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Abstract: Ankylosing spondylitis (AS) is a complex disease characterized by inflammation

and ankylosis primarily at the cartilage–bone interface. The disease is more common in

young males and risk factors include both genetic and environmental. While the pathogenesis

of AS is not completely understood, it is thought to be an immune-mediated disease

involving inflammatory cellular infiltrates, and human leukocyte antigen-B27. Currently,

there is no specific diagnostic technique available for this disease; therefore conventional

diagnostic approaches such as clinical symptoms, laboratory tests and imaging techniques are

used. There are various review papers that have been published on conventional treatment

approaches, and in this review work, we focus on the more promising nanomedicine-based

treatment modalities to move this field forward.
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Introduction
Ankylosing spondylitis (AS) is a type of chronic arthritis characterized by inflamma-

tion of bone, the cartilage–bone interface as well as the entheses.1 Axial skeletons are

mainly affected with time via chronic inflammation developed in the spine. Likewise,

sacroiliac joints are also affected. Ultimately extra bone is formed in the spine that

causes fusion of vertebrae.2 The disease’s most prominent onset starts from the age of

20–30 and is most prominent in males;3 men and women are affected approximately

at a ratio of 3:1.4 In about 80% of patients, the first symptom develops at the age of

30 while <5% of patients are affected at the age of >45.5

Although the etiology of AS is unknown, it is thought to arise from a combination

of genetic6,7 and environmental8,9 factors. More than 90% of AS patients are believed

to be affected by the specific human leukocyte antigen (HLA), mediated by an

autologous peptide B27 molecule known as HLA-B27.10 In general, very few (about

2%) are afflicted, unless there is a family history of AS, in which case, the rate of

incidence is higher.11 Similarly, another genetic factor ERAP1 (endoplasmic reticulum

aminopeptidase 1) has been shown to play an active role in the pathogenesis of AS.

ERAP1 is considered to participate in the peptide trimming required for presentation by

the major histocompatibility complex (MHC) class 1, which further stabilizes and

precipitates HLA-B27.7 Another causative factor is the environment and this factor

may link with infection and mechanical stress in cervical bones and ligaments.

Several research groups have suggested that the bacteriaKlebsiella pneumoniamay

be a triggering factor for the onset of AS.8 The bacteria reside mainly in the colon, and
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develop immune responses without overt gastrointestinal

(GI) infections. There have been four studies exclusively

completed in which researchers have directly correlated

Klebsiella in the feces of AS patients.12–15 The results from

these studies demonstrated an increase in gut permeability as

well as gut inflammation in AS patients,16,17 which clearly

show the role of Klebsiella AS.

Mechanical stress is another environmental factor

which causes entheses damage to the ligaments. This

repeated damage and repair from stress activated down-

stream regulates inflammation and causes bone erosion

leading to spur formation.18 Clinical symptoms of this

disease encompass back pain, enthesitis, asymmetrical

peripheral oligoarthritis as well as chronic inflammatory

bowel disease (IBD).19,20 AS is diagnosed based on clin-

ical features, a pathological test, and imaging techniques

such as X-ray and magnetic resonance imaging (MRI).

Management of this chronic disease includes combina-

tional approaches of clinical treatment and physiotherapy,

besides these, some anti-tumor necrosis factor (TNF) agents

are also used.21 Despite advancements in the diagnosis and

management techniques of this disease, improvements are

required because these medical drugs have a high level of

deleterious or even lethal side effects22 due to a lack of speci-

ficity and are expensive.23

Various literature reviews have been published based

on AS pathogenesis, clinical symptoms, diagnosis, and

conventional treatment, but until now, no information has

been published concerning nanotechnology-based treat-

ment. Therefore, for the first time, this review is compiled

to provide brief information about the pathogenesis and

diagnosis as well as provides detailed information about

the possibility of nanotechnology-based treatments.

Pathogenesis
There are mainly two factors (i.e., genetic and environ-

mental) involved in the pathogenesis of AS as described

below.

Genetic factors
It has been reported that genetic factors play a major role

(about 90%) in the precipitation of AS.24 There have been

extensive studies completed to support gene associated

AS. For example, a protein called HLA-B27 belongs to

the class-1 surface antigens present on the interface of

“MHC” antigenic peptides of T-cells and is strongly

involved in the pathogenesis of AS.25 The exact role of

HLA-B27 in the pathogenesis of AS is still under intense

study but it is predicted that HLA-B27 binds with peptides

present on MHC and is recognized by CD8+ T-cells which

further influence the development of AS.26 There have

been various hypotheses presented by scientists regarding

the pathogenesis of AS with one very prominent hypoth-

esis being the precipitation of unconventional forms of

HLA-B27 as free heavy chains (FHCs).27 The endoplas-

mic reticulum (ER) is the main reservoir for FHCs which

triggers the unfolded protein response (UPR) and further

increases the production of various cellular infiltrates,

especially IL-23, which plays a major role in AS

pathogenesis.28

Another hypothesis postulated toward the pathogenesis

of AS is the regulation of the endoplasm reticulum-asso-

ciated protein degradation (ERAD) process to activate ER

stress and UPR. Downregulation of ER degradation

enhances α-mannosidase-like protein 1 (EDEM1) and the

ERAD-related molecule, leading to increases in the num-

ber of HLA-B27 dimers which results in the pathogenesis

of AS.29 Interestingly, HLA-B27 FHC dimers, located on

the surface of antigen-presenting cells get stimulated by

non-classical HLA-B27 molecules, positive to the IL-23

receptor which carries the killer cell immunoglobulin-like

receptor (KIR) 3DL2 to produce IL-17.30 Activated

KIR3DL2-expressing CD4+T cells interact with HLA-

B27 dimers to promote the expression of a T helper 17

(TH17)-cell-specific transcription factor RORγt and anti-

apoptotic factor B-cell lymphoma 2 (BCL-2).31 Hence,

activation of KIR downregulates apoptosis of activated

TH17 cells in AS.

There are various genes in the M1 family of zinc

metallopeptidases which are considered to participate in

the aggravation of AS,32 and these genes participate in the

trimming of peptide length required by HLA molecules for

protein synthesis.33,34 These genes reduce peptide clea-

vage time and lead to increases in the availability of

antigenic peptides which are denatured by the aminopep-

tidase (AP) enzyme which further affect HLA antigen

function in the regulation of HLA-B27 FHC and TH17

cell activation mediated by KIRs.35 The direct role of the

M1 family of genes is not clear, but it was noted that these

genes reduce the stability of HLA-B27.36

IL-17 has played a significant role in the pathogenesis

of AS, as high levels of this cytokine have been extracted

in the serum, synovial fluid, and joints in AS patients.37,38

For example, Gracey et al found increases in IL-17 levels

in male patients with AS. Gracey et al conducted a sex-

based genetic expression study in 94 AS patients (Table 1)
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to correlate the potential cytokine IL-17 and found male

patients express IL-17 more than female patients

(Figure 1).39

Innate immunity is considered to be a primary self-

protection system of the body which provides a shield for

any foreign intruders in our body. This innate immunity

system encompasses various kinds of cells, such as macro-

phages, dendritic cells (DCs), natural killer cells, and mast

cells, which can recognize invaded antigens.40 Although it

was mentioned above that the HLA-B27 gene is the major

genetic component involved in the propagation of this

disease from one generation to another, from the above

trial, it can be noticed that there are also some other non-

HLA-B27 factors which can aggravate the disease

condition.41 The innate immune system is governed by

various effector proteins called cytokines such as IL-1,

TNF-α, IL-23 and others. Among these cytokines, IL-1 is

composed of nine clusters which stay together in sequen-

tial arrangement. IL-α and IL-β are two potent inflamma-

tory cytokines belonging to IL-1, which have been well

studied. IL-1β can be actively secreted from all nucleated

cells especially macrophages which can activate other

immune cells to cause inflammation.42 During animal

experiments, it was found that IL-1α and IL-1β accelerate

bone-resorbing osteoclasts. It was also seen that IL-1α
involved in joint bone destruction was followed by the

activation of other enzymes.43 From this finding, it is

clear that the AS patient synovium contains an increased

amount of IL-1 and its role in pathogenesis comes from

polymorphic alleles present in cytokine genes which

aggravate inflammation.44

Another cytokine that belongs to the innate immunity

is TNF, a pleiotropic pro-inflammatory cytokine produced

by various types of cells, especially by macrophages and T

cells.45 There is various evidence that backs TNF partici-

pating in AS pathogenesis. Tissue biopsies of sacroiliac

have shown increased numbers of TNF-expressing

Table 1 Demographic of patients with AS

Characteristic Male

(n=53)

Female

(n=41)

Age (years) 42±14 42±12

HLA-B27 positive (%) 85 80

Age at onset of back pain (years) 22±9 23±11

Bath Ankylosing Spondylitis Disease Activity

Index VAS (10 mm VAS)

4.1 4.3

Abbreviations: AS, ankylosing spondylitis; HLA, human leukocyte antigen.

Figure 1 Expression of pro-inflammatory cytokines in the serum of patients with AS and HCs. The levels of IL-6 (A), IL-17A (B), TNF (C), and IFN-γ (D) in serum samples

obtained from 73 patients with AS (39 male and 34 female) and 33 healthy controls (17 male and 16 female) were determined by an ELISA assay. Data are presented for the

pooled cohorts and according to sex. Each symbol represents an individual subject; horizontal lines show the median (*P=0.05–0.01; **P=0.01–0.001, by a Mann–Whitney

test with Benjamini-Hochberg correction). Reprinted with permission from John Wiley and Sons. Arthritis & Rheumatology, Sexual dimorphism in the Th17 signature of

ankylosing spondylitis, Gracey E, Yao Y, Green B, et al, Copyright 2016.39

Abbreviations: NS, not significant; AS, ankylosing spondylitis; HC, healthy control; TNF, tumor necrosis factor; IFN-γ, interferon-γ.
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macrophages and degradation of sacroiliac joint tissue

considered as the hallmark of AS.46 Moreover, mice

over-expressing membrane-bound TNF have developed

spinal AS-like abnormalities. Opposing the finding of

increased levels of TNF-α in blood, some researchers

have found elevated levels of TNF linked with the patho-

genesis of AS.47 The gene responsible to encode TNF

localized in the class III region of the MHC is present

near the HLA-B locus.48 In the promoter region, several

TNF regulating polymorphism mechanisms participate in

the production of TNF-α which vary in different

individuals.49 In all of these polymorphism mechanisms,

in the promoter region of the TNF-α gene, mostly adenine

and guanine are involved and associated with AS

severity.50

As explained above, IL-1 and TNF cytokines are

directly responsible for the pathogenesis of AS, and it is

also speculated that these cytokines are involved in the

activation of APs in the ER to regulate ERAP genes.

Beside HLA-B27, the ERAP1 gene is considered as a

non-MHC gene responsible for the pathogenesis of AS.

Recently, various studies have shown an association of

ERAP in AS.51,52 Besides the trimming of antigenic pep-

tides for HLA-B27, ERAP fragment cytokine receptors

present on the surface of the cell conducted in ERAP1

knock-out mice and in AS patients failed to support this

role of ERAP.53 From this finding, it looks like ERAP

participate in the functioning of HLA-B27 rather than in

the trimming of cytokine receptors.

Some studies have proved that DCs in HLA-B27 trans-

genic rats have dysfunctional properties (they do not have

class II MHC expression and viability resulting in the loss of

a tolerogenic CD103+ population).54,55 DCs have the ability

to enhance the development of TH17 by downregulating

immune synapse formation and, hence, aggravate the

disease.56 CD4+T cells are released as naïve CD4+ cells

into the periphery and divide into several effector T cells

such as Th1, Th2, Treg, and Th17. Each of these effector T

cells produces specific cytokines and master transcription

factors (Figure 2). These cells develop immunity to protect

from several infections caused by bacteria or fungus. The

functions of TH17 are regulated by cytokines, such as IL-

17A, IL-17F and IL-22, which further controls the combina-

tion of cytokines, such as IL-1β, IL-6, TGF-β and IL-23.

Recently, it was found that the development of TH17 from

naïve T cells is affected by several factors such as hypoxia,57

dietary and some other environmental factors.58 It was

argued that due to the production of additional cytokines,

the nature of TH17 has apparently become plastic and het-

erogenic, which make it highly pathogenic. Thus, IL-17, a

cytokine, is often coupled with the production of IL-17, IL-

22, IFN-γ and cytokine granulocyte-macrophage colony-sti-

mulating factor (GM-CSF).59,60

Environmental factors
Besides genetic factors, some environmental factors have

also been linked with the pathogenesis of AS. There are

two main environmental factors (i.e., mechanical stress

and bacterial infections) hypothesized to trigger the patho-

genesis of AS.61 Mechanical stress mainly at the entheses

plays a role in the development in SP by repetitive damage

and repair of the entheses. This repetitive damage and

repair of the entheses downregulates inflammation, bone

erosion and spur formation.62,63 Microbial infection with

Chlamydia trachomatis, Shigella and Salmonella are well

documented in AS. These microorganisms can invade

mucosal surfaces and replicate intracellularly. Salmonella

and Chlamydia have been found in the synovial tissues

Figure 2 Flow diagram of the production and transcription of cytokine expression of Th17 and other CD4+ T cell subsets.

Abbreviations: IFN, interferon; TGF, transforming growth factor.
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and fluids of AS patients. Nearly, 50% of patients with AS

suffer from microscopic ileal inflammation and are immu-

nologically similar to CD. Many studies, from early anti-

body and fecal carriage studies, advocate the role of gut

Klebsiella in the pathogenesis of AS. More recent findings

showing various bacterial compositions suggest a link

between intestinal dysbiosis and AS, and suggest that

upsetting the homeostasis between the gut microbiome

and the host immune system can lead to AS.64 The patho-

physiology of both factors is summarized in Figure 3.

Diagnosis and clinical symptoms
The diagnosis of AS is made by clinical, laboratory, or

radiological findings. Based on clinical symptoms, patients

are categorized according to the modified New York diag-

nosis criteria.65 However, there is no specific test available

to identify AS, therefore, some precise and specific diag-

nostic markers are important to identify the disease.

The major clinical findings could be subtle in the early

or middle stages of AS. The clinical test importantly

includes measurements of forward lumber flexion, lateral

lumbar flexion, and expansion of the chest together with

palpating and stressing the sacroiliac joints. Moreover, the

peripheral joints should also be monitored for evidence of

synovitis.66

During laboratory testing, almost all patients having

AS showed increased levels of C reactive protein (CRP)

and erythrocyte sedimentation rates (ESR).67 However,

determination of the levels of these acute phase reactants

have limited value in determining the disease activity.68,69

Mild normochromic normocytic anemia may be presented

in severe AS diseases. In fact, the synovial fluid of

affected limbs is more similar to that of any joint inflam-

matory disease.

Physically, AS patients show a loss in spinal movement

with a tightness in flexion, extension in the lumbar spine,

and chest expansion. Due to the secondary muscle spasms,

the motion is disproportionate to the degree of ankylosis.

The spinal radiographical changes show marginal ver-

tebral erosion, squaring of vertebral bodies, and the for-

mation of bony bridges or syndesmophytes in the interface

of the adjacent vertebrae. Ossification of spinal ligaments

Figure 3 Schematic diagram of the proposed role of genetic and environmental factors in the pathogenesis of AS. As shown in the figure, auto-reactive CD8+ T cells may

recognize arthritogenic peptides displayed by HLA-B27 on the anti-gene presenting cell surface and cause misfolding of HLA-B27 which leads to stress in the ER and

consequently causes overproduction of IL-23. On the other hand, abnormal cell-surface expression of HLA-B27 leads to interactions with the innate immune receptor

KIR3DL2 (killer immunoglobulin-like receptor) on CD4+T cells and promotes type 17 immune responses. Environmental factors (like microbes present in gut) activate HLA-

B27, which cause intestinal dysbiosis, resulting in overexpression of the IL-17A. IL-23 axis with the activation of Th17 and other innate immune cells. This leads to the

production of IL-17A, IL-22, TNF-α, TNF-γ and other cytokines which directly affect organs.

Abbreviations: ER, endoplasmic reticulum; AS, ankylosing spondylitis; HLA, human leukocyte antigen; TNF, tumor necrosis factor.
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could occur, and spinal osteopenia is a common symptom.

In severe chronic diseases, almost complete fusion of the

vertebral column may occur. Two-dimensional radio-

graphic techniques like CT-scans and X-rays are used for

imaging in the primary onset of the disease but further

MRI can be used to image for a more confirmative result.

The initial clinical symptom generally starts with weak

backbone pain. The pain is usually felt deep in the but-

tocks and lower lumber regions followed by morning

stiffness in the same area, which improves with movement

and resumes with rest. The pain becomes persistent and

bilateral within a few months and is usually worse at

night.70 In some patients, the primary onset starts with

bone tenderness followed by back pain and stiffness.

Asymmetric arthritis of other joints, predominantly of the

lower limbs, can be present at any stage of the disease.

Neck pain and stiffness are seen in advanced degrees of

the disease.

Recent AS treatment strategies
AS is a HLA-B27 linked inflammatory disease.71 Previously,

about 0.5% of the population was affected with AS with a

predicted male to female ratio of about 2:1.1 AS is typically

treated with the use of anti-inflammatory, immunosuppres-

sive drugs.72,73 However, since 2000, a considerable

advancement took place in order to treat AS by developing

novel therapeutic approaches including biological therapies

as well as efficient clinical trial design and execution. In this

section, we focus on recent developments to treat AS.

NSAIDs therapy
After the observation that AS is mainly associated with the

prostaglandin E receptor 4 (PTGER4) gene and prostaglan-

din inhibitory effects, both traditional and selective COX-2

inhibitor NSAIDs proved equally effective,74 and COX-2

inhibitor NSAIDs are considered as a first-line treatment

option for AS.75 Previous reports demonstrated that COX

showed two phenotypes, namely, COX-1 and COX-2,

where COX-1 is responsible for prostaglandin secretion

and maintenance of gastric mucosal integrity while, on the

other hand, COX-2 offered inflammatory stimuli. A recent

clinical study of 246 axial disease patients included an

administered placebo-control, celecoxib 100 mg b.i.d.

(COX-2 inhibitor) and ketoprofen 100 mg b.i.d. (non-selec-

tive anti-inflammatory drug) for a 6-week period. The

results indicated significant pain reduction in the treatment

as compared to the placebo-control. However, the level of

poor GI tolerability was equivalent in both treatment

groups.76 In another study of 3410 AS patients, Etoricoxib

was found to be more effective in pain management than

other NSAIDs.77 Furthermore, in another study, a preferen-

tial COX-2 inhibitor meloxicam showed a similar pain

reducing result in AS patients.78 Administration of

NSAIDs is debatable and, in most cases, the continuous

administration of anti-inflammatory drugs showed promis-

ing results in term of disease progression (less new bone

formation) as compared to patients who took drugs only

when they experienced pain.79 However, controversy lies

regarding NSAIDs administration. The continuous admin-

istration of NSAIDs decreased the radiographic progression

as compared to the on-demand therapy.79 While in another

report, Sieper et al reported that in comparison with an on-

demand treatment, the continuous administration of diclo-

fenac for about 2 years did not reduce radiographic

progression,80 but treatment with NSAIDs induced various

cardiovascular, GI or kidney associated complications. A

meta-data of nearly 300,000 patients with NSAID treatment

for different clinical conditions confirmed high vascular risk

of both NSAIDs and COX, as compared to a naproxen

treatment.77 Yet, a patient with inflammatory diseases

(other than joints), such as inflammatory GI disorders,

could be treated by administering selective COX-2 inhibi-

tors with no potential risk of complications.81

Similarly, a Canadian study population based on a

retrospective study demonstrated decreased cardiovascular

risk in AS patients under NSAID treatment.82 Moreover,

in order to reduce the risk of complications, it is admis-

sible to use a combination of two different NSAIDs for 4

weeks or use the first NSAIDs for the first week and

continue with the second NSAID for the remaining 3

weeks or use the first for the first 2 weeks and the second

for the remaining 2 weeks to complete the therapy. Thus,

selection, dosing and administration of potent NSAIDs is

critical and may vary between patient-to-patient, so as its

therapeutic outcome and NSAIDs treatment are justified

purely on patient symptoms.83 Recently, Fattahi et al

reported a randomized placebo-control trial of a new

NSAID (BD-mannuronic acid). It was indicated that a

12-week ASAS response was similar to that of naproxen

without renal side effects and good GI tolerability was

observed.84

Analgesics therapy
Sometimes NSAIDs do not successfully control AS asso-

ciated pain. In this case, analgesic drugs (such as acetamino-

phen and opioid drugs) could be administered as an add-on
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therapy with NSAIDs. A combination of Tramadol/acetami-

nophen was found effective and safe as an add-on therapy

with selective COX-2 NSAIDs for osteoarthritis,85 chronic

low back pain86 or fibromyalgia87 treatment. In this respect,

in order to determine the safety and efficacy of analgesic

drugs, a 12-week randomized, double-blind, placebo-con-

trolled study of 60 AS patients were administered aceclofe-

nac plus tablets (tramadol 37.5 mg/acetaminophen 325 mg

combination). The patients were divided equally into two

groups: 1) a treatment group which administered one aceclo-

fenac plus tablet twice a day and 2) a control group which

received placebo aceclofenac plus for 12 weeks. It was

observed that at week 12, assessment of an AS (ASAS20,

end-point) response showed a 53.3% improvement compared

to the treatment group. However, a slight increase in total

adverse effect was observed including dizziness, vertigo, and

nausea or vomiting in the treatment group. These results

confirmed that the aceclofenac plus (tramadol 37.5 mg/acet-

aminophen 325 mg combination tablet) could have some

added effects to NSAIDs in the treatment of AS patients.88

However, in another scenario, when no other treatment

option was available, then analgesic therapy (either as a

single or in combination therapy) could be a potent treatment

choice.

Hormonal and disease-modifying anti-

rheumatic (DMARDs), antitumor and

antibiotic therapy
Hormonal therapy (such as oral or injectable corticoster-

oids (cortisone)) is an effective anti-inflammatory agent

and could be employed for active AS together with other

inflammatory disorders. Sometimes a local intra-articular

steroid injection into the sacroiliac and peripheral joint can

offer relief.89 However, the long-term use of corticoster-

oids might induce severe adverse effects including catar-

acts, osteoporosis, easy bruising, diabetes, thinning of the

skin and destruction of the hips.90,91 On the other hand, a

local glucocorticoid injection could be administered for

skeletal muscle inflammation, such as enthesitis, but the

systematic injection of steroids is not recommended and81

also has not proved effective for AS.89

Disease-modifying anti-rheumatic drugs (DMARDs),

including leflunomide and methotrexate (MTX), due to

their low efficacy are not generally administered to treat

AS. Interestingly, MTX, also known as amethopterin, is

also a chemotherapeutic and immunosuppressant drug

widely used to treat various types of cancers, such as

breast cancer, lung cancer, leukemia, lymphoma, and

osteosarcoma. It has also been employed to treat autoim-

mune diseases including rheumatoid arthritis (RA), psor-

iasis and Crohn’s disease.92–94 In this respect, one study

showed that MTX at a high dose (20 mg s.c.) did not show

any improvement in AS patients with axial symptoms.95

However, some evidence suggests that sulfasalazine could

be beneficial in peripheral arthritis and early morning

stiffness.96 Therefore, it is speculated that DMARDs

might benefit AS patients with peripheral arthritis but not

of axial disease. Furthermore, in a study of 207 AS

patients, it was also demonstrated that a high dose of

thalidomide could induce peripheral neuropathy within a

year after AS treatment.97 However, a 6-month open-label

trial including 13 subjects with different subtypes of active

AS with psoriasis showed that all of the subjects were

resistant to conventional non-biological therapies, such as

NSAIDs, MTX and sulfasalazine. The thalidomide proved

to be a promising treatment for active AS patients, who

were resistant to conventional therapies.98 Recently, a

meta-analysis reported that a low dose of oral MTX (15

mg) could be more effective than a placebo, when taken

for 6 months. However, the effects of a higher dose of

MTX have not been measured or reported in a randomized

placebo-controlled trial.99 Furthermore, another 1-year

open-trial study also showed similar results where thalido-

mide was administered in AS resistant patients at a dosage

of 200 mg/day.100 Thus, it could be concluded that

DMARDs (especially thalidomide) are potent drugs to

treat resistant AS.

In many countries, it has been reported that enterobac-

teria (K. pneumoniae) can induce AS. Therefore, numer-

ous antibacterial drugs have been investigated for AS

treatment. Fluoroquinolones are synthetic, broad-spectrum

antimicrobial agents used for treating various infections.

Furthermore, they also showed some immunomodulatory

effects.101 In this respect, fluoroquinolone moxifloxacin

(MXF) is active against both Gram-negative and Gram-

positive bacteria. Long-term open label-trials were per-

formed, administering MXF in patients with AS to observe

its therapeutic efficacy. The patients treated with MXF

showed significant and sustained improvement after 12

weeks. Recently, another study demonstrated the efficacy

of co-amoxiclav in two AS patients. Co-amoxiclav was

administered orally for 7 days to both AS patients.

Similarly, the results indicated significant improvements

in all AS and physical examination parameters. Thus,
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antibacterial therapy could have the potential to improve

AS along with other inflammatory diseases.102,103

Tumor necrosis factor (TNF-α) inhibitor
therapy
TNF-α is also known as a pro-inflammatory cytokine, pro-

duced by monocytes, macrophages and T cells. It is mainly

responsible for the activation of lymphocytes, release of IL-

1 and IL-6 cytokines, metalloproteases and prostaglandins.

Recent data also suggested a role for TNF-α in the patho-

physiology of AS and TNF-α mRNA and was also found to

be upregulated in the sacroiliac joints of AS patients.104

Furthermore, TNF-α levels along with other inflammatory

cytokines were found to be high in AS patient as compared

to mechanical back pain patients.105 Therefore, if a patient

continues to suffer high AS disease symptoms and the

above treatments are not effective; then, biological treat-

ments which inhibit TNF inhibitors can be an option (such

as adalimumab, etanercept, certolizumab pegol, infliximab

and golimumab). The anti-TNF therapy not only effectively

treats AS but it also decreases inflammation and improves

spinal mobility. Furthermore, all anti-TNF biologics includ-

ing Remicade, Simponi, Enbrel and Humira markedly treat

AS and have shown sustained effects that last for years after

treatment.

However, a major drawback of anti-TNF therapy is that if

the disease returns after discontinuation of treatment within a

year, one needs to resume the therapy which gathers attention

and calls for a rational anti-TNF therapy. In this respect,

infliximab has demonstrated safety and efficacy for about 5

years in an open-label study in severe to moderate AS

patients and has demonstrated a sustained BASDAI treat-

ment score of 2.5 after 5 years of treatment and about 34% of

AS patients were in clinical remission.106 In other placebo-

controlled studies, results showed a treatment efficiency of

Infliximab for 2 years and 1 year of adalimumab.107,108 In

another report, MRI scans showed a reduction in spinal

inflammation after anti-TNF therapy.66 It was estimated

that up to 60% of AS patients showed a better response to

these biological agents and patients reported a decreased pain

score, improved physical activity and well tolerated-ability to

the disease.89 In addition to spinal inflammation, pain and

stiffness, there was also a significant improvement in periph-

eral arthritis and enthesitis. MRI scans showed notable sup-

pression of juxta-articular bony inflammation.109–111

Although in a small continuous study, less radiographic

progression was observed after 2 and 4 years as compared

to conventional AS therapy.1,110 Other clinical indicators

(such as ESR and CRP levels) were higher in more active

AS conditions. Importantly, both the ESR and CRP levels

declinedwith anti-TNF therapy.46,112 Generally, Infliximab is

administered via intravenous infusion every 6–8 weeks. In

addition to the positive effects on peripheral and axial joint

symptoms, there are also additional beneficial effects on

IBD, psoriasis and uveitis,113,114 while Etanercept is admi-

nistered weekly or biweekly by subcutaneous injection,

which showed promising results in AS. Etanercept was also

effective in treating psoriasis, but less effective for the symp-

toms of IBD and uveitis. On the other hand, adalimumab was

also injected subcutaneously every other week. Like

Infliximab, it was also effective in psoriasis and IBD;115

however, at this moment, insufficient reports are available

regarding uveitis.

Currently, two anti-TNF-α drugs for the treatment of

RA exist: 1) infliximab (mAb cA2), a neutralizing mono-

clonal antibody116 and 2) etanercept, consisting of 2 mole-

cules of the p75 TNF-α receptor.117 Both have been tested

for AS in 6 open and 3 placebo-controlled trials. In these

studies, patients received 3 infusions of infliximab (5 mg/

kg at weeks 0, 2 and 6 but in a Canadian study it was only

administered at 3 mg/kg), followed by a maintenance dose

after every 14 weeks in a 1-year follow-up study, and

etanercept was subcutaneously administered twice-weekly

(25 mg) for 4 or 6 months.118 All of these studies demon-

strated a dramatic improvement in all clinical and labora-

tory variables of AS patients after anti-TNF application

and these beneficial effects were observed a few days after

the first infliximab infusion or etanercept injection.

Interestingly, the PLANETAS study observed a compar-

able result in AS patients in terms of ASAS20 and

ASAS4057.

As an extension, a study also demonstrated that switch-

ing from Infliximab to its biosimilar did not negatively

affect safety and efficacy.119 These results were further

confirmed in a PLANETRA study, carried out in patients

with administered RA59.120 Various studies also suggested

that the short-term AS disease and younger patients are

more likely to respond to anti-TNF therapy.121 Talking

about the dark side of the TNF blocker therapy, early

and reliable diagnosis of AS is an important issue. In

various large-pooled studies, the main adverse effects

were very low and minor (including moderate infection

such as reactivation of tuberculosis was more common),1

along with manageable injection site reactions; although

patients with these malignancies may not be suitable
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candidates for anti-TNF therapy due to a lack of outcome

information with these agents. The other notable factor

which restricts this therapy is its high cost. Table 2 sum-

marizes these novel biological approaches with their cur-

rent status to treat AS.

IL inhibitors and monoclonal antibody

therapy
IL-17 is involved in the pathogenesis of AS and patients with

AS experience a high-level of IL-17.122 As a humanized

monoclonal antibody, secukinumab, suppresses IL-17 and

thus is a promising approach to treat AS.123 In addition,

antigen-presenting cells secrete IL-23, which stimulate

the Th-17 cells and are responsible for the production of

IL-17.124 Recently, two placebo-controlled double-blind

Phase III clinical trials MEASURE-1 and MEASURE-2

were performed. In both trials, a total of 590 AS patients

received either s.c. secukinumab (150, 75 mg) or a placebo

every 4 weeks, after an initiation phase of 4-weeks with an i.v.

of secukinumab (at weeks 0, 2, 4 in MEASURE-1) or s.c.

administration (at weeks 0, 1, 2, 3, 4 in MEASURE-2). The

results at week 16 reached 61%, 60%, and 29% in the

MEASURE-1 trial for 150, 75 mg secukinumab and placebo,

respectively; whereas, in MEASURE-2, the outcomes were

61%, 41%, and 28%. Thus, secukinumab led to a comparable

improvement in the signs and symptoms of AS and represents

a major improvement for 2 years in AS patients, combined

with a significant safety profile.125,126 Similarly, in

another randomized double-blind Phase III clinical study,

MEASURE-3 showed notable improvement after a 16-week

follow-up period, which lasted for 52 weeks in AS patients as

compared with the control and no major side effects were

observed.127 Currently, a MEASURE-5 randomized double-

blind Phase III clinical trial is ongoing, comparing the toler-

ability and safety profile of secukinumab in AS patients

against a placebo.128 Another antibody, Brodalumab, active

against IL-17R was effective for psoriatic arthritis, however,

the induction of suicidal tendencies in patients stopped its

development.81

IL-23 is directly associated with the development of

enthesitis,129 and the IL-23/IL-17 axis is mainly involved

in AS pathogenesis. In this respect, the humanized mono-

clonal antibody Ustekinumab targets the p40 subunit of IL-

12 and IL-23. Ustekinumab is considered as the most effec-

tive treatment for psoriasis,130 however, its efficacy in AS

did not show expected results. Although an open-label,

single-arm proof-of-concept clinical trial (TOPAS) showed

a reduction in the sign and symptoms in AS patients.131 An

immunoglobulin molecule ABT-122 which targets both IL-

17A and TNF-α demonstrated efficacy in Phase I and II

clinical trials for RA and psoriatic arthritis132,133 and due to

the involvement of IL-17 in the pathogenesis of AS, it is

Table 2 New treatment approaches for AS and their current status

Therapy Target Status

CT-P13 (infliximab biosimilar) Anti-TNF Approved

SB4 (etanercept biosimilar) Anti-TNF Approved

Secukinumab Anti-IL-17A Approved

Ixekizumab Anti-IL-17A Under investigation

Brodalumab Anti-IL-17R Not approved

Ustekinumab Anti-IL-12/IL-23 Not approved

ABT-122 Anti-IL-17A/TNF-α Under investigation. Successful Phase II clinical trials

COVA322 Anti-IL-17A/TNF-α Not approved

CBP30 CBP/p300 bromodomain inhibition Future trials announced

Sarilumab Anti-IL-6Rα Not approved

Tofacitinib JAK inhibitor Under investigation. Successful Phase II clinical trials

BCD-085 IL-17A inhibitor Clinical Phase II. Ongoing

Bimekizumab IL-17A, −17F inhibitor Clinical Phase II. Ongoing

Tildrakizumab IL-23 inhibitor Clinical Phase II. Planned

Risankizumab IL-23 inhibitor Clinical Phase II. Completed

Tofacitinib panJAK inhibitor Clinical Phase II. Completed

Upadacitinib JAK-1 inhibitor Clinical Phase IIb/III. Recruiting

Filgotinib JAK-1 inhibitor Clinical Phase II. Recruiting

Apremilast Phosphodiesterase 4 inhibitor Clinical Phase III. Ongoing

Abbreviation: AS, ankylosing spondylitis.
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expected that AS patients will be performed soon.

Furthermore, another dual targeting fusion protein antibody

COVA-32274, thought to be a promising therapy for AS,

will soon be studied.77 In AS patients, a selective inhibitor

of CBP/p300 bromodomains CBP-3052 suppresses the

secretion of cytokines by Th-17 cells. Sarilumab is another

humanized monoclonal antibody which blocks α-receptors

of IL-6 and showed a lack of efficiency for AS treatment in

an ALIGN study.134

Finally, in order to investigate predictors of the selec-

tive response of AS patients against anti-TNF and IL

therapies, further studies are requested to identify the

first and second lines of treatment for AS.

Physical therapy, exercise and behavioral

changes
Physical therapy has also proven beneficial in AS, includ-

ing different exercises to maintain proper posture, stretch-

ing exercises, and deep breathing for lung expansion in

order to improve joints and spinal mobility. As demon-

strated, AS induces a forward curvature, therefore AS

patients are guided to perform a couple of back-extension

exercises as well as instructed to maintain an erect position

as much as possible. In addition, AS patients are also

instructed to avoid using a pillow during sleep and to try

to sleep on a flat and firm mattress. As reported previously,

AS could involve areas where ribs attach to the upper

spine and vertebral joints, which limits breathing capacity.

Therefore, AS patients are suggested to frequently expand

their back as much as possible every day. Various swim-

ming programs have also been designed for individual

patients. In this respect, swimming is suggested as an

exercise for AS patients because it avoids a jarring impact

of the spine. AS patients have been instructed to take part

in aerobic sports, while taking necessary precautions in

athletics. Aerobic exercises promote the expansion of the

chest, breathing muscles and opens airways of the

lungs.135 AS patients are strongly discouraged to smoke

cigarettes since it effects lung expansion capacity as well

as lung scarring and induces breathing difficulties. Thus,

AS patients with lung disease are advised to take oxygen

supplements to improve breathing.67 AS patients are also

suggested to modify their daily life and workplace activ-

ities such as adjusting their work chair and table at their

office to maintain proper posture, for driving use wide

rear-view mirrors and prism glasses to limit spinal move-

ment. Importantly patients with AS are encouraged to eat

foods rich in calcium and Omega-3, eat vegetables and

fruits, eat more herbs and spices, avoid excessive amounts

of sugar, fat and sodium, limit alcohol consumption and

consider probiotics.136,137

Surgical intervention
Research has shown that the biomechanical changes due to

AS that take place in the spine predisposes one to frac-

tures, possibly leading to spinal deformity and spondylo-

discitis. AS involves caudo-rostral progression, altering

the biochemical properties of the spine and diminishing

its resistance through remodeling, which is associated with

ligamentary ossification, osteoporosis, vertebral joint

fusion, and finally spinal deformity. Thus, the ankylosed

spine tends to be fractured even after minor trauma.

Furthermore, these unstable fractures require treatment in

order to avoid neurological injury, deformity and

disability.138–140 In a retrospective study, AS patients

who underwent spinal surgeries at a tertiary university

hospital in Brazil included a total of 8 patients (3 men

and 5 women) with a mean age of 57 years. Six patients

were found positive for acute-phase protein (75%), while 2

patients showed HLA-B27 (25%). Four patients had radi-

ological diagnosis of spondylodiscitis (50%) and under-

went spinal disc biopsy. Three patients were faced with no

pain with analgesic treatment in their last follow-up. While

an additional three patients had spinal fractures surgically

treated (37.5%) and one patient was operated due to cer-

vical kyphotic deformity (12.5%).141 Furthermore, a

Secondary Cohort Analysis of a Nationwide, Population-

Based Health Claim Database, included 3462 AS patients

and 17,310 patients without AS (Table 3). The important

three variables (i.e., spine surgery, cervical surgery, and

lumbar surgery) were observed at a significantly higher

incidence in the AS cohort than in the comparison cohort

(incidence rate ratio [IRR] 2.34 [95% CI 1.92–2.87] for

any spinal surgery, IRR 2.36 [95% CI 1.55–3.59] for

cervical spine surgery, and IRR 2.33 [95% CI 1.85–2.93]

for lumbar spine surgery). In addition, the incidence of

IRRs was the largest in the youngest age group (indivi-

duals in their 20s and 30s). The data indicated that the AS

patients, especially in their 20s and 30s, had a significantly

higher risk of spinal surgery, cervical spine surgery, and

lumbar spine surgery, as compared the patients without

AS.142 However, the surgical approach for AS patients

shifted for cervical fractures with anterior-posterior sur-

gery transitioning from the most popular to the least pop-

ular approach from 2003 to 2014. For thoracolumbar
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fractures, posterior surgery remained the preferred

approach. In addition, patients who undergo anterior-pos-

terior surgery are at a high risk of pulmonary complication

rates in both thoracolumbar and cervical fractures.143

These data suggest that surgical intervention could be

performed in the most severe cases of AS and the outcome

could be promising through accurate and specific

surgeries.

Nanotechnology-based treatment
approaches for AS
Conventional medication can provide fast relief to patients

clinically, but, when thinking from a long-term safety

prospective, conventional treatment approaches are not

suitable because this requires frequent medication which

can increase financial burden and due to frequent medica-

tion, decrease a patient’s quality of life. Moreover, these

approaches have high degradation and clearance from the

body due to the high and frequent dosing required further

increasing many complications and toxicity.144 Recently,

various nanotechnology-based drug delivery approaches

have been applied to combat these problems and deliver

drugs to treat chronic inflammatory diseases. These nano-

technology-based drug delivery systems have shown better

therapeutic compliance in comparison to conventional for-

mulations by prolonging drug retention time at the site of

action.145 Unfortunately, currently, no nanotechnology-

based formulations have been reported for AS but there

are many formulations which have been studied for other

inflammatory diseases such as osteoarthritis, RA, and

backache that can be used for AS.146 The conventional

treatment approaches for these diseases are the same as

AS. As AS is also classified as a chronic inflammatory

disease, we can hypothesize that nanotechnology-based

formulations prepared for the treatment of other inflam-

matory diseases can also work for AS.

Recently, various nanotechnology-based drug delivery

systems have been established to deliver drugs in a safe

mode to treat various diseases including cancer, fibrosis,

lung diseases, diabetes and chronic inflammation.147–153

Well-established nano preparations include liposomes,

polymeric nanoparticles, and hydrogels.154

Liposomes
Liposomes are round vesicles made of phospholipids and

have the ability to hold both hydrophilic and hydrophobic

drugs. Generally, hydrophilic drugs are encapsulated in an

internal aqueous chamber and hydrophobic drugs are

entrapped into a surface bilayer structure.155 Liposomes

are generally prepared from biodegradable nontoxic lipids

and have good retention ability at the site of action. Some

liposome-based NSAIDs preparations reported for the suc-

cessful treatment of RA and osteoarthritis are indomethacin,

diclofenac and ibuprofen. These liposomal nano-preparation

increase the half-life of the drug in comparison to conven-

tional preparations. For example, liposomal iohexol

declined biexponentially with an elimination half-life of

134 hrs as compared with free iohexol.156 Other work

reported by Inbar Elron-Gross improved the retention time

of diclofenac and they used collagomers to prepare col-

lagen-lipid conjugates to encapsulate diclofenac for slow

release in the synovial area after injection.157 In their

other work, they used the corticosteroid dexamethasone

Table 3 Incidence rates and incidence rate ratios (IRR) of spinal surgery for the AS cohort and comparison cohort, with and without

stratification by sex (n=20,772)

Variable Sex AS cohort Comparison cohort IRR (95% CI)

Events Person IR Events Person IR

Spine surgery Total 149 22,275 668.91 315 109,969 286.44 2.34 (1.92–2.84)

Male 78 13,853 563.05 162 68,785 235.52 2.39 (1.82–3.13)

Female 71 8423 842.93 153 41,184 371.50 2.27 (1.71–3.01)

Cervical surgery Total 32 22,275 143.66 67 109,969 60.93 2.36 (1.55–3.59)

Male 20 13,853 144.37 34 68,785 49.43 2.92 (1.68–5.08)

Female 12 8423 142.47 33 41,184 80.13 1.78 (0.92–3.44)

Lumbar surgery Total 108 22,275 484.85 229 109,969 208.24 2.33 (1.85–2.93)

Male 51 13,852 368.15 119 68,785 173 2.13 (1.53–2.96)

Female 57 8423 676.72 110 41,184 267.09 2.53 (1.84–3.49)

Abbreviation: AS, ankylosing spondylitis.
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for encapsulation along with diclofenac to reduce the activ-

ity of COX for the treatment of osteoarthritis. Similarly, to

counteract the GI side effects caused by indomethacin dur-

ing treatment of RA, lipid-based microspheres were

prepared.158

Gottschalk et al prepared MTX encapsulated cationic

liposomes and observed its anti-inflammatory and anti-

angiogenic efficacy. In an antigen-induced arthritis model,

the cationic liposome demonstrated a significant and super-

ior reduction in leukocyte and platelet interaction, func-

tional capillary density and knee joint diameters.159

Recently, MTX-DG liposomes (methotrexate-diglyceride

ester lipophilic prodrug) were synthesized for antitumor

efficacy in T-cell leukemic lymphoma. The results indicated

that the mice plasma concentration-time and AUC of MTX

after i.v. administration of MTX-DG liposomes increased

up to 2.5-fold as compared to the intact MTX. Furthermore,

the MTX-DG liposomes retarded T-cell lymphoma and did

not induce significant toxicity as compared with free

MTX.160 Previously, a fluoroquinolone-liposomal formula-

tion was extensively used for antibacterial effects and

showed promising antibacterial control and successfully

treated bacterial infections.161–164

TNF-α-mediated liposomal formulations showed

exceptional therapeutic potential to treat numerous tumors

including long-circulating stealth liposomes, cationic lipo-

somes, surface modified liposomes or a combination of

liposomes (such as TNF-α + anticancer agent). The stealth

liposome encapsulating a low dose of TNF-α augmented

the antitumor effect of doxorubicin in soft tissue sarcoma-

bearing rats.165 On the other hand, the TNF-α liposome

enhanced the radiation effects against a human colon can-

cer xenograft, 166 while cytokine GM-CSF and TNF-alpha

encapsulated liposomes showed improved pharmacoki-

netics and biological activity at a minimal toxicity in

mice.167 Recently, Rakeshchandra et al, synthesized a pep-

tide (ART-1) coated IL-27 encapsulated liposome (ART-1-

IL-27). The ART-1-IL-27 liposomes displayed significant

binding to the endothelial cells and better homing to

arthritic joints as compared to the control liposomes, in

vivo. Moreover, following i.v. administration in arthritic

rats at an equivalent dose of IL-27, the ART-1-IL-27 lipo-

somes effectively suppressed disease progression and sig-

nificantly improved the therapeutic index of IL-27, as

compared to the control-IL-27 liposomes without the

ART-1 peptide coating and free IL-27, as shown in

Figure 4.169

Finally, these observations provide a proof-of-concept

for the use of nanoliposomes to successfully deliver

numerous NSAIDs, MTX, TNF-α, and IL-27 to target

and treat various inflammation or infection conditions.

Therefore, the presently described targeted liposomal plat-

form could be extremely promising for use in AS patients

and should be developed as soon as possible.

Polymeric nanoparticles
Polymeric nanoparticles are generally prepared from dif-

ferent polymers such as chitosan, poly-lactic acid (PLA),

poly-lactic glycolic acid (PLGA), poly-δ-valerolactona
(PV), etc.169 Tuncay et al prepared diclofenac sodium

injection incorporated PLGA microspheres for the treat-

ment of chronic inflammatory diseases.170 Diclofenac is a

very common NSAID used in the treatment of various

inflammatory conditions in different forms such as oral,

rectal or intramuscular preparation. The clinical efficacy of

diclofenac has been compared with various other NSAIDs

(such as naproxen, ibuprofen, sulindac, and diflunisal) for

the treatment of osteoarthritis and the obtained data sug-

gest that it is well tolerable by a patient but the dosing

frequency is higher in comparison to other NSAIDs. So, to

reduce the dosing frequency, a slow-release PLGA micro-

particle was prepared for oral administration for the treat-

ment of osteoarthritis.171 Similarly, Saravanan et al have

prepared diclofenac sodium gelatin magnetic microspheres

to target joint inflammation through intra-articular admin-

istration. The prepared microparticles show better thera-

peutic efficacy in comparison to conventional diclofenac

sodium injection therapy, which could be even better

through the use of nanoparticles.172 Zhao et al fabricated

MTX loaded folate receptor-targeted pH-responsive poly-

meric nanoparticles (FA-PPLNPs/Mtx) to treat RA. The

FA-PPLNPs/Mtx exhibited improved cellular uptake and

enhanced cytotoxicity toward activated macrophages.

Furthermore, in vivo experiments using an adjuvant-

induced arthritis rat model (AIA) further confirmed FA-

PPLNPs/Mtx effectiveness as shown in Figure 5.

These results suggested that the multifunctional folate

receptor-targeting and pH-responsive nanocarriers are pro-

mising for the treatment of RA.173 On the other hand,

Zhang et al encapsulated ursolic acid (UA) into polymeric

nanoparticles (UA-NPs) by using amphiphilic-methoxy

poly (ethylene glycol) polycaprolactone (mPEG–PCL)

block-copolymers. The UA-NPs successfully delivered

UA in SGC7901 cells and induced cell death by the

activation of caspase-3 activity. The mechanistic study
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showed that UA-NPs strongly inhibited the COX-2 recep-

tors and activated the caspase cascade, therefore, inducing

tumor cell death, as shown in Figure 6.174

On the other hand, in term of biological delivery via poly-

meric nanoparticles, Shoaib Iqbal et al orally delivered TNF-α

by poly(ethylene glycol)-block-poly(lactic-co-glycolic acid)

(PEG5K-b-PLGA10K) NPs by a double emulsion method ami-

nated nanoparticles (ANPs), as shown in Figure 7. The in vivo

experiments in a murine acute ulcerative colitis model showed

that ANPs were mainly centered in inflamed colons and sig-

nificantly decreasedTNF-α secretion aswell asmRNAexpres-

sion, while maintaining colon histology.175

In another report, Stephanie et al successfully delivered

Leukemia Inhibitory Factor (LIF) by fabricating poly

(ethylene glycol)–poly(lactic acid) (PEG-PLA) polymer

backbone polymeric nanoparticles (NanoLIF) and modi-

fied their surfaces with a CD-11b antibody (CD-11b-

NanoLIF) to target peripheral-macrophages. The results

indicated that the CD11-b-NanoLIF successfully targeted

the activated peripheral-macrophages and significantly

decreased inflammation by inhibiting M1-cell growth

over 72 hrs as compared to the free LIF.176 In conclusion,

polymeric nanoparticles either surface modified or naked

could be an important strategy to treat AS and localized

inflammatory disorders.

Hydrogels
Hydrogels are three-dimensional, hydrophilic, polymeric

networks composed of homopolymers or copolymers hav-

ing the capacity to hold a high amount of water or biologi-

cal fluids. After crosslinking, they form stable vehicles

which cannot be soluble in water but can swell in a large

volume in the presence of water.177 This hydrogel technique

was used to prepare 50% crosslinked Hyal hydrogels to

overcome the problem of rapid clearance of polysaccharide

hyaluronic acid for the treatment of osteoarthritis.178

Figure 4 Arthritis treatment with ART-1-IL-27 liposomes. A Lewis rats arthritis model was used to i.v. administer free IL-27, ART-1-IL-27 liposomes, control-IL-27

liposomes, or ART-1 liposomes and an untreated PBS control. (A) The differences in arthritic scores of the 4 pairs of groups were significant (*P<0.01): ART-1-IL-27
liposomes v/s control rats, ART-1-IL-27 liposomes v/s ART-1 liposomes without IL-27, ART-1-IL-27 liposomes v/s control-IL-27 liposomes, and ART-1-IL-27 liposomes v/s free

IL-27. (B) Photographs of the rat’s hind paw at the end of the treatment and (C) H&E-staining of hind paw sections, the histopathological features represented as: B: bone, C:

cartilage, JS: joint space, P: pannus. Reprinted with permission from Elsevier, JControlled Release, Peptide-directed liposomal delivery improves the therapeutic index of an

immunomodulatory cytokine in controlling autoimmune arthritis, Meka RR, Venkatesha SH, Moudgil KD. Copyright 2018.168
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Figure 5 Anti-arthritic efficacy of FA-PPLNPs/Mtx, PPLNPs/Mtx and free Mtx in AIA rats. (A) Scores of RA in days after administration of FA-PPLNPs/Mtx, PPLNPs/Mtx,

free Mtx and saline. **P<0.01. (B) Paw thickness after all treatments. (C) AIA rat paws from the different AIA groups. Copyright © 2017. Dove Medical Press. Reprinted

from Zhao J, Zhao M, Yu C, et al. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid

arthritis. Int J Nanomedicine. 2017;12:6735-6746.173

Abbreviations: RA, rheumatoid arthritis; MTX, methotrexate.

Figure 6 A schematic representation of UA-NPs induced cell death by inhibiting the COX-2 and activating the caspase-3 cascade. Reprinted with permission from Elsevier:

Int J Pharm, Delivery of UA in polymeric nanoparticles effectively promotes the apoptosis of gastric cancer cells through enhanced inhibition of cyclooxygenase 2 (COX-2),

Zhang H, Li X, Ding J, et al. Copyright 2013.174

Abbreviations: UA, ursolic acid; COX-2, cyclooxygenase 2.

Xi et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2019:148534

http://www.dovepress.com
http://www.dovepress.com


Hydrogels are novel drug delivery systems and play a

pivotal role by tackling the problems associated with conven-

tional dosage forms including stability, drug loading, in vitro

release kinetics and in vivo pharmacokinetics. In recent years,

numerous hydrogel formulations have been employed locally,

orally and systemically to treat various types of inflammation.

In this respect, Xiong-Bin et al prepared a microemulsion-

based hydrogel (MBH) of 3,5,4′-trimethoxy-trans-stilbene

(BTM) for a topical drug delivery system to treat osteoarthritis.

In papain induced OA rabbit models, the results indicated that

the topical administration of BTM-MBH showed remarkable

anti-OA effects, with decreased levels of pro-inflammatory

cytokines. Such results indicated that the BTM-MBH hydro-

gel formulation could be a promising strategy for the treatment

of OA, as shown in Figure 8.179 In another report, Ahmad et al

fabricated chitosan-based thermosensitive hydrogels for the

sustained delivery of loxoprofen. The hydrogel formulation

was stable in the rat after i.v. administration and in vivo

experiments showed loxoprofen release for up to 144 hrs.180

Furthermore, the hydrogel-based drug delivery systemwas

successfully employed to inhibit TNF-α secretion. In this

respect, Lei et al produced a transplantable cationic-hydrogel

to deliver antisense oligodeoxynucleotides (ASOs) to target

mRNA of TNF-α. The in vivo study demonstrated that the

ASOs specifically targeted the spleen at up to a 50-fold higher

concentration as compared to the naked ASO. Moreover, this

was demonstrated for three different types of animal models

including adjuvant-induced arthritis (AA), carrageen/lipopo-

lysaccharide-induced arthritis and collagen-induced arthritis

models. Surprisingly, the ASOs significantly not only

decreased inflammatory cytokines but also decreased joint

swelling and tissue damage,181 as shown in Figure 9.

In another report, Marie-Claude et al developed a hydro-

phobic three-dimensional porous scaffold-based drug delivery

system to deliver an anti-TNF-α antibody. Their major finding

was no deleterious effect of the drug delivery system on anti-

body affinity and anti-TNF-α release which was much higher

after the first minutes in the aqueous medium followed by a

sustained release of anti-TNF-α antibody up to the next 30

days. However, the histopathological examination showed a

fibrous pseudo-capsule and chronic inflammation but without

granuloma formation around the implants.182

In conclusion, all these findings open new possibilities for

the delivery of biological agents to treatASusing nanomedicine.

To date, however, there have been no specific nanotechnol-

ogy-based formulation reported but there are several nanotech-

nology-based formulations that have been reported for the

treatment of osteoarthritis and RAwhich are a similar type of

chronic joint inflammatory disease, like AS. Some of the devel-

oped nanotechnology-based formulations for osteoarthritis and

RA are listed in Table 4 which should be immediately tested

for AS.

Figure 7 Schematic illustration of the tenable surface charge nanoparticles for anti-TNF-α siRNA oral delivery for treating ulcerative colitis. Reprinted with permission from Springer

Nature: Nano Res, Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis, Iqbal S, Du X, Wang J, Li H, Yuan Y, Wang J. Copyright 2017.175

Abbreviation: TNF, tumor necrosis factor.
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Conclusion
In order to understand the pathogenesis of AS, various

studies have been carried out over the most recent 3

years. These data lay the foundation to design new ther-

apeutic strategies to treat AS and consequently improve

the quality of life of patients with AS. The more we know

about AS, the more we understand its complexity. AS is a

kind of autoimmune disease, which could lead to spinal

pain, spinal deformity and could induce extra-articular and

systemic abnormalities. Investigations into AS include

testing of inflammatory biomarkers and HLA-B27.

Notably, in the early stages of AS disease, radiographic

investigations could be normal, therefore, MRI scans

should be performed to reach a definitive conclusion. AS

treatment should include an anti-inflammatory agent as the

first line of defense and in advanced cases, biological

therapy could be more promising. Finally, therapeutic

options that target specific IL must be developed and

more comprehensive clinical studies should be performed

to specifically identify key factors and develop therapeutic

Figure 8 Macroscopic images of the right knee surface of rabbits on day 28.Where a: normal, b: OA, c: OA + 1%Diclofenac-gel, d: OA + 0.5% BTM-MBH, e: OA + 1% BTM-MBH,

and f: OA + 1% BTM-EG. The black arrows indicate the damaged areas. Reprintedwith permission from Springer Nature: Drug Deliv Transl res, Topical delivery of 3,5,4′-trimethoxy-
trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model, Hu XB, Kang RR, Tang TT, et al, Copyright 2019.179

Figure 9 Therapeutic effects of ASO delivered by c-agarose gel on the development of AA. Row A are photographs of the inflamed feet of AA. Row B represents the X-ray

examination of the inflamed feet. Row C shows the sections of inflamed feet tissue. All the results were taken on the 15th day after ASO administration and n=10, while, the clinical

indexes are summarized in the 7th column. *P<0.05 v/s AA animals without the treatment of ASO. Reprinted with permission from Elsevier: Biomaterials, Spleen-specific suppression of
TNF-α by cationic hydrogel-delivered antisense nucleotides for the prevention of arthritis in animal models, Dong L, Xia S, Chen H, Chen J, Zhang J, Copyright 2009.181
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regimens accordingly. As described here, nanotechnology

plays a central role with much promise for improved AS

treatment.
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