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Abstract: The study investigated the spatiotemporal evolution of PM2.5 concentration in the
Beijing–Tianjin–Hebei region and surrounding areas during 2015–2017, and then analyzed its
socioeconomic determinants. First, an estimation model considering spatiotemporal heterogeneous
relationships was developed to accurately estimate the spatial distribution of PM2.5 concentration.
Additionally, socioeconomic determinants of PM2.5 concentration were analyzed using a spatial
panel Dubin model, which aimed to improve the robustness of the model estimation. The results
demonstrated that: (1) The proposed model significantly increased the estimation accuracy of PM2.5

concentration. The mean absolute error and root-mean-square error were 9.21 µg/m3 and 13.10 µg/m3,
respectively. (2) PM2.5 concentration in the study area exhibited significant spatiotemporal changes.
Although the PM2.5 concentration has declined year by year, it still exceeded national environmental
air quality standards. (3) The per capita GDP, urbanization rate and number of industrial enterprises
above the designated size were the key factors affecting the spatiotemporal distribution of PM2.5

concentration. This study provided scientific references for comprehensive PM2.5 pollution control in
the study area.

Keywords: PM2.5; socioeconomic factors; spatiotemporal patterns; spatiotemporal heterogeneous;
spatial panel Dubin model

1. Introduction

Atmospheric pollution significantly influences human health, climatic environment,
and sustainable urban development [1–4]. According to a World Health Organization (WHO) report in
2014, atmospheric pollution causes more than seven million deaths worldwide each year [5]. A recent
study based on the Global Exposure Mortality Model estimated that 8.9 million people died globally in
2015 [6]. With China’s rapid economic, industrial, and urban development, atmospheric pollution has
become an increasing problem. East China, especially the Beijing–Tianjin–Hebei region, has witnessed
frequent occurrences of severe haze since 2013. The Beijing–Tianjin–Hebei region is responsible for the
majority of North China’s economic development, and coordinated development in this region is one
of three national strategies in China [7]. Therefore, comprehensive atmospheric pollution governance
in the region has attracted wide attention from China’s government. PM2.5 (atmospheric particulate
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matter with a diameter of less than 2.5 µm) is the primary cause of haze. Twenty-eight cities in
the Beijing–Tianjin–Hebei region and surrounding areas are considered to be the main transmission
channels of atmospheric pollution in the region. Hence, accurate interpretation of spatiotemporal
distribution and evolution of PM2.5 concentrations in the Beijing–Tianjin–Hebei region and surrounding
areas, as well as a recognition of the primary influencing factors of PM2.5 concentrations, have important
theoretical and practical significance to atmospheric pollution control.

An accurate estimation of the spatial distribution of PM2.5 concentration is a prerequisite for
determining its determinants. Traditionally, the spatial distribution of PM2.5 concentration is generated
through spatially interpolating ground PM2.5 observations [8,9]. Although the ground observations
are accurate, the observation stations are limited in number and distributed unevenly, thus making
it difficult to produce accurate spatial distribution solely by interpolating the ground observations.
Moreover, observations also suffer from a representativeness error. With the assistance of relevant
auxiliary variables (e.g., satellite-derived Aerosol Optical Depth (AOD) data), the estimation accuracy
of PM2.5 concentrations can be significantly improved. Various estimation models based on the
relationship between PM2.5 and auxiliary variables have been proposed. These methods can be divided
into two categories, i.e., physical models and statistical models. The physical models use atmospheric
chemistry models to simulate the association between AOD and PM2.5, and then estimate PM2.5 using
satellite-derived AOD and the derived association [10–12]. The statistical models apply statistical
methods (e.g., multiple linear regression, generalized additive model, and random forest) to investigate
the relationship between ground-measured PM2.5 and satellite-derived AOD and other auxiliary
variables, and then builds an estimation model based on the derived relationship [13–18]. Most of
the statistical models argued that PM2.5 concentration is affected by the selected auxiliary variables
that are fixed throughout the estimation period. However, it has been reported that PM2.5 is sensitive
to meteorological conditions, but this sensitivity changes over time [19–21]. For example, certain
meteorological factors may not significantly affect PM2.5 concentration during a specific period [22].
Additionally, AOD is an optical remote sensing product, which is significantly influenced by weather
conditions (e.g., cloud and rain), resulting in a large amount of data gaps. All of these factors inevitably
have adverse effects on accurately estimating the spatial distribution of PM2.5 concentration.

Determining factors that influence PM2.5 concentration have recently generated increased
research interest and involves various aspects, including economic development, natural conditions,
and urbanization [23–26]. Although such research can provide useful references for formulating
atmospheric environmental governance policies, it still has some shortages. It is common to represent
PM2.5 concentration of a region based on one ground measurement [23,27,28]. Due to significant
spatial variation in PM2.5 concentration, such simplification will likely corrode the reliability of results.
Although some studies have estimated PM2.5 concentration in urban areas based on gridded PM2.5

data [29,30], these grid data mainly come from interpolation of ground PM2.5 observation data or from
statistical models based on satellite-derived AOD. Nevertheless, it was not until February 2012 that
China measured PM2.5 concentration as a proxy for environmental air quality and at the end of 2014 a
national observation network to measure PM2.5 levels was established (~1500 observation stations).
Therefore, the interpolation results and statistical model results before 2014 may have larger uncertainty
due to the limitation of available observations. The relationship between PM2.5 concentration
and influencing factors are complicated, which creates some uncertainty in model construction.
Some studies have focused on the relationship from a time-series perspective without regarding the
spatial dependence of PM2.5 pollution [24,29,31]. Given the spatial dependence of atmospheric pollution,
some studies applied spatial models to investigate the influencing factors on PM2.5 concentration [32,33].
However, the spatial model usually only considers panel data at a particular time, which may obtain
different or even opposite results for panel data at different times because of the small sample data
size. Although many studies have explored factors that influence PM2.5 concentration, it should be
noted that at different stages of development, there can be substantial differences in economic growth,
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energy consumption, industrial structure, population, and environmental background. Ignoring these
differences is very likely to cause biased or suspicious conclusions.

Given that the national observation network was not completed until the end of 2014, this study
focused on the spatiotemporal evolution of PM2.5 concentration in 28 cities of the Beijing–Tianjin–Hebei
region and surrounding areas during 2015–2017, and then identified its socioeconomic determinants.
Firstly, an estimation model for high spatial-resolution PM2.5 estimation was created based on
the reconstructed AOD missing gaps and the spatiotemporal heterogeneous relationship between
PM2.5 and auxiliary variables, which disclosed the spatial distribution of PM2.5 concentration in the
study area. Secondly, based on the analysis of the spatiotemporal evolution of PM2.5 concentration,
the socioeconomic factors that influence local PM2.5 concentration were investigated by a spatial
panel model. The research study’s conclusions provide scientific references for local atmospheric
pollution control.

2. Study Area and Data

2.1. Study Area

The study area includes 28 cities of the Beijing–Tianjin–Hebei region and surrounding areas,
covering an area of ~275,000 km2. As shown in Figure 1, the terrain is high in the west and low
in the east, with elevation ranging from sea level to >2000 m. The region experiences four distinct
seasons, with hot and rainy summers due to the East Asian monsoon, and cold and dry winters due
to subtropical high-pressure systems. The Beijing–Tianjin–Hebei region is the most economically
developed area in northern China and is the area with the most PM2.5 pollution.
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2.2. Data

Ground PM2.5 observations were from the public platform of the China National Environmental
Monitoring Center (http://www.cnemc.cn). Before release, these data had been calibrated and quality
controlled to meet the national environmental air quality standards of China (GB3095-2012). The present
study used daily average PM2.5 concentration (DAPC) data from January 2015 to December 2017 at

http://www.cnemc.cn
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256 observation stations in the study area and surrounding areas. Data of monthly average PM2.5

concentrations (MAPC) were generated by averaging the DAPC. Spatial distribution of observation
stations is shown in Figure 1. Among 256 observation stations, 83 were used for constructing the PM2.5

estimation model, and the remaining were used to verify the accuracy of the estimation results.
The latest C6 version of daily AOD (DAOD) was used to construct PM2.5 concentration estimation

model. The C6 version DAOD had higher spatial resolutions (3 km) compared with the previous
C5 version. Data of DAOD of Aqua (DAODA) and DAOD of Terra (DAODT) from January 2015 to
December 2017 were collected from the website https://ladsweb.modaps.eosdis.nasa.gov/.

According to practical situations in the study area, air temperature (AT), wind speed (WS) at 10 m,
surface pressure (SP), and boundary layer height (BLH) were chosen to assist the estimated spatial
distribution of PM2.5 concentration (Table 1). These data came from the ERA-Interim reanalysis data
(http://apps.ecmwf.int/datasets/) of the European Centre for Medium-Range Weather Forecast, with a
spatial resolution of 0.125◦.

Table 1. Definition of the variables used in the study.

Variable Definition Unit

AT Air temperature at 2 m K
WS Wind speed at 10 m m/s

BLH Boundary layer height m
SP Surface pressure Pa
PD person density person/km2

PGRP Per capital gross regional product yuan
UR Urbanization rate %

PSIGDP The proportion of secondary industry in GDP %
ISDE Industrial smoke (dust) emissions ton/year

NIEDS The number of industrial enterprises above designated size unit

Socioeconomic data were collected from the China Statistics Yearbook, China City Statistics
Yearbook and statistical yearbooks of provinces and regions in the study area (http://data.cnki.net/
Yearbook). Six factors were chosen: person density (PD), per capita gross regional product (PGRP),
urbanization rate (UR), the proportion of secondary industry in GDP (PSIGDP), industrial smoke (dust)
emissions (ISDE), and the number of industrial enterprises above designated size (NIEDS) (Table 1).
All PGRP data were transformed uniformly to a constant price in 2015. Additionally, logarithmic
transformations were performed on all socioeconomic data to eliminate their heteroscedasticity.

3. Methodology

3.1. PM2.5 Estimation

Due to the impact of clouds, rain, and other weather conditions, there are a lot of gaps (no data
region) in DAOD data. Therefore, it was necessary to fill the missing data gaps. DAOD data were
constructed based on the complementarity between DAODT and DAODA on spatial coverage and
significant correlation. The data were filled as follows:

DAODT and DAODA of a month were used to establish the relationship:

DAODTm = aT,m + bT,m∗DAODA,m + εT (1)

DAODAm = aA,m + bA,m∗DAODTm + εA (2)

where m refers to month. aT,m, bT,m, aA,m and bA,m are regression coefficients between DAODT and
DAODA. εT and εA are error terms.

Next, the missing data gaps of DAODT and DAODA were reconstructed based on the acquired
relationships in Equations (1) and (2), generating reconstructed DAODT (RDAODT) and reconstructed

https://ladsweb.modaps.eosdis.nasa.gov/
http://apps.ecmwf.int/datasets/
http://data.cnki.net/Yearbook
http://data.cnki.net/Yearbook
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DAODA (RDAODA). For example, if DAODT has a value Vtest at location Ltest, but DAODA does not,
we can use Vtest and Equation (2) to estimate the value of DAODA at location Ltest. In this way, DAOD
was estimated as (RDAODT + RDAODA)/2 because Aqua and Terra measure AOD in the morning
and afternoon, respectively. Finally, the monthly DAOD averages were calculated, which were used to
generate the monthly average AOD data (MAOD).

Although AOD is an indicator of PM2.5 concentration, PM2.5 concentration is also significantly
influenced by air temperature, precipitation, and other climatic factors [34,35]. This study used
MAOD, AT, WS, BLH, and SP as the auxiliary variables to estimate the spatial distribution of PM2.5

concentration. We assumed that the relationship between PM2.5 concentration and auxiliary variables
changes with time and space and the following model was constructed:

ˆMAPCm(u) = αm(u) + βm,0(u)∗MAODm(u) +
n∑

i=0

βm,i(u)∗AUXm,i(u) (3)

where ˆMAPCm is the estimated average PM2.5 concentration during the month m. u refers to spatial
position. αm is intercept, and βm,0 and βm,i are coefficients of MAODm and other auxiliary variables
AUXm,i. n is a variable with a value range of < =4. When n = 0, no climatic factor is chosen. When n = 4,
the AT, WS, BLH, and SP were all used to construct the model.

With regards to the temporal heterogeneous relationship between PM2.5 and auxiliary variables,
the auxiliary variables of the model were chosen based on the following criteria with consideration to
temporal changes of the relationship between PM2.5 and auxiliary variables: (1) the chosen auxiliary
variables were significantly correlated with PM2.5; (2) the chosen auxiliary variables improved the
interpretation of the model to PM2.5 variation. In the views of the spatial heterogeneous relationship
between PM2.5 and auxiliary variables, a local regression method, geographically weighted regression
(GWR) [36], was applied to assess and describe the relationship.

For each month, observations of the training stations were used to construct the PM2.5 estimation
model, and observations from the validation stations were used to validate the accuracy of the estimated
result (Figure 1). Some statistical indexes, including correlation coefficient, mean absolute error (MAE),
and root-mean-square error (RMSE), were chosen to evaluate the effectiveness of the proposed model.

3.2. Effect of Economic and Social Factors on PM2.5 Concentration

Socioeconomic data from the statistical yearbook were based on city-scale annual statistics. Hence,
the derived MAPC data should be processed accordingly, which generated the city-scale annual
average PM2.5 concentration (AAPC). The logarithms of AAPC were calculated to ensure consistency
with the pre-processing of Socioeconomic data.

The PM2.5 distribution presented strong trans-regional characteristics and inevitably affected
nearby regions. Global Morans’ I analysis [37] was used to measure the spatial correlation of
PM2.5 concentrations. In addition, local Morans’ I analysis [37] was applied to describe the spatial
heterogeneity of PM2.5 concentrations in different geographical units.

The effects of socioeconomic factors on PM2.5 concentration in the urban scale were analyzed by a
spatial panel model [38,39]:

lnyit = ρ
N∑

j=1
wi jy jt +ϕ+ lnXitβ+

N∑
j=1

wi jlnX jtγ+ µi + ηt +φit

φit = λ
N∑

j=1
wi jφit + εit, εit ∼ N

(
0, δ2

) (4)

where i refers to city and t is the year. yit is the explained variable, which is equal to AAPC of
city i in year t. lnXit is the explanatory variable which refers to socioeconomic factors, and β is the
corresponding coefficients. µi is the spatial effect and ηt is the time-period effect. wi,j refers to elements
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in the spatial weight matrix W. ρ is the spatial autoregression coefficient of dependent variables. γ
denotes the spatial autocorrelation vector of explanatory variables. λ is the spatial autocorrelation
coefficient of the error term.

When γ = λ = 0, the Equation (4) is simplified to a spatial panel lag model (SPLM):

lnyit = ρ
N∑

j=1

wi j +ϕ+ lnXitβ+ ui + ηt + εit, εit ∼ N
(
0, δ2

)
(5)

When ρ=γ=0, the Equation (4) is simplified to a spatial panel error model (SPEM):

lnyit = ϕ+ lnXitβ+ ui + ηt +φit

φit = λ
N∑

j=1
wi jφit + εit, εit ∼ N

(
0, δ2

) (6)

When λ=0, the Equation (4) is simplified to a spatial panel Dubin model (SPDM):

lnyit = ρ
N∑

j=1

wi jy jt +ϕ+ lnXitβ+
N∑

j=1

wi jlnX jtγ+ ui + ηt + εit, εit ∼ N
(
0, δ2

)
(7)

4. Results and Discussion

4.1. Construction of the Estimation Model

Auxiliary variables were chosen monthly according to the selection criteria in Section 3.1 (Table 2).
The estimation models of all months involved MAOD, which again confirms that AOD was a good
indicator of PM2.5 concentration. The number of other chosen auxiliary variables changes with time,
indicating that although PM2.5 concentration was greatly affected by the climatic conditions, there was
a significant temporal change in sensitivity. This validates the justifiability of the proposed assumption.
Many studies [6,40] have reported that precipitation affects PM2.5 concentration, and the effect is more
significant in the time dimension or in the large spatial range. However, in this study, we constructed
an estimation model for each month, which reduces the effect in the time dimension. Next, unlike other
statistical methods, GWR is a local spatial regression method—only the data within the local range
participates in the model construction, thereby weakening the effect in the large spatial range. As a
result, precipitation was excluded in this study. This is consistent with other studies [41–43] that build
PM2.5 estimation models based on GWR.

Table 2. Variable selection of monthly average PM2.5 concentration (MAPC) estimation model
for 2015–2017.

Month Monthly Average AOD Data (MAOD) AT WS BLH SP

201501
√

201502
√ √

201503
√ √

201504
√ √

201505
√ √

201506
√ √

201507
√ √ √ √

201508
√ √ √

201509
√ √

201510
√ √ √

201511
√ √

201512
√ √ √ √
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Table 2. Cont.

Month Monthly Average AOD Data (MAOD) AT WS BLH SP

201601
√ √ √

201602
√ √ √

201603
√ √ √ √

201604
√ √ √ √

201605
√ √ √

201606
√ √ √

201607
√ √ √ √

201608
√ √ √

201609
√ √ √

201610
√ √

201611
√ √ √

201612
√ √

201701
√ √ √ √

201702
√ √ √

201703
√ √ √

201704
√ √ √

201705
√ √ √

201706
√ √ √

201707
√ √

201708
√ √

201709
√ √

201710
√ √ √

201711
√ √ √

201712
√ √ √

The proposed spatiotemporal heterogeneous model (SHM) was compared with the uniform
relationship model (UM) based on multiple linear regression. The construction accuracy of the
estimation model throughout the study period is shown in Figure 2. UM showed a relatively lower
goodness of fit and high temporal fluctuation, with minimum and maximum values of R2 being 0.17
and 0.67, respectively. Comparatively, SHM increased interpretation to changes in PM2.5 concentration.
Its average of R2 (0.77) was significantly higher than that of UM (0.45), while its average of RMSE
(8.87 µg/m3) was considerably smaller than that of UM (13.81 µg/m3). In addition, SHM demonstrated
better stability. All these indicate that it is necessary to consider the spatial heterogeneity of the
relationships between PM2.5 and auxiliary variables.
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(UM) and spatiotemporal heterogeneous model (SHM) for MAPC over the study area during 2015–2017.

4.2. Accuracy Validation and Estimation Results

The validation of estimated MAPC in the study area during 2015–2017 is shown in Figure 3. R, MAE
and RMSE of UM were 0.89, 11.25 µg/m3, and 15.55 µg/m3, respectively. In contrast, SHM significantly
increased the estimation accuracy of MAPC, increasing the correlation coefficient by 3% and decreasing
MAE and RMSE by as much as 18% and 16%, respectively. As expected, the proposed model achieved
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a higher estimation accuracy of AAPC than UM. The correlation coefficient of the proposed model
increased by 5%, while the MAE and RMSE decreased by as much as 19% and 17%, respectively
(Figure 4). Huang et al. [44] estimated 1 km MAPC in North China from 2013–2015, with RSME
of 14.89 µg/m3. Ma et al. [45] produced China’s 10 km MAPC from 2014 to 2017 using a two-stage
statistical model, with R2 ranging from 0.75 to 0.81. Wei et al. [46] estimated China’s 1 km MPAC
in 2016 by using a space-time random forest approach, with R2 of 0.73 and RMSE of 14.88 µg/m3.
Therefore, the overall accuracy of SHM is satisfying.
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Taking MAPC in 2016 as examples, their spatial distributions are shown in Figure 5. There is a
significant spatiotemporal variation in PM2.5 concentration. In terms of spatial variation, high MAPC in
the southeast region of the study area from January–April was observed, whereas PM2.5 concentration in
the northwest region towards the central area was relatively higher from May–December. With regards
to temporal variation, PM2.5 concentrations in January, February, November, and December were
significantly higher than those in other months. The reason behind this may be related to indoor
heating and climatic conditions. Some studies have reported that the burning of biomass and fossil
energy for heating in winter generated huge PM2.5 emissions [47,48]. Dust storms, which frequently
occur in North China in late winter and spring, is another major contribution that aggravates PM2.5

concentrations [49]. The lowest average MAPC (40.33 µg/m3) occurred in August, and the highest
(138.49 µg/m3) was in December. The AAPC in the study area during 2015–2017 is shown in Figure 6.
Generally, AAPC decreased from the central areas of Shijiazhuang, Baoding, Hengshui, and Xingtai
to surrounding areas, accompanied with obvious concentration characteristics. The average APPC
decreased from 77.3 µg/m3 in 2015 to 64.85 µg/m3 in 2017.
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4.3. Spatiotemporal Analysis of City-Scale PM2.5 Concentration

Spatiotemporal variations of city-scale AAPC in the study area are shown in Figure 7. The AAPC
in Taiyuan, Yangquan, Changzhi, and Jincheng changed slightly, but AAPC in the other cities decreased
year by year, especially in Hengshui, Liaocheng, Dezhou, and Jinan. This might be related to the
relatively high PM2.5 pollution present in these cities. Nevertheless, AAPC in all cities were still higher
than the national environmental air quality standard of 35 µg/m3 (GB3095-2012), and much higher
than the health standard recommended by the WHO of 10 µg/m3. This demonstrated that more work
is required to control PM2.5 concentrations in the study area.
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Figure 8 shows the spatial correlation of city-scale AAPC in the study area. Global Moran’s
I indexes were positive during 2015–2017 and all passed the significance test of 0.05, indicating
that AAPC had significant spatial positive correlation and evident spatial concentration. Moreover,
the Global Moran’s I decreased gradually, indicating that the concentration degree of AAPC decreased
year by year.
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To further identify the local aggregation pattern of city-scale AAPC, the local Moran’s I analysis
was performed (Figure 9). The AAPC was dominated by high-high (HH) and low-low (LL) aggregation
types; however, high-low (HL) or low-high (LH) types were not found. This indicated that AAPC in
the study area had a local spatial positive correlation. HH-type regions, also known as the high-value
aggregation region of AAPC, stably locate in the study area center, whereas the distribution of LL-type
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regions is unstable. The LL-type regions were concentrated in the west of the study area during
2015–2016, but in the northeast region of the study area in 2017.
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4.4. Effects of Socioeconomic Factors on PM2.5 Concentration

A series of tests were required to select the optimal analysis model. Firstly, to determine whether
the spatial panel model should be applied, the Lagrange Multiplier (LM), and robust LM (RLM) tests
were applied to assess the spatial correlation of the errors of the classic panel model. The LM error,
LM lag, and RLM error under each condition (unfixed effects, spatial fixed effects, time-period fixed
effects, and spatial and time-period fixed effects) all passed the 5% significance test (Table 3), indicating
a significant spatial correlation of the errors in the classic panel model. Hence, the spatial panel model
should be applied. The likelihood ratio (LR) tests of spatial fixed effects and time-period fixed effects
both exceeded the 1% significance level, which proved the superiority of spatial and time-period fixed
effects to the spatial fixed effects or time-period fixed effects. Subsequently, a spatial panel Durbin
model with spatial and time-period fixed effects was constructed to test whether it could be simplified
into SPLM or SPEM (Table 4). The Hausman test was significant at the 1% level, indicating that
the model with random effects was rejected; the Wald and LR tests were significant at the 1% level.
Therefore, the spatial panel Dubin model could not be simplified.

Table 3. Diagnostic tests for non-spatial panel model.

Diagnostic Tests No Fixed Effects (FE) Spatial FE Time FE Two-Way FE

LM test spatial error 15.9629 *** 23.8827 *** 11.4793 *** 23.9171 ***
RLM test spatial error 8.4256 *** 27.7504 *** 6.4073 ** 16.7844 ***

LM test spatial lag 7.6638 *** 5.0589 ** 5.3875 ** 13.1293 ***
RLM test spatial lag 0.1265 8.9266 *** 0.3154 5.9966 **

LR test 182.6997 *** 10.5856 **

Note: ***, ** indicate significance at the 1%, 5% levels, respectively.

Table 4. Diagnostic tests for SPDM with two-way FE.

Diagnostic Tests Statistics

Hausman test 148.1871 ***
Wald test spatial lag 27.9485 ***

LR spatial lag 25.0216 ***
Wald test spatial error 35.8282 ***

LR spatial error 29.7859 ***

Note: *** represent significance at the 1% levels, respectively.

The spatial panel Dubin model with spatial and time-period fixed effects was chosen to analyze
how economic and social factors influence PM2.5 concentration. As shown in Table 5, UR has a
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significantly negative effect on PM2.5 concentration, and increasing the UR of a city by 1% could decrease
PM2.5 concentration in the city by 0.78%. This is because, with the increasing demands for people to
live in a heathy environment, China has implemented stricter environmental regulations than before.
Considering the spatial interaction of UR, the PM2.5 concentration in a city could decrease by 2.23% if the
UR in the surrounding cities is increased by 1%. Our findings are different from studies before 2010 [50],
which suggested that UR has a positive effect on PM2.5 concentration. The reason behind this is that
after China made carbon emission reduction commitments at the 2009 Copenhagen Climate Conference,
the government, enterprises, and society have been vigorously promoting ecological sustainability,
which effectively curbed the aggravation of air pollution, and reduced PM2.5 concentration.

Table 5. Estimation results of SPDM with two-way FE.

Coefficient t Value Coefficient t Value

lnPD −0.0141 −0.5963 W*lnPD −0.0243 −0.5542
lnPGRP 0.7351 * 0.8572 W*lnPGRP 2.7496 * 1.7305

(lnPGRP)2 −0.0332 * −0.8595 W*(lnPGRP)2 −0.1359 * −1.7796
lnUR −0.7856 ** −2.1325 W*lnUR −2.2324 *** −3.0512

lnPSIGDP −0.1035 −1.1761 W* lnPSIGDP 0.3455 1.8127
lnISDE 0.0095 0.7338 W* lnISDE 0.0432 * 1.9087

lnNIEDS 0.1491 * 1.7273 W* lnIEDS 0.6736 *** 2.6974
W*dep.var. 0.6337 *** 7.6980

Note: ***, ** and * represent significance at the 1%, 5% and 10% levels, respectively.

The coefficients of lnPGRP and (lnPGRP)2 were significantly positive and negative, respectively,
indicating the existence of an inverted U-shaped environmental Kuznets curve (EKC) of PM2.5

concentration in the study area. With the increase of the per capita income level, the study area
experienced a process of pollution first and then treatment, resulting in the PM2.5 concentration first
increasing and then decreasing, which is consistent with some existing research [51–53]. Although
most cities in the study area except for Beijing, Tianjin, and Qinhuangdao are still in the stage of
industrialization [54] and have a secondary industry-dominated structure, some cities shut down many
small-sized, high-pollution, and high-energy-consumption enterprises in order to meet environmental
quality requirements, and reached the peak of pollution ahead of schedule at the cost of low and
medium economic growth. This is further demonstrated by the insignificant coefficient of PSIGDP.

Nevertheless, NIEDS has a significant positive effect on PM2.5 concentrations. PM2.5 concentrations
in cities may increase by 0.15% and adjacent areas by 0.67% when NIEDS is increased by 1%. This is
related to the fact that many NIEDS are resource- and energy-consuming enterprises. For example,
the Hebei Iron and Steel Group is an ultra-large iron and steel group that ranks as the first in China
and the second in the world in terms of crude steel output. Such enterprises provide important
support for local employment and economic development. Given the path-dependence of their
development, it is difficult to carry out energy saving and emission reduction measures immediately
and thoroughly [55]. These enterprises will generate a large amount of dust pollution during production
activities. Accordingly, the PM2.5 concentration of a city is increased 0.043% when the ISDE of adjacent
cities is increased by 1%.

In addition to the above socioeconomic factors, the PM2.5 concentration of a city was also influenced
by those in surrounding cities. The coefficient of the spatial lag term of PM2.5 concentration was 0.6337
and passed the 1% significance test, which was mainly due to the transmission and diffusion of PM2.5.
Wang et al. [56] also reported that the contribution rate of foreign sources to PM2.5 concentrations in
the Beijing–Tianjin–Hebei region was 23.4%.

To further identify the influence of different social factors, we calculated the direct, indirect,
and total effects of socioeconomic factors on PM2.5 concentration (Table 6). Among seven factors,
the total effect of lnPGRP, (lnPGRP)2, lnUR, lnISDE, and lnNIEDS passed the significance test, indicating
that these five factors influenced the spatiotemporal distribution of PM2.5 concentration in the study
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area. The order of the degree of influence for these five factors was: lnPGRP > lnUR > lnNIEDS >

(lnPGRP)2 > lnISDE. The other factors may not significantly influence PM2.5 concentration. To be
specific, lnPGRP and lnUR are primary factors that influenced PM2.5 concentration, and the lnPGRP,
lnUR, and lnNIEDS have spillover effects on the PM2.5 concentration in surrounding cities.

Table 6. Decomposed spatial effects of SPDM with two-way FE.

Direct Effects t Value Indirect Effects t Value Total Effects t Value

lnPD −0.0219 −0.6611 −0.0798 −0.6100 −0.1017 −0.6452
lnPGRP 1.6783 * 1.4878 8.2446 * 1.7204 9.9229 * 1.7623

(lnPGRP)2 −0.0790 * −1.5492 −0.4014 * −1.8354 −0.4804 * −1.8706
lnUR −1.5655 *** −3.0675 −6.8348 *** −2.9502 −8.4003 *** −3.0936

lnPSIGDP −0.0313 −0.2692 0.6839 1.2956 0.6527 1.0645
lnISDE 0.0234 1.3370 0.1248 * 1.7119 0.1482 * 1.7148

lnNIEDS 0.3638 ** 2.1617 1.8965 ** 2.4697 2.2603 ** 2.4722

Note: ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively.

5. Conclusions

This study investigated the effects of socioeconomic factors on the spatiotemporal distribution of
PM2.5 in Beijing–Tianjin–Hebei and surrounding areas during 2015–2017. First, an estimation model
considering spatiotemporal heterogeneous relationships was developed to depict the spatiotemporal
pattern of PM2.5 concentration in the study area. Then, on the basis of analyzing the spatiotemporal
evolution of PM2.5 concentration, a spatial panel Dubin model was applied to determine how
socioeconomic factors affect PM2.5 concentration. Major conclusions of this research include:

1. There is a significant spatiotemporal heterogeneous relationship between PM2.5 and the chosen
auxiliary variables. The developed model can well estimate the spatial distribution of PM2.5

concentration in the study area, with MAE and RMSE of 9.21 µg/m3 and 13.1 µg/m3, respectively.
2. PM2.5 concentration in the study area showed significant spatial and temporal changes. Although

PM2.5 concentration has decreased year by year, it was still higher than the national quality
standard. Thus, further reduction in PM2.5 concentration remains a huge challenge.

3. PGRP, UR, and NIEDS were the key factors influencing the spatiotemporal distribution of PM2.5

concentration in the study area. Specially, there was an inverted U-shaped relationship between
PGRP and PM2.5 concentrations. In addition, the increase of UR in a city will reduce PM2.5

concentration not only in its own city but in neighboring cities, while the increase of NIEDS of a
city will exacerbate PM2.5 concentration in its own city and neighboring cities.
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