. This gain in improvement does not continue for larger
values of Z (not in the table), where Nc starts to increase again. From
this analysis, we can conclude that a transformation can be useful
when the shape of the tail of the distribution of permutation values is
transformed from light-tailed (k >0) to heavy-tailed (k <0), where
our estimator has more stable and accurate performance.

4 DISCUSSION
The non-parametric nature of the permutation test rationalizes its
usability and popularity in bioinformatics applications: in most
cases, there is neither solid reason nor sufficient evidence to assume
a particular model for the obtained measurements of the biological
events under investigation. The standard empirical method of
computing the permutation test P-value is hampered by the fact
that a huge number of permutations is required to correctly estimate
small (and therefore interesting) P-values. In fact, the number of
necessary permutations is always larger than the inverse of the actual
P-value. In this work, we devised a P-value estimation scheme
based on extreme value theory that uses tail approximation of the
extreme permutation values. The resulting estimator requires far
fewer permutations to accurately estimate small P-values.

Permutation tests are commonly performed in batches for large
numbers of different test statistics, e.g. for all genes or all gene sets.
In these permutation schemes, the same number of permutations is
performed for each test statistic. This number is usually selected
a priori (possibly based on an estimate of computational time or
complexity). Such an approach can be highly inefficient, since
different test statistics require different numbers of permutations.
For example, if 600 of the 1000 permutation values exceed the
test statistic, another 1000 permutations are not necessary, since
the P-value can already be determined with great accuracy [P=
0.6±0.016 according to (8)]. However, if only one permutation
value exceeds the test statistic, more permutations are necessary to
accurately determine the corresponding P-value. In this work, we
have shown that simple convergence criteria and confidence bounds
on the estimate can be used to indicate when enough permutations
have been performed to have certain statistical confidence in
the P-value estimate. In most applications, only a small fraction
of the test statistics will be significant, i.e. they will require
a lot of permutations to reliably estimate their small P-values.
The large majority of test statistics will require only a small
number of permutations to reliably compute their large (and hence,
insignificant) P-values. Such an approach can lead to a decrease in
the total number of permutations, and thus computational time (or at
least to a more sensible division of the total number of permutations),
while producing more accurate P-value estimates.

In future research, we will more elaborately explore the
relationship between the shape of the tail of extreme permutation
values and the accuracy of the estimator. This will include
investigating the possible role that transformations of the test statistic
and its permutation values could play.

A web interface for the proposed permutation test P-value
estimation technique is under development.

ACKNOWLEDGEMENTS
T.A.K. would like to thank Miranda Mandjes - van Uitert for helpful
discussions.

Funding: National Institutes of Health (grants GM072855 to T.A.K.
and I.S. and P50 GM076547 to I.S.).

Conflict on Interest: none declared.

REFERENCES
Ashburner,M. et al. (2000) Gene ontology: tool for the unification of biology. The Gene

Ontology Consortium. Nat. Genet., 25, 25–29.
Breitling,R. et al. (2004) Iterative Group Analysis (iga): a simple tool to

enhance sensitivity and facilitate interpretation of microarray experiments. BMC
Bioinformatics, 5, 34.

Choulakian,V. and Stephens,M.A. (2001) Goodness-of-fit tests for the generalized
pareto distribution. Technometrics, 43, 478–484.

Doerge,R.W. and Churchill,G.A. (1996) Permutation tests for multiple loci affecting a
quantitative character. Genetics, 142, 285–294.

Edgington,E. (1980) Randomization Tests. Marcel Dekker, Inc.
Efron,B. and Tibshirani,R. (2007) On testing the significance of sets of genes. Ann. Appl.

Stat., 1, 107–129.
Grimshaw,S. (1993) Computing maximum likelihood estimates for the generalized

pareto distribution. Technometrics, 35, 185–191.
Gumbel,E.J. (1958) Statistics of extremes. Columbia University Press, New York.
Hosking,J.R.M. and Wallis,J.R. (1987) Parameter and quantile estimation for the

generalized pareto distribution. Technometrics, 29, 339–349.
Kanehisa,M. and Goto,S. (2000) Kegg: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res., 28, 27–30.
Keller,A. et al. (2007) Computation of significance scores of unweighted gene set

enrichment analyses. BMC Bioinformatics, 8, 290.
Knijnenburg,T. et al. (2009) Combinatorial effects of environmental parameters on

transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of
a compendium of chemostat-based transcriptome data. BMC Genomics, 10, [Epub
ahead of print, 10.1186/1471-2164-10-53]

Mewes,H.W. et al. (1997) Mips: a database for protein sequences, homology data and
yeast genome information. Nucleic Acids Res., 25, 28–30.

Mootha,V.K. et al. (2003) Pgc-1alpha-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.,
34, 267–273.

Nettleton,D. and Doerge,R.W. (2000) Accounting for variability in the use of
permutation testing to detect quantitative trait loci. Biometrics, 56, 52–58.

Newberg,L.A. and Lawrence,C.E. (2009) Exact calculation of distributions on integers,
with application to sequence alignment. J. Comput. Biol., 16, 1–18.

Pickands,J. (1975) Statistical inference using extreme order statistics. Ann. Stat., 3,
119–131.

Smith,R. (1984) Threshold methods for sample extremes. In Tiago de Oliveira,J.
(ed.) Statistical Extremes and Application. D. Reidel, Dordrecht, The Netherlands,
pp. 6211–6638.

Smyth,G.K. (2004) Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat. Appl. Genet Mol. Biol., 3, 1–27.

Subramanian,A. et al. (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.
USA, 102, 15545–15550.

Tusher,V.G. et al. (2001) Significance analysis of microarrays applied to the ionizing
radiation response. Proc. Natl Acad. Sci. USA, 98, 5116–5121.

van de Vijver,M.J. et al. (2002) A gene-expression signature as a predictor of survival
in breast cancer. N. Engl. J. Med., 347, 1999–2009.

Zhang,Z.D. et al. (2008) Modeling chip sequencing in silico with applications. PLoS
Comput. Biol., 4, e1000158.

Zhao,J.H. et al. (2000) Model-free analysis and permutation tests for allelic associations.
Hum. Hered., 50, 133–139.

i168


