
fphys-11-00330 April 16, 2020 Time: 18:1 # 1

ORIGINAL RESEARCH
published: 17 April 2020

doi: 10.3389/fphys.2020.00330

Edited by:
Julio R. Banga,

Spanish National Research Council,
Spain

Reviewed by:
Yu Luo,

University of Delaware, United States
Chunguang Yang,

Institute of Metals Research (CAS),
China

*Correspondence:
Mark P. Brynildsen

mbrynild@princeton.edu

Specialty section:
This article was submitted to

Systems Biology,
a section of the journal
Frontiers in Physiology

Received: 17 December 2019
Accepted: 20 March 2020

Published: 17 April 2020

Citation:
Sivaloganathan DM and

Brynildsen MP (2020) Quantitative
Modeling Extends the Antibacterial

Activity of Nitric Oxide.
Front. Physiol. 11:330.

doi: 10.3389/fphys.2020.00330

Quantitative Modeling Extends the
Antibacterial Activity of Nitric Oxide
Darshan M. Sivaloganathan1 and Mark P. Brynildsen2*

1 Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, United States, 2 Department
of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States

Numerous materials have been developed to try and harness the antimicrobial
properties of nitric oxide (NO). However, the short half-life and reactivity of NO have
made precise, tunable delivery difficult. As such, conventional methodologies have
generally relied on donors that spontaneously release NO at different rates, and delivery
profiles have largely been constrained to decaying dynamics. In recent years, the
possibility of finely controlling NO release, for instance with light, has become achievable
and this raises the question of how delivery dynamics influence therapeutic potential.
Here we investigated this relationship using Escherichia coli as a model organism and
an approach that incorporated both experimentation and mathematical modeling. We
found that the best performing delivery mode was dependent on the NO payload, and
developed a mathematical model to quantitatively dissect those observations. Those
analyses suggested that the duration of respiratory inhibition was a major determinant
of NO-induced growth inhibition. Inspired by this, we constructed a delivery schedule
that leveraged that insight to extend the antimicrobial activity of NO far beyond what
was achievable by traditional delivery dynamics. Collectively, these data and analyses
suggest that the delivery dynamics of NO have a considerable impact on its ability to
achieve and maintain bacteriostasis.
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INTRODUCTION

Nitric oxide (NO) is a diatomic, hydrophobic, free radical gas with a wide array of antimicrobial
properties (Fang, 2004; Thomas et al., 2008). When present at concentrations in the micromolar
(µM) range and above, NO can directly impair enzyme activity by irreversibly damaging iron-
sulfur cluster residues and inhibit cellular respiration by binding heme groups within cytochrome
oxidases (Wink and Mitchell, 1998; Thomas et al., 2008; Radi, 2018). Additionally, it is capable
of reacting with oxygen and superoxide spontaneously to generate even more deleterious species
that can cause protein damage, through thiol and tyrosine nitrosylation, DNA damage through base
deamination, and damage to membranes and lipid structures through lipid peroxidation (Hogg and
Kalyanaraman, 1999; O’Donnell and Freeman, 2001; Vázquez-Torres and Fang, 2005; Toledo and
Augusto, 2012). These diverse cytotoxic effects can ultimately impair bacterial metabolism, inhibit
growth, and cause cell death.

Within the context of innate immunity, phagocytic cells harness NO to combat and eliminate
invading pathogens (Fang, 2004; Flannagan et al., 2009; Henard and Vázquez-Torres, 2011).
The importance of NO to pathogen virulence has been demonstrated by the large number of
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bacteria that require NO detoxification systems for survival
(Poole and Hughes, 2000; Poole, 2005). For example, Salmonella
enterica lacking the flavohemoglobin Hmp were found to be more
susceptible to killing by macrophages (Stevanin et al., 2002; Bang
et al., 2006). Similarly, deletion of Hmp in uropathogenic E. coli
was found to significantly impair its ability to colonize the urinary
tract (Svensson et al., 2010). In addition, the inability to produce
NO in a murine model, through deletion of inducible nitric
oxide synthase (iNOS), has been linked to increased likelihood of
infection by Mycobacterium tuberculosis, Listeria monocytogenes,
and Leishmania spp. (MacMicking et al., 1995). Conversely,
increased iNOS expression has been associated with reduced
malaria symptoms, as well as the decreased possibility of relapse
(Kun et al., 2001; Hobbs et al., 2002).

The potent and broad-spectrum antimicrobial properties of
NO have led to the development of numerous NO therapeutics
(Kim et al., 2014; Yang et al., 2015). Many small chemical
compounds and functional moieties have been developed to
exogenously produce NO in response to heat, pH, and enzymatic
catalysis. Some of the most widely used and studied NO-
releasing moieties include diazeniumdiolates (NONOates) and
S-nitrosothiols (Riccio and Schoenfisch, 2012; Sadrearhami
et al., 2018). In recent years, different materials and delivery
vehicles have been designed to take advantage of the release
properties of these chemistries. Polymer scaffolds, gels, and
coatings represent one large class of such materials (Kim
et al., 2014; Liang et al., 2015). Examples include NO-releasing
polymer coatings (Ho et al., 2017), NO-releasing sol-gels
(Nablo et al., 2005), and NO-releasing chitosan oligosaccharides
(Lu et al., 2014). Ho and colleagues demonstrated that
exposure of P. aeruginosa or S. aureus to NONOate coatings
significantly reduce bacterial adhesion and biofilm formation
(Ho et al., 2017). Moreover, NONOate based sol-gels have
been evaluated as potential coatings for orthopedic devices,
where coated medical grade steel was effective at inhibiting
P. aeruginosa, S. aureus, and S. epidermidis adhesion (Nablo et al.,
2005). Lu and colleagues designed NONOate-based chitosan
oligosaccharides that were extremely effective at penetrating
biofilms and killing P. aeruginosa, while providing essentially
no toxicity to mouse fibroblast cells (Lu et al., 2014). Another
significant class of NO delivery vehicles are nanoparticles
(Quinn et al., 2015). Kafshgari and coworkers devised porous
silica-based nanoparticles conjugated to S-nitrosothiols and
S-nitrosogluthatione and showed that they have significant
antimicrobial activity against E. coli and S. aureus (Hasanzadeh
Kafshgari et al., 2016). Overall, there has been sustained, growing
interest in developing NO materials and delivery vehicles capable
of harnessing the antimicrobial properties of NO. The examples
mentioned above represent only a fraction of such compounds.

Despite the development of numerous NO materials, few
have been evaluated for therapeutic purposes or have translated
to clinical settings (Liang et al., 2015; Yang et al., 2015). One
of the issues is associated with poor control of NO release.
Low stability and rapid release of NO make it difficult to
deliver NO for extended periods of time, maintain concentrations
within desirable ranges, and provide tissue-specific activity.
Traditional materials are loaded with a payload of NO donor

that spontaneously dissociates when exposed to water or other
conditions. As such, NO dynamics have largely been constrained
to rapid accumulation of NO at the onset of delivery followed
by progressive decay. Not only are these dynamics restricted,
but they are in stark contrast to the way NO is delivered
naturally within phagosomes. During an immune response, NO
is delivered for extended periods of time, in which the rates of
NO delivery have been suggested to peak hours after phagocytosis
(Reichner et al., 1999; Vazquez-Torres et al., 2000; Pfeiffer et al.,
2001). Recently, our group established a relationship between
bolus payload and release kinetics, where at lower payloads faster
dissociation rates led to greater antimicrobial activity, while at
higher payloads slower dissociation rates were favored (Robinson
et al., 2014b). However, the restricted set of delivery dynamics
evaluated and their discordance with the way NO is delivered
in physiological environments, raises the question of how this
design criterion may impact the development of future NO-
based therapeutics.

In recent years, the possibility of finely controlling delivery
has become achievable with the development of light controlled,
photoactivated compounds (Sortino, 2010; Choi et al., 2016;
Sadrearhami et al., 2018). In particular, metal-nitrosyl complexes
have gained significant attention, as alternative NO releasing
moieties, because of their ability to induce NO release upon
exposure to specific wavelengths of light (Tfouni et al., 2012;
Xiang et al., 2017). The Mascharak group developed manganese-
nitrosyl sol-gel coatings that released NO upon exposure to
near infrared light (NIR) and led to significant reduction of
S. aureus, E. coli and A. baumannii bacterial loads (Heilman
and Mascharak, 2013). Similarly, Evans and colleagues developed
manganese-nitrosyl based polymer microparticles that release
NO upon exposure to NIR (Evans et al., 2018). Roveda and
coworkers designed polyamidoamine dendrimers modified with
ruthenium nitrosyl moieties, which could be activated upon
UV irradiation (Roveda et al., 2014). In addition to light-
activated compounds, enzymatic pro-drug systems represent
another methodology to finely tune delivery rates through the
control of enzymes or substrates. Jones and colleagues developed
a NO probiotic patch in which Lactobacilli fermentation of
glucose lead to NO production from nitrite (Jones et al.,
2010). The Zhao group generated a unique methylated galactose
NONOate conjugate that was only recognizable by a mutant
beta galactosidase enzyme from Thermus thermophilus (Hou
et al., 2019). NONOate release was restricted to environments
containing the selective beta galactosidase and by co-delivering
the enzyme and pro-drug, which allowed localization of NO
release to specific tissues and reduced systemic toxicity.

The capability of precisely controlling NO delivery raises
several interesting questions, such as, how delivery dynamics
influence the antimicrobial potency of NO; and what is the
best way to deliver a given payload of NO? To begin to
address these questions, we used an approach that integrated
experiments and computational modeling to assess, analyze, and
predict how NO delivery dynamics influence the duration of
nitrosative stress in E. coli cultures. Using fed-batch bioreactors,
we evaluated four basic modes of delivery, one of which was
a traditional bolus delivery, and observed that dosing outcome
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differed drastically depending on the payload administered. That
data was used to train a computational model of the E. coli
NO stress network, which was able to accurately predict the
NO concentration profiles and clearance times when larger
payloads were administered. Quantitative analysis of those results
suggested that maintaining respiratory inhibition was a major
driver of delivery outcome, which was a prediction confirmed
by further experimentation. Finally, with the model as a guide,
we constructed delivery regimes capable of maintaining steady
state NO concentrations at levels sufficient to inhibit cellular
respiration, and this led to dosing schedules that were far more
effective than any other tested delivery schemes. Collectively, the
data and analyses presented here demonstrate the importance of
dosing dynamics when designing NO-based treatments.

RESULTS

Bioreactor Configuration to Modulate
NONOate Delivery
In this study, we sought to investigate the impact of delivery
dynamics on the antimicrobial potency of NO. To do this, we
constructed a system capable of finely tuning delivery of NO
releasing compounds (NONOates) (Figure 1A). Specifically, our
system is composed of a fed-batch bioreactor, in which the input
flowrates of NONOate and its balance stream (NONOate solvent)
can be programmed and automated using a low flow control
system. We elected a drip system to eliminate the possibility
of back flow, which was a concern due to the low flowrates
we planned to use (as low as 10 µL/min). We are able to
measure and monitor several outputs, such as the concentration
of NO and O2 present in the bioreactor, as well as temperature
and culture turbidity.

We chose to begin our investigation by evaluating four
principle modes of delivery. In particular, we examined the
dynamics of linearly increasing (ramp up), linearly decreasing
(ramp down) and constant delivery regimes and compared them
to the traditional delivery method, which is a bolus (Figure 1B).
Delivery schemes were implemented over 1 h with a total payload
of 6 µmol PAPA NONOate delivered (Figure 1C). To maintain
identical volumes with the different schema as a function of time,
a secondary drip system delivered a balance stream, which was
10 mM NaOH (solvent for PAPA NONOate). In the control case
of bolus delivery, both reservoirs were programmed to deliver
10 mM NaOH over 1 h. Figure 1D depicts the differing NO
dynamics in cell-free systems for these four modes of delivery.

Type of Delivery Mode Influences the
Duration of NO Stress in a
Payload-Dependent Manner
To begin exploring NO detoxification under different delivery
schema, aerobic cultures of E. coli were grown to mid-exponential
phase and inoculated into a bioreactor at an optical density
at 600 nm (OD600) of 0.05 before being treated with 6 µmol
of PAPA NONOate, delivered using each of the four modes,
over 1 h, with the exception of bolus which was introduced

at the onset. Our metric of interest to evaluate different
delivery modes is NO clearance time (tclear), which is the time
during which the concentration of NO ([NO]) is greater than
or equal to 0.5 µM. This concentration was chosen because
NO at µM concentrations or above exerts nitrosative stress
(Thomas et al., 2008).

At a payload of 6 µmol PAPA NONOate, bolus delivery led
to an [NO] peak of 10.32 ± 0.37 µM (Figure 2A) and NO was
cleared from the culture by 0.686 ± 0.016 h. In contrast, the
other delivery schemes failed to reach 0.5 µM, and thus did not
result in nitrosative stress. Interestingly, dosing higher payloads
(18 µmol), led to strikingly different dynamics (Figure 2B). All
four delivery schema produced nitrosative stress, with constant
delivery being the most effective dosing scheme with an NO
clearance time of 1.411 ± 0.029 h, which was a thirty percent
increase in tclear compared to bolus delivery of the same payload.
This result suggested that the ability of NO to cause nitrosative
stress depends both on the payload and the dynamics of how
it is delivered.

Computational Modeling of NO Stress
To quantitatively explore the relationship between delivery
dynamics and antimicrobial efficacy, we trained a kinetic model
of NO stress in E. coli using the data obtained at 6 and 18
µmol. The model was developed in previous studies (Robinson
and Brynildsen, 2013, 2015, 2016a,b; Robinson et al., 2014a,b;
Sacco et al., 2017) and expanded upon here. Specifically, the
model was adjusted to comply with fed-batch systems and
cellular growth was incorporated and assumed to depend on
the availability of aerobic cytochrome oxidases for respiration.
Uncertain parameters were trained using a non-linear least
squared optimization algorithm, followed by a Markov Chain
Monte Carlo (MCMC) procedure. Parameter sets were accepted
based on Evidence Ratios (ER) and ensembles of models were
generated (section Materials and Methods). A complete list
of species, reactions, and kinetic parameters can be found in
Supplementary Tables S1–S3.

Model Adjustments for Fed-Batch Operation
To simulate our microfluidic drip system, continuous NONOate
delivery and extracellular species dilution were incorporated
into an existing kinetic model of NO metabolism (Robinson
and Brynildsen, 2016b). Specifically, an input term was added
to the rate equation for the NONOate species balance to
capture influx of NONOate. The input term had four functional
forms, depending on the delivery mode implemented (section
Materials and Methods and Supplementary Methods). A volume
dependent dilution term was also included to capture dilution of
extracellular species, as a result of volume expansion within the
bioreactor during operation (section Materials and Methods and
Supplementary Methods).

Incorporation of Cellular Growth
Previous iterations of the model used in this study did not
account for cellular growth but rather focused on the period
of NO stress. This was done because NO is bacteriostatic,
and thus under NO stress cells are non-growing. However, as
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FIGURE 1 | Control of NONOate delivery dynamics. (A) Schematic of a computer-controlled, fed-batch bioreactor used to deliver NONOate. Delivery schedules
were programmed using a computer-controlled low flow drip system. Once initiated, individual peristaltic pumps drew solutions from two reservoirs: PAPA NONOate
solution (dark blue) and 10 mM NaOH (light blue), which then dripped into a bioreactor containing 50 mL MOPS minimal media. [NO] was continuously measured in
the bioreactor using an electrochemical probe. (B,C) 6 µmol PAPA NONOate was delivered over an hour in four modes: bolus (blue), constant (red), ramp down
(green), ramp up (pink). (D) Measured [NO] dynamics, for each mode, during delivery of 6 µmol PAPA NONOate over an hour in the absence of cells. Solid lines
represent the mean of three replicates, whereas the lightly shaded areas represent the standard error of the mean.

depicted for three of the 6 µmol delivery modes (constant,
ramp up, ramp down) and one of the 18 µmol schemes (ramp
up), long periods of time without NO stress were present, and
OD600 measurements revealed that cells were growing during
those periods (Supplementary Figures S1B,D). Growth rate was
modeled as a 1st order Hill-type function.

µ = µmax ·

[
Cytochromebo

]
+
[
Cytochromebd

]
Kµ +

[
Cytochromebo

]
+
[
Cytochromebd

] (1)

Where µmax is the maximum specific growth rate and
Kµ represents the concentration of cytochromes required to
reach half the maximum growth specific rate. Under aerobic
conditions, the majority of ATP production in E. coli is
accounted for by cellular respiration (Baron, 1996; Trotter
et al., 2011; Soria et al., 2013) and therefore we chose to
define the specific growth rate equation as a function of freely

available terminal cytochrome bo and bd-I oxidases. A set
of 16 uncertain respiratory parameters (section Materials and
Methods and Supplementary Table S5), were trained on [O2]
and OD600 data obtained from aerobic, mid-exponential phase
E. coli treated with three concentrations of KCN (0, 50, and
1000 µM) (Supplementary Figure S2). The ensemble of models
could accurately capture O2 consumption and cell density at all
three concentrations of KCN. Additionally, growth-dependent
dilution terms were incorporated into rate equations for cellular
species to capture the expansion of intracellular volume that
occurs with growth (section Materials and Methods). Further,
in previous iterations (Robinson and Brynildsen, 2016b) the
protein translation rate was modeled as a function of [O2],
a reflection of energy production through O2 consumption
by terminal cytochromes; however, here we adjusted that rate
expression so that translation was directly related to growth
(Materials & Methods).
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FIGURE 2 | Delivery outcome is payload dependent. E. coli cultures were grown to exponential phase and inoculated in a bioreactor at an OD600 of 0.05. Five
minutes after inoculation, PAPA NONOate was delivered over an hour in one of four ways (bolus-blue; constant-red; ramp down-green; ramp up-pink) at payloads of
(A) 6 µmol or (B) 18 µmol. [NO] was measured continuously using an ISO-NOP probe. Solid lines represent the mean of three independent experiments, whereas
the lightly shaded areas represent the standard error of the mean. (C) The duration of nitrosative stress (tclear) was measured at 6 µmol and 18 µmol for each
delivery scheme (calculated as the time for which [NO] ≥ 0.5 µM). Values represent the average value ± the standard error of the mean.

FIGURE 3 | Model training and optimization on NO dynamics observed at 6 µmol (A–D) and 18 µmol (E–H) for the four principle dosing modes (refer to
Supplementary Table S6 for a list of optimized parameters). Cultures of E. coli were grown to exponential phase and inoculated in a bioreactor at an OD600 of
0.05. Five minutes after inoculation, PAPA NONOate was delivered over an hour in one of four ways (bolus- blue; constant-red; ramp down-green; ramp up-pink).
Solid lines represent the mean of three independent experiments, whereas the lightly shaded areas represent the standard error of the mean. Dashed black lines
represent simulation results using the ensemble of parameter sets (ER < 10, 28 sets in total) trained on the data presented in this figure. Simulations from the
ensemble members greatly overlapped, thus resembling a single line.
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FIGURE 4 | Model extrapolation and predictions at 24 µmol payloads. Dashed black lines represent predicted [NO] dynamics using the ensemble of parameter sets
(ER < 10, 28 sets in total). Simulations from the ensemble members greatly overlapped, thus resembling a single line. Colored lines represent measured [NO]
dynamics (bolus- blue; constant-red; ramp down-green; ramp up-pink). The solid lines represent the mean of three independent experiments, whereas the lightly
shaded areas represent the standard error of the mean.

Model Training and Experimental Validation
We trained uncertain parameters related to cellular NO
consumption on all [NO] and [O2] data measured at 6 and
18 µmol (21 parameters in total, Supplementary Table S6).
Simulations for the ensembles of models did a good job of
capturing data at both 6 and 18 µmol for the different delivery
modes (Figure 3). To assess the utility of the model, we tested its
predictive power by simulating each delivery mode at 24 µmol.
The model predicted that bolus delivery should lead to a tclear of
0.957 h and that it would be outcompeted by ramp down and
constant modes, with tclear of 1.359 and 1.462 h, respectively,
whereas it should still be more effective than ramp up with a tclear
of 0.859 h. Experimental measurements agreed well with those
forward predictions from the model (Figure 4). This confirmed
that the model could accurately extrapolate to conditions outside
its training data, which gave confidence that it could be used to
quantitatively analyze NO stress in E. coli cultures.

Evaluating NO Clearance by Varying the
Delivery Time
We sought to evaluate the dynamics of three of the principle
dosing modes by varying an additional parameter, duration of
delivery. The analysis focused on 24 µmol payloads and the
total time to achieve that dosage. As depicted in Figures 5A–C,

extending the delivery period lengthened tclear for constant
(red trend line) and ramp-down (green trend line) delivery
modes to such an extent that their tclear exceeded that of bolus
delivery (tclear = 0.957 h) by more than twofold, whereas the most
effective delivery periods for ramp up (purple trend line) were
less than an hour. In addition, simulations revealed that each
delivery mode displayed distinct discontinuities when plotting
tclear against delivery period. Evaluation of the cumulative NO
consumption flux profiles (Figures 5D–F), suggested that the
discontinuities were associated with failures to inhibit cellular
respiration, which led to higher translation rates and ultimately
higher concentrations of Hmp (Supplementary Figures S3–S5),
which is the main NO detoxification enzyme under aerobic
conditions (Gardner and Gardner, 2002; Corker and Poole, 2003;
Robinson and Brynildsen, 2013, 2016b). Noticeably, the ramp-
up delivery mode contains two discontinuities, where the first
was due to an initial failure to inhibit cellular respiration which
allowed increased translation and Hmp protein expression. This
led to cellular NO consumption rates that balanced NO delivery
rates. However, near the end of the delivery period, the increasing
delivery rates began to exceed cellular consumption, which led
to a sudden rise in [NO]. While the second discontinuity, was
similarly due to a failure to inhibit cellular respiration, and
cellular consumption invariably balanced NO influx throughout
delivery. Experiments were performed to assess the accuracy
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FIGURE 5 | Relationship between tclear and delivery period. Model simulations using the ensemble of parameter sets (ER < 10, 28 sets in total) were performed by
delivering 24 µmol PAPA NONOate and varying the delivery period between 0 and 5 h and calculating tclear for each simulation. (A) Constant, (B) ramp down, (C)
ramp up. Solid lines represent predicted relationship between tclear and delivery period, while dashed lines represent discontinuities in the curves. Circles represent
mean tclear values from at least three experiments and error bars represent the standard error of the mean. Predicted NO cumulative distribution profiles using the
optimal parameter set (ER = 1, minimum SSR, 1 set) up to the end of the delivery period or when [NO] dropped below 0.5 µM, whichever was greater for constant
(D), ramp-down (E), and ramp-up (F) delivery schedules. The three major NO consumption pathways are autoxidation (blue), transport to gas phase (red), and
cellular consumption (yellow).

FIGURE 6 | Duration of respiratory inhibition is a strong predictor of tclear. (A) Model predictions using the ensemble of parameter sets (ER < 10, 28 sets in total) for
tclear as a function of delivery period when a 24 µmol PAPA NONOate payload is delivered. Solid lines represent the predicted relationship between tclear and delivery
period (bolus- blue; constant-red; ramp down-green; ramp up-pink), while the lightly shaded lines represent discontinuities in the curves. (B) Plot of duration for
respiratory inhibition vs. tclear. Duration of respiratory inhibition was defined as the length of time for which the percentage of NO bound cytochromes ≥ 99%.

of these predictions, and as depicted by the colored dots
in Figures 5A–C, data agreed well with model predictions,
including the approximate delivery times that corresponded to
the discontinuities.

Given the central role of respiratory inhibition in defining the
delivery periods at which the principle modes become ineffective
(or less effective for the first discontinuity of the ramp up mode),

we plotted tclear as a function of the duration during which
respiration is inhibited. We considered respiratory inhibition, as
the time for which 99% or more of terminal cytochrome oxidase
were NO bound. As depicted in Figure 6, all of the simulations,
regardless of delivery mode, fall onto a single line. This suggested
that the duration of NO stress is strongly associated with the
ability to achieve and maintain respiratory inhibition.
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FIGURE 7 | Designing and implementing delivery schemes to maintain steady state [NO]. (A) For a desired NO concentration α and payload ω, a bolus delivery was
introduced at t0 such that the [NO] profile (blue dashed line) peaked at [NO] = α at t1. At t1 a dosing regime was implemented to maintain d[NO]/dt = 0 and [NO] = α

up until tf (yellow dashed line), at which point the payload ω was exhausted. (B) Steady state dosing regimes were simulated at [NO] between 1 and 10 µM for a
payload of 24 µmol and tclear was measured (dark red dashed line). The light shaded solid red line represent the relationship between tclear and [NO] when
implementing a step function delivery approximation. All simulations were performed using the optimal parameter set (ER = 1, minimum SSR, 1 set).

Maintaining Respiratory Inhibition to
Maximize the Duration of NO Stress
We used the model to evaluate the relationship between [NO]
and respiratory inhibition and found that NO concentrations
slightly above 1 µM (∼1.2 µM) corresponded to 99% NO bound
cytochrome (Supplementary Figure S6). We hypothesized that,
for a given payload, a dosing regimen that could raise and
maintain NO at concentrations of 1.2 µM or greater, would
extend tclear beyond that which could be achieved with bolus
administration or any of the principal modes. Using the model,
we designed delivery schema capable of maintaining steady state
concentrations of NO. Specifically, this was accomplished by
constructing composite delivery schemes (Figure 7A). First, a
bolus was introduced to raise NO to the desired steady state
concentration. Then when [NO] had reached its peak value
a dosing scheme was solved for, using the remainder of the
payload, to deliver NO at a rate that balanced NO consumption,
as predicted by the model, and maintain d[NO]/dt equal to
zero. Composite delivery schemes were designed in this manner
for various concentrations of NO greater than or equal to 1
µM. The model predicted that the optimal composite dosing
regime was achieved by maintaining NO at approximately 2.2
µM. Model simulations suggested that a bolus payload of 0.8
µmol would lead to an NO profile that peaked at 2.2 µM and
that implementing a dosing schedule to maintain NO at 2.2
µM, with the remaining 23.2 µmol, could extend tclear to over
3.8 h. Experimental application of the composite dosing regimen
failed to recapitulate the predicted NO dynamic (Supplementary
Figure S7A), and severely underperformed (tclear = 0.2 h)
compared to the predicted tclear. A deeper analysis revealed
that this inaccurate prediction was due to physical limitations
of our experimental system. Specifically, the pumping system
required us to approximate dosing schedules with piecewise step
functions (Supplementary Figure S7B). Taking into account
this source of error, the model predicted that tclear was not

robust to these variations until the steady NO concentration
exceeded approximately 3 µM (Figure 7B). Therefore, we chose
to implement a delivery regime to maintain [NO] at 4 µM,
which is well within the regime where simulations with the
piece-wise step function agree well with the continuous delivery
function. Simulations revealed that a 4 µM [NO] peak was
achieved by a bolus payload of 1.7 µmol. The remaining 22.3
µmol were delivered to maintain [NO] at 4 µM (Figures 8A,B).
Simulations suggested that it was possible to extend tclear to over
3 h by delivering in this manner, which would be over threefold
higher than bolus administration of 24 µmol. The delivery
scheme was implemented experimentally and the measured [NO]
profile agreed well with simulations (Figure 8C). This dosing
schedule proved to be far more effective than any of the principle
delivery modes, and more specifically, it led to a threefold
increase in tclear when compared to a bolus delivery of the same
payload (Figure 8D).

DISCUSSION

Nitric oxide is a potent antibacterial harnessed by macrophages
of the innate immune response (Radtke and O’Riordan, 2006;
Haas, 2007; Bowman et al., 2011). The potential of NO as an
antimicrobial treatment has led to the development of numerous
materials capable of directly delivering NO to infection sites
(Seabra and Durán, 2010; Schairer et al., 2012a). For example,
Martinez and coworkers demonstrated that delivery of silica-
based nanoparticle into skin lesions of MRSA-infected mice, led
to significant reductions of bacterial burden when compared to
untreated infections (Martinez et al., 2009). Nablo and colleagues
developed silicone elastomer implants coated with NONOate sol-
gels that led to an 82% reduction in the number of S. aureus
infected implants when compared to uncoated implants in a rat
model (Nablo et al., 2005). Notably, these animal studies were
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FIGURE 8 | Implementation of a delivery schedule to maintain [NO] at 4 µM steady state with a payload of 24 µmol. Comparison of delivery rate (A) and cumulative
NONOate (B) profiles for a 4 µM steady state dosing schedule and the principle delivery modes over identical delivery periods. Comparison of the predicted and
measured [NO] profiles (C) and tclear values (D) for a 4 µM steady state dosing scheme compared to a bolus delivery. Dashed colored lines represent predicted [NO]
dynamics using the optimal parameter set (ER = 1, minimum SSR, 1 set). Solid colored lines represent the mean of three independent experiments, while lightly
shaded areas represent the standard error of the mean.

conducted with materials that would spontaneously release NO
with a decaying rate. The limited control over NO release has
led to restricted NO dynamics, in which NO profiles exhibit
high initial levels that decline as a function of time. Given the
advent of materials with increasingly tunable NO delivery, such
as photo controllable and enzyme pro-drug systems, the question
of whether other modalities of NO release could influence
therapeutic outcomes arises.

We began by constructing a system capable of tuning NO
delivery and measured how cultures of E. coli responded to
treatment. In particular, we explored three primary modes of
delivery (linearly increasing, decreasing, and constant modes)
and compared them to bolus. At lower payloads, we observed
that bolus delivery was the only effective method. While at
higher payloads delivery outcome was quite different with all four
delivery schedules providing periods of nitrosative stress (tclear)
and two of the four outcompeting bolus. With the observation
that the efficacies of delivery regimens were a function of payload,
we sought to develop a computational model that could predict

NO dynamics under different delivery scenarios. Using the data
obtained at both payloads (6 and 18 µmol), we trained a model
of the NO biochemical network and showed that the model
was effective at extrapolating to higher payloads (24 µmol) and
predicting the outcome.

We continued our analysis by exploring how delivery period,
as a variable, influenced antimicrobial activity. The model
predicted that by extending the delivery period it was possible
to extend tclear to be greater than twofold of a bolus of the
same payload. Moreover, the model predicted sudden changes
in tclear, for each principle mode, as the delivery period was
extended beyond specific thresholds. The model predicted that
these sudden changes were due to delivery rates that failed to
inhibit cellular respiration and thereby led to increased Hmp
protein expression in growing cells. Experiments confirmed the
trends predicted by the model, which led us to define a metric
representative of the length of time under respiratory inhibition.
A model-facilitated analysis revealed that the longer cells were
unable to respire, the longer it took cells to detoxify NO,
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and when tclear was plotted against the duration of respiratory
inhibition, all of the delivery modalities collapsed onto a single
line. This led us to hypothesize that dosing regimens that
maintained respiratory inhibiting concentrations of NO, for as
long as possible, would extend dose efficacy beyond what we
observed with the principal modes. To test this hypothesis, we
used the model to design dosing schedules capable of maintaining
NO concentrations at and above the threshold to inhibit cellular
respiration. When we tested predictions that maintained NO at
4 µM, we were able to extend dose efficacy to over threefold
what it would have been with a bolus administration of the same
payload. Further, that dosing schedule also outperformed all of
the other principal modes at that payload. Looking forward, it is
worth noting that future work to extend bacterial NO stress could
benefit from formulating the task as an optimization problem.
As a first pass at this, we considered delivery schedules that
conformed to third order polynomials and used an optimization
algorithm to identify coefficients that maximized the amount
of time cultures were exposed to NO concentrations that were
inhibitory to respiration (Materials and Methods). Although that
attempt at optimization did not yield solutions better than the
steady-state approach we presented, there are many different
ways to formulate an optimization problem and numerous
algorithms to identify best solutions. We believe that future
work on optimization frameworks with this application could
reveal novel strategies that outperform the methodologies used
in the present study.

The data presented in this study suggest that the dosing
method of NO can have a significant impact on its antibacterial
capabilities. Further, this work suggests that maintaining NO
concentrations at levels that inhibit cellular respiration is a critical
parameter for inhibiting the propagation of E. coli under aerobic
conditions, such as those found in the urinary tract (Svensson
et al., 2010; Spiro et al., 2015). Many microbes contain similar
detoxification networks, generate protein homologs similar to
Hmp, and thrive under oxygenated conditions (Gardner, 2005,
2012; Stern and Zhu, 2014). Therefore, inhibiting cytochrome
oxidase activity may be an important variable to maximize
dose efficacy of NO-releasing materials across a wide range of
bacteria. We envision that such knowledge could be employed
with feed-back control devices that maintain local NO levels
at infection sites, such as dermal wounds, at concentrations
that yield respiratory inhibition. Such delivery platforms could
be important for the eventual application of these materials
since NO is also deleterious to mammalian cells and there
is a restricted concentration window where it is antibacterial
and non-toxic to our cells, which argues against the use of
bolus delivery schemes (Hurford, 2005; Friedman et al., 2011;
Schairer et al., 2012a; Sun et al., 2012). However, it should be
noted that one limitation of this study is associated with its
time scales, which are on the order of several hours due to
constraints associated with our experimental system (Materials
and Methods). With an eye toward clinical applications, time
scales of 24 h or longer need to be tested in order to assess
whether what was found to be important at a few hours is also
important over a few days (Martinez et al., 2009; Jones et al., 2010;
Schairer et al., 2012b).

MATERIALS AND METHODS

Bacterial Strains
All experiments performed in this study were conducted with
E. coli K-12 MG1655 (Brynildsen et al., 2013).

Chemicals and Growth Media
Growth media used in all experiments was MOPS minimal media
with 10 mM glucose as the sole carbon source. The NO donor
used, (Z)-1-[N-(3-aminopropyl)-N-(n-propyl)amino]diazen-1-
ium-1,2-diolate (PAPA NONOate), was dissolved in 10 mM
NaOH and stored on ice during delivery. Potassium cyanide
(KCN) was dissolved in autoclaved Milli-Q water at a
concentration of 1 M. Luria-Bertani (LB) broth was made from
dissolving LB powder (40% Tryptone, 20% Yeast extract, 40%
Sodium Chloride per gram of solid) in Milli-Q water and
autoclaving the solution.

Fed-Batch Bioreactor
Sterile 250 mL conical tubes (Nunc) were used as batch
bioreactors for experiments. The bioreactor contained 50 mL
of MOPS media, as well as a 0.5′′ magnetic stir bar to
facilitate mixing. The bioreactor was suspended in a water
bath, maintained at 37◦C, using a magnetic stirrer hot plate
(Fisher Scientific). PAPA NONOate was delivered using a 2
channel, 8 roller, Ismatec REGLO ICC Digital Peristaltic Pump
(Cole Palmer). 30-gauge, regular bevel, stainless steel needles
(Covidien) were fastened into the ends of the tubing to create
a drip system to facilitate delivery into the bioreactor. Delivery
schedules were programmed using the associated software on
a Dell Latitude E7440 with an Intel Core i5 CPU processor at
2.50 GHz. One channel was programmed to deliver NONOate
and the second channel was programmed to deliver 10 mM
NaOH, to maintain a constant volume delivered per unit time
across delivery schema (5 mL/h). Prior to delivery, each channel
was run for 2 min at a flow rate of 50 µL/min, to ensure
that tubing had been primed and loaded with their respective
solutions (approximately 8 equivalent volumes of fluid through
the tubing). We note that experiments on this system were
performed for up to a few hours. When longer time periods were
assessed (e.g., 24 h), considerable volume loss due to evaporation
from bioreactor was observed (50% or more), and delivery of
10 mM NaOH solutions over those time periods resulted in much
higher media pH levels (e.g., above 9). These constraints limited
experiments that were performed to several hours.

[NO] and [O2] Measurements
NO concentrations were measured continuously using a
2 mm NO sensing probe (WPI). The probe was calibrated
daily using the manufacturer’s instructions. Briefly, this was
accomplished by delivering increasing doses of S-nitroso-N-
acetyl-d,l-penicillamine (SNAP) (Cayman Chemical) to a 10 mM
copper chloride (II) solution. A proportionality factor of 0.457
molecules of NO per molecule of SNAP (Chou and Brynildsen,
2019) was used to convert the raw signal generated (pico Amps)
to units of NO concentration (µM). For NO assays where
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pico Amp measurements following clearance fell slightly below
baseline, [NO] data were set to zero.

O2 concentration present in the bioreactor was continuously
monitored using OXROB10 robust O2 probe (Pyroscience)
attached to a FireStingO2 fiber-optic O2 meter (Pyroscience).
Temperature was continuously monitored using TDIP15
temperature sensor (Pyroscience) and the probe signal
automatically compensated for temperature fluctuations. The
probe was calibrated daily using the manufacturer’s instructions.

Absorbance Measurements (OD600,
NO2

− and NO3
−)

Cell density was measured during experiments by sampling
300 µL of solution from bioreactors and measuring absorbance
at 600 nm using a microplate reader.

NO2
− and NO3

− concentrations were measured using
a Nitrate/Nitrite Colorimetric Assay Kit (Cayman). Samples
consisted of biological triplicates that were each measured in
technical triplicates. The NO2

− concentration in samples was
estimated by adding Griess reagents to samples, which converted
them to Azo products. Following this, absorbance was measured
at 540 nm using a microplate reader. A calibration curve was
constructed using various concentrations of an NO2

− standard
solution. A similar process was used to measure total NO2

− and
NO3

− concentration in samples. However, an additional step,
involving the addition of nitrate reductase and cofactors, was
used to convert NO3

− to NO2
−. Similarly, a calibration curve was

constructed using various concentrations of an NO3
− standard

solution. NO3
− concentration was calculated by subtracting the

NO2
− concentration that was measured from the combined

NO2
− and NO3

− concentration measurement. For more details
on the procedure, refer to the manufacturer’s instructions.

NO Consumption Assays
E. coli were taken from a −80◦C stock, inoculated into a test
tube with 1 ml of LB broth and incubated for 4 h at 37◦C and
250 rpm. Following this, 10 µL were extracted from the test tube
and transferred to a second test tube containing 1 mL of MOPS
minimal media. The second test tube was incubated for 16 h at
37◦C and 250 rpm. After 16 h, the overnight culture was used to
inoculate a 250 mL baffled flask with 20 mL MOPS media at an
OD600 of 0.01. The flask culture was grown to mid-exponential
phase (OD600 = 0.2) and transferred to a pre-warmed (37◦C)
50 mL falcon tube. The falcon tube was centrifuged at 4000 rpm,
for 10 min at 37◦C. Following this, 16 mL of MOPS were removed
from the falcon tube, carefully avoiding the pellet of cells. The
pellet was re-suspended in the remaining 4 mL and 1 mL was
transferred to four separate pre-warmed (37◦C) microcentrifuge
tubes. The tubes were then centrifuged at 15,000 rpm for 3 min.
Nine hundred and eighty microliter of media was removed from
each microcentrifuge tube and the cell pellets were resuspended
in 1 mL of pre-warmed MOPS media. The resuspended culture
was used to inoculate a bioreactor with 50 mL MOPS media
at an OD600 of 0.05. Five minutes after inoculation, NONOate
delivery was initiated, either as bolus or through a delivery
scheme implemented using the digital peristaltic pump.

Mathematical Modeling
Model Construction
The model was constructed and used in previous studies
(Robinson and Brynildsen, 2013, 2015, 2016b; Robinson et al.,
2014b). In brief, the mathematical model is a system of ordinary
differential equations that describes the change in concentration
of numerous biochemical species, upon exposure to NO, within
the cell as well as the extracellular environment, as a function of
reaction rates and stoichiometric coefficients.

dEC
dt
= Ŝ · ErI − d · EC (2)

Where EC represents a vector of species concentrations. Ŝ is a
scaled reaction stoichiometry matrix and ErI is a vector of intensive
reaction rates, which itself is a function of species concentrations
and kinetic parameters. d represents a diagonal matrix of
species-specific dilution terms as a result of volume expansion
during NONOate delivery and cellular growth. The model was
partitioned into extracellular and intracellular compartments,
assuming rapid diffusion of NO and O2 across the cell membrane.
This was done to facilitate parameter optimization and model
validation. Initial species concentrations, reaction rates and
reaction structures were derived from the literature or trained
on experimental data. MATLAB 2017b was used to run all
simulations. For more information, on model construction and
the specific reactions and species relevant to the model, refer to
(Supplementary Methods and Supplementary Tables S1–S3).

Incorporation of NONOate Delivery Module
Delivery was incorporated into the differential equation for
[NONOate] by including a delivery function, capable of taking
one of four functional forms.

NNONOate|t=0 +

∫ tf

0
fdel dt = ω (3)

Where NNONOate|t=0 represents the number of moles of NONOate
introduced as a bolus at the onset of delivery. fdel is the NONOate
delivery function (µmol/h); tf represents the duration of delivery
(h); ω represents the total payload delivered (µmol). For more
details, refer to (Supplementary Methods).

Incorporation of Bacterial Growth
Bacterial growth was modeled as a function of cell density:

dX
dt
= µ · X (4)

Where µ represents the specific growth rate and X represents cell
density. X was assumed to vary linearly with optical density at
600 nm (OD600), such that k · X = OD600 (Myers et al., 2013). µ

was modeled as a 1st order Hill-type equation that depended on
the concentrations of available cytochromes bo and bd:

µ = µmax ·

[
Cytochromebo

]
+
[
Cytochromebd

]
Kµ +

[
Cytochromebo

]
+
[
Cytochromebd

] (5)
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Incorporation of Growth-Dependent Translation Rate
Previously, we had chosen to model the rate of protein
production as a function of mRNA transcripts with the inclusion
of an [O2] dependency, such that increased [O2] led to
increased translation rate (Robinson and Brynildsen, 2016b).
The inspiration for this was that cells grew faster at higher O2
tensions, and translation is known to vary closely with specific
growth rate (Neidhardt and Magasanik, 1960; Roller et al., 2016;
Dai et al., 2017; Zhu and Dai, 2018).

d [Protein]
dt

= ktranslate · [mRNA] ·
(

1+ kact,O2 ·
[O2]

KO2 + [O2]

)
− kdeg · [Protein] (6)

Where “Protein” represents either Hmp, NorV, or NrfA. mRNA
represents the associated mRNA for each protein (mRNAHmp,
mRNAN orV , mRNAN rf A). However, with the addition of growth
to the model, we replaced the [O2] dependency term with a
growth dependency term, which more explicitly exemplifies the
connection between specific growth rate and translation rate.

d [Protein]
dt

= ktranslate · [mRNA] ·
(

1+ kgrowth ·
µ

µmax

)
− kdeg · [Protein] (7)

Where protein production is modeled with a growth dependency
term as opposed to an O2 dependency term. Substituting
Equation (5) into Equation (7), protein production can be re-
written as a function of terminal cytochrome oxidases.

d [Protein]
dt

= ktranslate · [mRNA] ·
(

1+ kgrowth

·

[
Cytochromebo

]
+
[
Cytochromebd

]
Kµ +

[
Cytochromebo

]
+
[
Cytochromebd

])
− kdeg · [Protein] (8)

Where protein production in Equation (8) is a function of
terminal cytochrome oxidases bo and bd, as opposed to a function
of [O2]. This modified form represents a direct relationship
between translation and cellular respiration, where the larger the
concentration of uninhibited cytochromes, the greater the rates
of respiration, which leads to faster cellular growth rates and
accelerated rates of protein production.

Incorporation of Extracellular and Intracellular
Dilution
Previously, the model assumed a fixed volume in the
bioreactor during the course of experiments, and that
changes in concentration of individual species were only a
result of consumption and production. However, with the
implementation of the low flow drip system, the volume of
the bioreactor continuously changed during delivery. As a
result, species relevant to the extracellular environment were
continuously diluted. In a similar vein, with the addition of
growth, we could no longer assume a fixed cellular volume as a
function of time. As cells grow, so does the cellular volume in the
reactor, and species relevant to the intracellular environment are

diluted in growing cells. Therefore, in the rate equation for each
species, we incorporated a term to account for dilution:

d =
dVi
dt
Vi

(9)

Where Vi represents the volume compartment in
which the species exists, where i can be extracellular,
intracellular, or total. For more details, regarding model
compartmentalization and derivation of the dilution term refer
to (Supplementary Methods).

Parameter Optimization
Uncertain model parameters were fitted to experimental
data, using the MATLAB function lsqcurvefit. Specifically, the
algorithm involves a non-linear least squares optimization
algorithm that searched for optimal parameter sets by
minimizing the variance weighted sum of squared residuals
between experimental NO (and/or O2) curves and model
simulations. Due to the compartmentalization of the model,
different sets of unknown parameters were estimated
independently using specific experimental conditions. The
uncertain parameters fall into three categories: parameters
relevant to NO reactions in the extracellular environment,
parameters relevant to growth and cellular respiration, and
parameters relevant to NO reactions in the cellular environment.

Estimating Extracellular Parameters
The product of the O2 mass transfer coefficient and surface area
to volume ratio of the media in the bioreactor (kLO2

·
A
V ) was

estimated from O2 curves generated after purging O2 with N2
gas from bioreactors containing 50 and 55 mL MOPS media
(Supplementary Figure S8). The rate of autoxidation, PAPA
NONOate degradation rate, and rate of NO loss to the gas
phase were trained simultaneously on both [NO] and [O2]
curves generated from bolus delivery of 6 and 18 µmol of PAPA
NONOate in cell-free media (Supplementary Figure S9). For
more information on the parameters included in the optimization,
refer to (Supplementary Methods and Supplementary Table S4).

Estimating O2 Respiratory Parameters
Parameters relevant to cellular respiration, namely cellular
growth, ubiquinol-oxygen oxidoreduction, and ubiquinone
reduction (16 parameters in total), were trained on [O2] and
OD600 data generated from monitoring cells seeded at an
OD600 of 0.025 and treated with 0, 50 and 1000 µM KCN
(Supplementary Figure S2), which inhibits respiration and halt
growth. For more information on the parameters included in the
optimization, refer to (Supplementary Table S5).

Estimating NO Cellular Parameters
Uncertain cellular parameters related to NO detoxification (21
parameters in total) were optimized on 8 sets of [NO] and [O2]
data obtained for bolus, constant, ramp down, and ramp up
delivery regimens at 6 and 18 µmol. We note that a variety of
training protocols could have been employed. We elected to use
all four delivery dynamics at both 8 and 16 µmol for training
because of the distinct outcomes observed in different conditions
(e.g., immediate cessation of growth, lack of cessation of growth,
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delayed cessation of growth). We considered this diversity to be
important for the ability of the model to extrapolate to conditions
that it was not trained on, such as the 24 µmol dataset. For more
information on the parameters included in the optimization, refer
to (Supplementary Table S6).

Model Discrimination
Parameter sets were compared using Evidence Ratios (ER), which
represent the likelihood of a given parameter set relative to the
best set identified. Parameter sets with ER > 10, representing
a less than 10% likelihood, were discarded. All parameters sets
with ER < 10 were retained and used as initial points for an
out-of-equilibrium adaptive Metropolis Markov Chain Monte
Carlo (MCMC) process to further explore parameter space. If the
MCMC algorithm generated a parameter set such that the initial
point had an ER > 10 relative to the new minimum, the process
was repeated using the best parameter set obtained from MCMC
as the initial point. For more information on the model selection
process, refer to (Robinson and Brynildsen, 2016b).

Algorithm to Identify Composite Dosing Schedules
For specified NO concentrations above 1 µM, the following
algorithm was applied to identify dosing schema to maintain
steady state levels, subject to the constraint of a total 24 µmol
payload. Initial boluses (α) were determined such that simulated
[NO] peaks equaled desired steady state concentrations. The
vectors of species concentrations at the time of those peaks
were used as initial conditions for secondary simulations where
at each time step the concentrations of NONOate were solved
to maintain d[NO]/dt = 0. The output of this simulation
was a vector of NONOate concentrations at each time point,
which was used to compute vectors of values corresponding to
d[NONOate]/dt, and the rates of loss of NONOate (through
decay and dilution) at each time point. These three vectors were
added together, which yielded a vector corresponding to the
NONOate delivery rate (fdel) required to maintain steady state.

fdel =
d [NONOate]

dt
+ kdeg · [NONOate]+ dNONOate (10)

Lastly, fdel was truncated at t = T, such that
∫ T

0 fdeldt = 24 − α.
In addition to determining dosing schedules to maintain

[NO] at specified steady state levels, we attempted to enhance
the antibacterial activity of NO by formulating the task as an
optimization problem. Specifically, we attempted to maximize the
amount of time [NO] was at or above the threshold to inhibit 99%
of cytochromes (∼1.2 µM) by using the MATLAB optimization
function fmincon. For this purpose, we considered dosing
schedules that could be captured by third order polynomials.
Parameters that were allowed to vary during the optimization
were the coefficients of the polynomial and the total delivery
time, and solutions were similarly constrained to cumulative
payloads of 24 µmol. We tried two different approaches for
initialization. In the first, the polynomial coefficients and delivery
time were obtained from a least-squares fitting to the 2.2 µM
steady state dosing scheme (best predicted scheme from steady
state approach). The optimization algorithm then used those
values and α from the steady state solution as a jumping off

point to maximize the amount of time at or above ∼1.2 µM
NO. This enabled a focused search around the best steady
state solution for better performing schedules. In the second
initialization approach, we used 100 sets of randomly selected
polynomial coefficients and values of α subject to a total payload
of 24 µmol, which effectively set the total delivery time for
each initialization. The optimization algorithm then used those
values as initial points to maximize the amount of time at or
above ∼1.2 µM NO. This allowed a broader swath of parameter
space to be searched for solutions better than the best steady
state solution. For both types of initialization, the optimization
procedure did not yield solutions that were better than the best
dosing schedule from the steady state approach. This could
have occurred due to the algorithm getting trapped in local
optima or third order polynomials giving insufficient flexibility
to reach globally optimal solutions. Given the depth and breadth
of potential algorithms and optimization formulations there
remains the possibility that better solutions than that provided
by the steady state approach could be found in future studies.
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