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This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip
replacement was implanted.The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer
of a titanium alloy bonded to a layer of hydroxyapatite.The elastic modulus of the FGMwas adjusted in the radial, longitudinal, and
longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different
methods of anchoring the prosthesis to the spongy bone and two cases of applied loading.The results revealed that the FGprostheses
provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement.
Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The
cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful
effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding,
developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG
prosthesis by managing volume fraction gradient exponent.

1. Introduction

Total hip replacement (THR) is regarded as a last resort but
it is a very effective procedure to relieve pain and restore the
function of a degenerated hip joint [1]. Insertion of a pros-
thesis into the femur alters the bone stress pattern because
of the mismatch between the stiffness of the prosthesis and
that of the existing bone [2, 3]. Given their stiffness relative to
that of bones, prostheses shield against stress transformation
from the hip joint to the proximal part of the femur [2, 4].The
bone positioned along the engineeredmaterials is a live tissue
and can thus adapt itself to the newmechanical and chemical
environment. With stress shielding of the prosthesis, the
cortical structure of the bone loses its strength [2, 5]. Stress
shielding leads to aseptic loosening, the leading cause of
failure of THRs [4, 6, 7]. Efforts have been directed towards

identifying appropriatematerials for fabricating prostheses so
that stress shielding may be minimized. Consequently, com-
posite materials have been used in femoral prostheses [8–12].
Among the composite materials available, FGMs have drawn
special interest because they exhibit interesting properties
that have the potential to minimize stress shielding.

FGM displays a continuous (gradient) or a stepwise
(graded) change in its microstructure and, hence, properties.
The concept of FGMs is based on natural biological structures
[13].Themechanical and structural properties of a FGMmay
be controlled and, hence, optimized by adjusting the volume
fraction of each of its constituent phases [14]. Compared
with their monolithic ceramic or metallic counterparts,
FGMs have higher load-bearing, fracture toughness, wearing
resistance [15–17], and biocompatibility [18–20]. As such, an
FGM is an attractive candidate for fabricating prostheses, in
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Figure 2: Mesh and boundary condition.

particular joint fixation devices, such as the femoral com-
ponent of aTHR [14, 21].Theuse of FGMs in orthopedic pros-
thesesmay be traced to their use in dental implants. Examples
include the study of bone remodeling induced by dental
implants [22], design optimization of dental implant for
bone remodeling [23], and thermomechanical study of dental
implants [24].

Kuiper and Huiskes [25] developed a numerical design
optimization method and coupled it with 2D finite element
analysis (FEA) to find a solution for the problemof decreasing
stress shielding without inducing excessive interface stress.
They found that a prosthesis with tailorable stiffness could
help to limit bone loss and interface stresses.Their model was
limited to the 2D finite element analysis and a single loading
case of a pure bending moment. Simões et al. [26] followed
findings of Kuiper and Huiskes [25] and they developed a

composite prosthesis and a metal core with a variable stiff-
ness. They controlled the stiffness of prosthesis by adjusting
the thickness of the composite layer around the metal core
and they achieved more SED and minimum principal stress
in the bone.They performed a simplified 2D FEA and applied
a vertical load of 3 kN on the femoral prosthesis. Hedia et
al. [27, 28] made a 2D model of prostheses composed of
FGMs and different gradient directions and accessed their
performance by a 2D FEA. They showed more stress in the
bone and reduction in interface stress owing to the use of
the FGMs in the femoral prosthesis. However similar to their
previous studies, this was limited to the 2D with a single
load case. Moreover, they exploited ceramic materials with
low fracture toughness. A numerical study was performed by
Gong et al. [29] on the adaptation of bone due to impact of
materials of the noncemented femoral stem. They found that
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Table 1: Some features of the finite element mesh.

Material Fixation method Approximate
global size (mm)

Maximum deviation
factor Minimum size factor Number of

elements

Cement — 2.0 0.02 0.1 107556
Femoral prosthesis — 1.5 0.05 0.1 631470

Femur Cemented 2.0 0.05 0.1 761218
Noncemented 2.0 0.05 0.1 792849

Total number of elements Cemented — — — 1500244
Noncemented — — — 1424319

Table 2: Normal walking-frame of maximum contact force [32, 33].

Force (N) 𝑥 𝑦 𝑧 Acts at point∗

Hip contact −378 −229.6 −1604.4 P0

Abductor 406 30.1 605.5 P1

Tensor fascia lata, proximal part 50.4 81.2 92.4 P1

Tensor fascia lata, distal part −3.5 −4.9 −133 P1

Vastus lateralis −6.3 129.5 −650.3 P2
∗Presented in Figure 2.

the FG prostheses preserved the host bone better than the
prostheses with conventionalmaterials owing to havingmore
mechanical stimuli, more uniform interface shear stress, and
smaller maximum interface stress. A three-dimensional FEA
was conducted by Oshkour et al. [30] to determine the
performance of cemented FG prostheses with a longitudinal
gradient direction during a gait. They found less stress in the
FG prostheses and more stress develops in the bone and the
cement.The cemented prostheseswith longitudinal change in
the modulus of elasticity were only considered in this work.

All these research studies just mentioned have their own
merits; however they are mainly limited to 2D FEA simula-
tion on noncemented prostheses with simplified models of
loadings cases. Therefore, there is limited information about
the impact of FGMs on the developed stress in the implanted
femur components to assess the risk of failure. Moreover, the
previous studies employing 3D models were limited to the
change in the modulus of elasticity of prosthesis in longi-
tudinal direction without presenting the SED and interface
stresses. In addition, there is no study on the performance
of FGMs during the stair climbing in which it will induce
more detrimental torsional load and interface stress on the
implanted femur constituents [31]. Therefore, in the pre-
sent study the FEA was used to analyze a model of a
femur implanted with a FG prosthesis (femoral component
of a THR), subjecting to loading experienced during nor-
mal walking (maximum contact force) or stair climbing
(maximum torsional moment). For each loading condition,
two cases were considered: implant cemented in the femur
(cemented case) or pressfitted into the bone (noncemented
cases). For each combination of implant fixation method and
applied loading, the following parameters were determined:

strain energy density and developed stress in prostheses,
bone, and cement and stress at the implant-bone interface.

2. Materials and Methods

2.1. Modeling and Meshing. A three-dimensional (3D) model
of a human femur was developed based on computed tomog-
raphy images of the bone. A total of 998 images with 512
pixels × 512 pixels and a spatial resolution of 0.549mm
were captured using a multidetector Siemens unit (Sensation
64; Siemens Medical Solutions, Malvern, PA, USA). The
images were exported to the Mimics software (version 13;
Materialize NV, Leuven, Belgium) to extract a 3D model of
the femur. The Charnley femoral prosthesis and the cement
layer were developed using Pro/Engineer software (version 5;
Parametric Technology Corporation, Needham, MA, USA).
Ebramzadeh et al. [36] reported that the optimum thickness
for the cement layer ranges from 2mm to 5mm. Joshi et
al. [37] also indicated reduced incidence of osteolysis when
a cement layer thickness of 3mm is employed, thus, in the
present study, a cement layer thickness of 3mm was used.
Models of the bone, the cement layer, and the prosthesis were
exported to the finite element software package (ABAQUS
Inc., Providence, RI, USA), where they were assembled into a
single finite element (FE) model (Figure 1) and then meshed
using 3D tetrahedral elements [38] (Table 1). A convergence
test was performed on the FE model.

2.2. Boundary Conditions. Static analysis was employed to
simulate simplified loading configurations on the implanted
femur, with the highest contact force and the highest torsional
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Figure 3: Variation of modulus of elasticity (a) in longitudinal direction from distal to proximal when the radial volume fraction gradient is
0 and (b) in radial direction from external surface to internal core when the longitudinal volume fraction gradient is 0.

Table 3: Stairs climbing-frame of maximum torsional moment [32, 33].

Force (N) 𝑥 𝑦 𝑧 Acts at point∗

Hip contact −415.1 −424.2 −1654.1 P0
Abductor 490.7 201.6 594.3 P1
Iliotibial tract, proximal part 73.5 −21 89.6 P1
Iliotibial tract, distal part −3.5 −5.6 −117.6 P1
Tensor fascia lata, proximal part 21.7 34.3 20.3 P1
Tensor fascia lata, distal part −1.4 −2.1 −45.5 P1
Vastus lateralis −15.4 156.8 −945.7 P2
Vastus medialis −61.6 277.2 −1869.7 P3
∗

Presented in Figure 1.

Table 4: Material properties of implanted femur components.

Material Plane Modulus of elasticity
(𝐸) [GPa]

Modulus of rigidity
(𝐺) [GPa] Poisson’s ratio (V) Ref.

Cortical bone
𝑥𝑥 11.5 3.60 0.51

[34, 35]

𝑦𝑦 11.5 3.30 0.31
𝑧𝑧 17.0 3.30 0.31

Spongy bone — 2.13 — 0.30
Cement — 2.70 — 0.35
Titanium alloy (Ti) — 110 — 0.30
Hydroxyapatite (HA) — 10 — 0.30 [30]
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Figure 4: Strain energy in the spongy portion of the proximal metaphysis of the femur due to the implantation of (a) normal walking-
cemented prostheses, (b) normal walking-non-cemented prostheses, (c) stair climbing-cemented prostheses, and (d) stair climbing-non-
cemented prostheses (the legend shows the radial volume fraction gradient exponent change). 𝑛 is radial volume fraction gradient exponent.

moment in normal walking and in stair climbing, respec-
tively. The forces during normal walking and stair climbing
are shown in Tables 2 and 3, respectively. The hip contact
force and muscle loading at the hip joint were based on a
study by Bergmann et al. [32] and Heller et al. [33]. The
locations of the applied forces are shown in Figure 2. The
femur was fixed at the distal end of the knee joint (Figure
1) [30, 39]. The bone and the cement layer were bonded
in the cemented prosthesis implantation [40]. Surface-to-
surface contact with finite sliding and a friction coefficient of
0.3 were considered for bone prosthesis in the noncemented
implantation [34, 41] and the prosthesis-cement interface in
the cemented implantation [35, 42]. To apply the loads and
thematerial property to the cortical bone, a datum coordinate
system was defined in ABAQUS, with the 𝑧-axis parallel to
the idealized midline of the femur and the 𝑥-axis parallel to
the dorsal contour of the femoral condyles in the transverse
plane [32].

2.3. Materials. The mechanical properties of the materials
are presented in Table 4 [30, 35, 42]. The cortical bone was
considered a transversely isotropic elastic material, whereas
the spongy bone, cement, hydroxyapatite (HA), and titanium
alloy (Ti) were considered linear isotropic elastic materials.
To assign material properties of the cortical bone, elastic

properties were inserted into ABAQUS by selecting the type
of engineering constants. The datum coordinate system was
subsequently employed to orient the properties. The FG
prosthesis comprised layers of Ti and HA, with the variation
of the modulus of elasticity of the FGM (𝐸), along the
longitudinal and radial directions, being described by the
following power law [43]:

𝐸 = 𝐸Ti(
2𝐾 + ℎ

2ℎ

)

𝑏

+ 𝐸HA (1 − (
2𝐾 + ℎ

2ℎ

)

𝑏

) ,

𝑏 = volume fraction gradient exponent,
𝑏 = 𝑚 (longitudinal volume fraction gradient exponent) ,

𝑏 = 𝑛 (radial volume fraction gradient exponent) ,

0 ≤ 𝑛 ≤ ∞,

0 ≤ 𝑚 ≤ ∞,

−

ℎ

2

≤ 𝐾 ≤

ℎ

2

,

(1)

where 𝐸Ti and 𝐸HA are the modulus of elasticity for Ti and
HA, respectively; ℎ represents the height (115.0mm) and the
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Figure 5: The von Mises stress distribution in the radial and longitudinal directions of the noncemented prostheses, under normal walking
and stair climbing conditions.
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Figure 6: The von Mises stress distribution in the femur due to inserting radial noncemented prosthesis, under normal walking and stair
climbing conditions.

thickness (3.1mm) of the prosthesis in the longitudinal and
longitudinal and radial directions, respectively;𝐾denotes the
change in stem height in the longitudinal direction of the
prosthesis from the distal to the proximal end and the change
in thickness in the radial direction of the prosthesis from the
cortex layer to the central core; and 𝑛 and 𝑚 are the radial
and the longitudinal volume fraction gradient exponents,
respectively. The volume fraction gradient exponents of 0.0,
0.1, 0.5, and 1.0 were employed to alter the value of 𝐸 in the
radial and the longitudinal directions; the volume fraction
gradient exponent of 0.0 represented Ti. The variation of 𝐸
with 𝑛 and 𝑚 in the longitudinal and radial directions of the
prosthesis is presented in Figure 3.

3. Results

The variation of the strain energy density (SED) in the
spongy portion of the proximal metaphysis of the femur
after implantation with the different FG femoral prostheses
is shown in Figure 4. It is seen that (1) the lowest SED was
obtained with 𝑛 = 0.0 and 𝑚 = 0.0 (Ti, conventional mat-
erial), whereas the highest SEDwas obtainedwith 𝑛 = 1.0 and
𝑚 = 1.0; (2) an increase in 𝑛 produced about two times the

effect on SED as an increase in𝑚; (3) SED for a noncemented
FG prosthesis was higher than that for a cemented one; and
(4) SED was lower under normal walking conditions than
under stair climbing.

During either normal walking or stair climbing, (1) the
vonMises stress in the noncemented FG prosthesis decreased
in both the radial and the longitudinal directions of the
prosthesis with increase in both 𝑛 and 𝑚 (Figure 5) and (2)
the von Mises stress in the femur, when a noncemented FG
prosthesis was implanted, was significantly affected (Figure
6).

The peak value of the von Mises stress in the prosthesis
decreased with increase in 𝑛 and 𝑚 (Figures 7 and 8; Table
5) and the noncemented prostheses experienced lower stress
than the cemented ones (Figures 7 and 8; Table 5), and more
stress was exerted to the medial side of prostheses compared
to the lateral side (Figures 7 and 8; Table 5).

The peak value of the maximum and minimum principal
stresses in the femur increased with increase in 𝑛 and 𝑚
(Figures 9 and 10; Table 6); insertion of the noncemented
prosthesis produced lower stress than when the cemented
one was inserted (Figures 9 and 10; Table 6), more stress was
induced in the bone under the stair climbing than the normal
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Figure 7:The vonMises stress variation on the longitudinal femoral prosthesis under normal walking: (a) lateral side of cemented prosthesis,
(b) medial side of cemented prosthesis, (c) lateral side of noncemented prosthesis, and (d) medial side of noncemented prosthesis.

walking condition (Figures 9 and 10; Table 6) andmedial side
of the bone carriedmore stress in comparison with the lateral
side (Figures 9 and 10; Table 6).

The peak value of the maximum principal stress on the
surface of the cement layer increased with increase in 𝑛 and
𝑚 (Figures 11 and 12; Table 7) and low stress was obtained at
the external surface of the cement layer, whennormalwalking
condition was used, whereas high stress was obtained at the
external surface of the cement layer, when stair climbing
condition was used (Figures 11 and 12; Table 7).

In the cemented model, (1) at both the prosthesis-
cement interface and the cement-bone interface, the stress
was practically constant with increase in 𝑚 and 𝑛 (Table 8)
and (2) the stress at the cement-bone interface was higher
than that at the prosthesis-cement interface (Table 8). In the
noncemented model, at both the prosthesis-cement interface
and the cement-bone interface, (1) the stress decreased with
increase in 𝑚 and 𝑛 (Table 8) and (2) the stress under
stair climbing condition was higher than that under normal
walking condition (Table 8).
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Table 5: Summary of von Mises stress on the femoral stem.

𝑚
∗

Lateral Medial
𝑛
∗

0.0 0.1 0.5 1.0 0.0 0.1 0.5 1.0

Cemented

Normal waking

0.0 48.9 39.9 18.6 9.6 53.2 43.7 21.9 12.6

0.1 46.7 38.7 18.2 9.5 49.4 43.5 22.0 12.5

0.5 42.6 35.0 16.6 9.3 46.5 39.9 21.0 12.3

1.0 39.1 33.5 15.8 9.2 43.6 37.4 20.0 12.1

Stair climbing

0.0 51.0 42.8 21.5 12.4 76.7 36.5 29.9 16.4

0.1 48.2 41.6 21.6 12.3 75.4 35.1 16.3 16.0

0.5 45.3 39.1 20.6 11.9 69.7 32.1 56.9 13.7

1.0 42.1 38.2 19.5 11.6 62.4 33.7 15.6 13.7

Noncemented

Normal waking

0.0 47.0 38.4 18.2 20.6 61.1 51.6 27.5 17.6

0.1 45.9 37.7 18.3 17.5 58.6 50.4 27.1 17.9

0.5 42.2 35.1 17.3 16.0 55.3 47.9 26.0 17.1

1.0 38.6 32.1 16.2 16.1 52.3 45.1 24.9 16.8

Stair climbing

0.0 44.2 36.1 17.0 14.8 60.6 51.1 27.1 17.0

0.1 43.8 35.3 17.8 14.7 58.5 50.3 26.8 18.5

0.5 39.9 32.7 16.0 14.8 54.6 47.6 25.7 16.3

1.0 36.4 29.8 15.2 14.8 51.6 44.6 24.5 16.1
∗

𝑛: radial volume fraction gradient exponent.
∗

𝑚: longitudinal volume fraction gradient exponent.

Table 6: Summary of maximum and minimum principal stress on the femur.

𝑚
∗

Maximum principal stress Minimum principal stress
Lateral Medial

𝑛
∗

0.0 0.1 0.5 1.0 0.0 0.1 0.5 1.0

Cemented

Normal waking

0.0 16.4 16.8 18.0 18.9 23.4 24.5 24.4 24.6
0.1 16.6 17.0 18.2 19.1 23.4 24.7 25.0 25.2
0.5 17.2 17.5 18.7 19.5 23.6 25.0 25.2 25.4
1.0 17.9 18.8 19.3 19.9 23.9 25.0 25.5 25.6

Stair climbing

0.0 19.5 19.9 21.2 22.1 46.7 46.7 46.5 46.7
0.1 19.7 20.1 21.3 22.2 46.4 47.0 47.4 47.7
0.5 20.2 20.6 21.7 22.6 46.7 47.5 47.8 48.0
1.0 20.8 21.3 22.2 23.0 47.0 67.5 48.1 48.2

Cementless

Normal waking

0.0 10.2 10.3 10.6 10.8 9.8 10.0 10.8 13.6
0.1 10.4 10.4 10.5 10.6 10.9 13.9 14.5 14.9
0.5 11.0 10.5 10.5 10.6 11.0 15.5 15.5 15.3
1.0 10.9 10.6 10.7 10.7 11.4 15.9 15.5 15.4

Stair climbing

0.0 10.0 10.1 10.6 10.9 25.0 25.0 25.1 25.1
0.1 10.5 10.6 10.8 11.0 24.1 24.5 24.7 24.7
0.5 11.5 10.9 11.0 11.0 23.8 24.1 24.4 24.6
1.0 11.2 10.9 10.9 10.9 23.3 24.0 24.3 24.7
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Figure 8: The von Mises stress variation on the longitudinal femoral prosthesis under stair climbing: (a) lateral side of cemented prosthesis,
(b) medial side of cemented prosthesis, (c) lateral side of cementless prosthesis, and (d) medial side of cementless prosthesis.

4. Discussion

The limited lifespan of the THR is highly considered by
the surgeons and prosthetists due to the complications of
the revision surgeries [30]. Therefore, they make an effort
to increase the longevity of the THR by improving surgery
methods and designs. Stiffness of the prosthesis by affecting
the stress shielding and interface stresses plays a significant
role in the durability of the THR. Prosthesis stiffness is a
function of the prosthesis material and cross-section geom-
etry [4].Therefore, to minimize stress shielding and interface
stresses prosthetist tries to optimize prosthesis stiffness by

employing new materials in the prosthesis design. As a
result, in many studies researchers have employed FEA in
conjunctionwith the FGMs andmade an effort to introduce a
new design that could find an optimum compromise between
stress shielding and interface stresses [27–29]. However, their
works were limited to the 2D FEA, simplified models of the
noncemented prostheses and subjected to a single simplified
load case. Therefore, in the present work, a 3D FEA was
exploited to examine performance of the noncemented and
cemented FG prostheses and explore more about the stress
distribution in the THR constituents (femoral stem, bone,
and cement) in the two loading cases of the highest contact
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Figure 9: Stress variation on the internal surface of the femur under normal walking: (a) maximum principal stress, cemented prosthesis, (b)
minimum principal stress, cemented prosthesis, (c) maximum principal stress, noncemented prosthesis, and (d) minimum principal stress,
noncemented prosthesis.

force in the normal waking and the highest torsionalmoment
in the stair climbing.

Volume fraction of phases in the FGMs is adjusted by the
volume fraction gradient exponent (𝑛 and𝑚). In the present
study, the volume fraction of ceramic phasewith lessmodulus
of elasticity increased by the volume fraction gradient expo-
nent growth. Since, the stiffness of the prosthesis is a function
of the modulus of elasticity of the prosthesis, the stiffness
of prostheses declines by volume fraction gradient exponent
growth. Moreover, it has been shown that the induced SED

in the proximal metaphysis of the femur has an adverse rela-
tionship with the stiffness of prosthesis.Therefore, more SED
was stimulated to the proximal portion of the femur by FG
prostheses compared to the prostheses made of conventional
material of Ti (𝑛 = 0 and 𝑚 = 0) by increase in the 𝑛 and 𝑚.
The increase in the 𝑛 and 𝑚 simultaneously provoked more
SED in the bone compared to the individual 𝑛 and𝑚 growth
due to more reduction in the prosthesis stiffness. Meanwhile,
the radial volume fraction gradient exponent (𝑛) showed
more contribution in the SED enhancement in comparison
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Figure 10: Stress variation on the internal surface of the femur under stair climbing: (a) maximum principal stress, cemented prosthesis, (b)
minimum principal stress, cemented prosthesis, (c) maximum principal stress, noncemented prosthesis, and (d) minimum principal stress,
noncemented prosthesis.

with the longitudinal volume fraction gradient exponent
(𝑚). In the cemented prosthesis implantation, a portion
of the loads is carried and damped by the cement layer.
Therefore, the volume fraction gradient exponent growthwas
less influential on the SED increase in the cemented fixation
method than the noncemented prosthesis implantation.

Loads transfer mechanism at the proximal of the femur
alters after the THR. In other words, loads transfer to the
femur though the femoral stem from the hip joint and the

loads are partially transferred through shear across the bone,
cement, and prostheses interfaces [44]. The stiffness of the
THR components (prosthesis, cement, and bone) plays a
significant role and dictates amounts of the load sharing
between them.The prostheses composed of the conventional
materials (Ti, chrome-cobalt, and stainless steel) are stiffer
than the cortical bone [45].Therefore, more loads are carried
by prostheses compared to the bone and cement at the
proximal portion of the femur. However, in the THRwith FG
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Figure 11: Maximum principal stress variation on the cement surface due to longitudinal prosthesis: (a) normal walking, internal surface, (b)
normal walking, external surface, (c) stair climbing, internal surface, and (d) stair climbing, external surface.

prostheses, the prostheses sharemore loadswith the bone and
cement at the proximal portion of the femur with the volume
fraction gradient exponent growth.This is due to the decrease
in the mismatching between the stiffness of the prosthesis
with the bone and cement as a result of the stiffness reduction
of the prosthesis. Therefore, less stress was induced to the FG
femoral stem than the femoral stem composed of Ti (𝑛 = 0
and 𝑚 = 0), while the bone and cement tolerate more stress.
However, the stress increase in the bone and cement is much
less than the ultimate tensile strength of bone (121MPa),
the ultimate compressive strength of the bone (167MPa),

and the ultimate tensile strength of the cement (30MPa).
Meanwhile, in the FG prostheses, the stress distribution
pattern on the prosthesis is altered by increase in the volume
fraction gradient exponent and the peak value of the stresses
declines on the surface of the prosthesis. Therefore, the FG
prostheses provoke less interface stress even with reduction
in the stiffness of the prosthesis especially for noncemented
prostheses.

The FG prostheses induced more SED to the proximal
metaphysis of the femur compared to the conventional mat-
erial of Ti (𝑛 = 0 and𝑚 = 0) and amount of the SED increased
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Figure 12: Maximum principal stress variation in cement layer due to radial prosthesis: (a) normal walking, internal surface, (b) normal
walking, external surface, (c) stair climbing, internal surface, and (d) stair climbing, external surface.

by the𝑚 and 𝑛 growth (Table 5).These findings are supported
by the previous results reported in [4, 46] which showed that
the stiff prostheses provoked less SED in the bone than the
prostheses with the lower stiffness. Simões et al. [8, 26] also
showed that a prosthesis with a tailorable stiffness produced
more SED in the bone compared to the prostheses composed
of conventional materials of Ti and chrome-cobalt. El-Sheikh
[47] and Simões et al. [8, 26] revealed that the developed stress
in the prosthesis declines with the reduction in the stiffness
of prosthesis which is consistent with results of the present
work. The present work demonstrated that more stress was

provoked to the bone and cement due to the prosthesis
stiffness reduction which was also reported in [4, 8, 26]
(Tables 6 and 7). The medial side of the femur carried more
stress than the lateral side of the femur which was a similar
trend to the findings in [48]. Kuiper and Huiskes [25] and
Hedia et al. [27, 28] showed that less interface stress induced
to the prosthesis-bone interface by FG prostheses which were
in agreement with presented results in this study. Hedia et al.
[28] also noted that the longitudinal FG prostheses induced
less interface stress at the prosthesis-bone interface that is in
agreement with the presented findings (Table 8).
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Table 7: Summary of maximum principal stress on the cement layer.

𝑚
∗

Internal External
𝑛
∗

0.0 0.1 0.5 1.0 0.0 0.1 0.5 1.0

Normal waking

0.0 4.5 4.6 4.8 5.0 3.6 3.7 3.8 4.0
0.1 4.8 4.9 5.0 5.2 3.7 3.7 3.9 4.0
0.5 4.9 5.0 5.2 5.3 3.7 3.8 3.9 4.1
1.0 5.0 5.1 5.3 5.3 3.9 3.9 4.0 4.1

Stair climbing

0.0 3.4 3.5 3.6 3.7 4.7 4.8 4.9 5.1
0.1 3.5 3.5 3.6 3.7 4.7 4.8 5.0 5.1
0.5 3.5 3.5 3.7 3.8 4.9 4.9 5.0 5.2
1.0 3.6 3.6 3.7 3.8 5.0 5.1 5.1 5.2

∗

𝑛: radial volume fraction gradient exponent.
∗

𝑚: longitudinal volume fraction gradient exponent.

Table 8: Summary of shear stresses at the prosthesis-cement and cement-bone interfaces.

Fixation Cemented Noncemented

𝑚
∗

Prosthesis-cement Cement-bone Bone-prosthesis
𝑛
∗

0 0.1 0.5 1.0 0.0 0.1 0.5 1.0 0 0.1 0.5 1.0

Normal waking

0.0 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 8.3 8.1 7.0 6.4
0.1 1.5 1.5 1.6 1.6 1.6 1.7 1.7 1.7 7.1 7.1 6.1 5.6
0.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7 1.7 6.5 5.9 5.1 4.6
1.0 1.6 1.6 1.6 1.6 1.7 1.6 1.7 1.7 5.4 4.5 4.0 3.7

Stair climbing

0.0 1.7 1.7 1.7 1.7 2.2 2.3 2.3 2.3 10.9 10.9 10.1 9.2
0.1 1.7 1.7 1.7 1.7 2.3 2.3 2.3 2.3 9.9 9.6 9.0 8.7
0.5 1.7 1.7 1.7 1.7 2.3 2.2 2.3 2.3 9.5 9.2 8.0 7.0
1.0 1.7 1.7 1.7 1.7 2.3 2.3 2.3 2.3 7.3 6.8 5.6 3.6

∗

𝑛: radial volume fraction gradient exponent.
∗

𝑚: longitudinal volume fraction gradient exponent.

The present study had encountered numerous difficulties
inmodeling the femur implanted with FG femoral prostheses
and presenting the results pertaining to the longitudinal,
radial, and longitudinal-radial FG prostheses. However, cer-
tain limitations remained, such as material properties and
load simplification, as well as static analysis and study
of single prosthesis. These simplifications were also found
elsewhere [3, 33, 35, 42] and exploited to save time in the
modeling process.The loads simplification has been validated
against in vivo data by Heller et al. [49] and showed an error
of less than 10%.

5. Conclusion

The FG prostheses provoked more SED in the bone and
showed a better performance that preserves femur from
resorption by volume fraction gradient exponent growth.The
developed stress in the femoral stem was declined by the vol-
ume fraction gradient exponent growth.Onother hand,more
stress was stimulated to the bone and cement layer with vol-
ume fraction gradient exponent increase. The induced inter-
face stresses decreased at the prosthesis-bone interface by

volume fraction gradient exponent growth in the nonce-
mented prostheses fixation method, while they showed a
limited change in the cemented prostheses fixation methods.
However, more interface stress was developed to the cement-
bone interface than the prosthesis-cement interface in the
cemented prostheses fixation methods. The radial volume
fraction gradient exponent was more influential than the
longitudinal one. The medial side of the prostheses and bone
carried more stress and stair climbing was more harmful
compared to the normal walking.
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