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Abstract: Transcription factor Prospero homeobox 1 (PROX1) is continuously expressed in the
lymphatic endothelial cells, playing an essential role in their differentiation. Many reports have
shown that PROX1 is implicated in cancer development and acts as an oncoprotein or suppressor
in a tissue-dependent manner. Additionally, the PROX1 expression in many types of tumors has
prognostic significance and is associated with patient outcomes. In our previous experimental studies,
we showed that PROX1 is present in the thyroid cancer (THC) cells of different origins and has
a high impact on follicular thyroid cancer (FTC) phenotypes, regulating migration, invasion, focal
adhesion, cytoskeleton reorganization, and angiogenesis. Herein, we discuss the PROX1 transcript
and protein structures, the expression pattern of PROX1 in THC specimens, and its epigenetic
regulation. Next, we emphasize the biological processes and genes regulated by PROX1 in CGTH-W-1
cells, derived from squamous cell carcinoma of the thyroid gland. Finally, we discuss the interaction
of PROX1 with other lymphatic factors. In our review, we aimed to highlight the importance of
vascular molecules in cancer development and provide an update on the functionality of PROX1 in
THC biology regulation.

Keywords: PROX1; lymphatic factors; thyroid cancers

1. Introduction

Transcription factor Prospero homeobox 1 (PROX1) is a homolog of the Prospero in Drosophila
that regulates the development of various organs, including the central nervous system [1], lens,
retina, [2], liver [3], heart [4], pancreas [5], and cell fate of lymphatic endothelial cells (LECs) [6].
The PROX1 gene encodes a protein belonging to the Homeobox family, which has a characteristic
Prospero domain at the C-terminus [7].

It has recently been established that PROX1 has a variety of roles in cancerogenesis, and its
functions may change according to the type of tissue. Thus, PROX1 acts as a tumor suppressor in
hepatocellular carcinoma [8], esophageal cancer [9], pancreatic cancer [10], oral cancer [11], hematologic
malignancy [12], sporadic breast cancer [13], carcinoma of the biliary system [14], and papillary thyroid
cancer (PTC) [15]. On the other hand, PROX1 promotes aggressive behavior of colorectal cancer [16],
kaposiform hemangioendothelioma [17], glioma [18,19], and our last observations point to its distinct
oncogenic role in follicular thyroid cancer (FTC) [20–22].

Thyroid cancer (THC) is the most common malignancy of the endocrine system, which is
clinically divided into categories: (1) well-differentiated thyroid cancer (DTC), including PTC and
FTC carcinomas, (2) poorly differentiated thyroid cancer (PDTC) (3) undifferentiated–anaplastic
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thyroid cancer (ATC), and (4) neuroendocrine C-cell derived-medullary thyroid cancer (MTC) [23].
Squamous cell carcinoma of the thyroid gland (SCT) is an unusual neoplasm, which is thought to arise
as a primary tumor or as a component of anaplastic or undifferentiated carcinoma [24].

Depending on the histological variant, THC can use the different vascular routes to metastasize.
Here, PTC spreads preferentially to the lymph nodes via the lymphatic system, and the more aggressive
types, FTC, MTC, ATC, and SCT, tend to metastasize to distant organs (such as lung and bone) through
the bloodstream [25,26].

Recent data strongly indicates that the cancer cell road of metastasis is highly connected with
active vascular factors in the microenvironment and their expression in the cancer cells [27]. In this
scenario, many molecules associated with blood endothelial cells (such as CD44, Intercellular adhesion
molecule 1; ICAM1, Vascular endothelial growth factor receptor 1; VEGFR-1 and Neutropilin-1) and
LEC-specific proteins (including Podoplanin; PDPN, Lymphatic vessel endothelial hyaluronan receptor
1; LYVE-1, VEGFR-3, VEGFC, and PROX1) can be expressed in tumor cells and peri-/intra-tumoral
vessels consequently regulating angiogenic potential of tumors. Furthermore, the altered expression
and secretion of vascular molecules in the tumoral surrounding can change the behavior of cancer and
stromal cells; as a result, increasing the invasiveness and metastasis of tumors [27].

Interestingly, VEGFR-1 is expressed in blood vessels of the tumor but not in those of the
healthy tissue [28]. VEGFD can induce both intra- and peri-tumoral lymphatic vessel development;
however, it is not involved in lymph node metastasis [29]. Finally, a series of lymphatic factors,
including PROX1, VEGFC, PDPN, VEGFR-3, SOX18 (SRY-Box transcription factor 18), and COUP-TFII
(Nuclear receptor subfamily 2 group F member 2) can be expressed in tumoral cells and, consequently,
control their properties, such as invasion, migration, proliferation, survival, epithelial to mesenchymal
transition (EMT), and adhesion [30–35].

In the presented review, we discuss the role of PROX1 in THC development and recent advances
in this field. We describe the PROX1 mRNA / protein sequences, PROX1 expression pattern in THC
and its epigenetic regulation. Next, we present the most important biological processes and genes
regulated by PROX1 in CGTH-W-1 (squamous cell carcinoma of the thyroid derived; SCT) based on
internal RNA sequencing analysis. Finally, the last segment of the review details the transcriptional
interaction of PROX1 with other lymphatic markers, such as VEGFC, VEGFR-3, and PDPN.

2. Thyroid Cancer Classification

Most primary THCs are epithelial tumors that originate from thyroid follicular cells and can
appear as three main histopathological types of carcinoma: PTC, FTC, and ATC. PTC accounts for
85%–90% of all thyroid cancer cases, followed by FTC; 5%–10% [23]. ATC accounts for less than
2% of thyroid cancers, and it is a lethal malignancy (survival ~6 months from diagnosis), typically
arising in elderly patients [36]. Next, MTC, with estimated prevalence maximally 2% of THC cases, is
a form of thyroid carcinoma originating from thyroid parafollicular (C) cells with the characteristic
presence of numerous endocrine secretory granules containing calcitonin in the cytoplasm [37]. SCT is
extremely rare (<1%) and carries the unfortunate prognosis of thyroid malignancy, which often mixes
with heterogeneous elements and is associated with areas of well-differentiated PTC or FTC [24].

The recommended treatment for low-risk PTC patients (females < 45 years old with tumor limited
to the thyroid gland) is thyroid lobectomy (removal one of two thyroid lobes) followed by thyroid
stimulating hormone (TSH) suppressive therapy [38]. High-risk patients (males and women > 45 years
of age with high-grade tumors) are subjected to total thyroidectomy (removal of the entire thyroid
gland) followed by radioactive iodine (131I) ablation [39]. PTC spreads relatively easily to the neck,
but distant metastases are found only in 1% of patients, mostly in lung and bones [40]. The 5-year
survival rate for PTC patients accounts for 100% of patients with localized tumor, 99% for regionally
spread cancer, and 78% for distant metastasizing, which is better than for FTC cases, where the rate is
100% for the localized tumor, 96% for regionally spread, and 63% for distant metastases. FTCs spread
to remote sites, primarily to bones, and the most common treatment of FTC is total thyroidectomy [41].
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In most aggressive types, the total thyroidectomy gives the best chance of cure for patients with
MTC [42], and for ATC, the treatment is usually palliative with radiotherapy [43]. The 5-year survival
rate for metastatic MTC and ATC is 39% and 4%, respectively [41].

In the context of genetic alterations, the most frequent and mutually exclusive genetic changes in
PTCs are BRAF V600E, RAS, and RET/PTC rearrangement, leading to constitutive activation of the
signaling pathway of mitogen-activated kinases (MAPK) (Figure 1) [44].
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Figure 1. Schematic of the genetic abnormalities associated with the development and progression of
thyroid cancers developed from healthy epithelium cells: (1) follicular thyroid adenoma, (2) papillary
thyroid carcinoma, (3) follicular thyroid carcinoma, and (4) anaplastic thyroid carcinoma and
parafollicular thyroid cells: medullary thyroid carcinoma. Figure adapted from [45]. Red arrow
signifies overactivation of signaling pathway.

BRAF occurs in 45% of PTCs, and in the majority, it is a substitution at the second position of codon
600 (V600E; GTG > GAG), c.1799 T > A) resulting in an amino acid change from valine to glutamic acid
that leading to constitutive activation of serine/threonine kinase BRAF [46].

The RAS gene encodes a family of three highly homologous oncogenes: NRAS, HRAS, and KRAS,
in which mutations occur in 10%–20% of PTCs [47]. RAS proteins transmit the signals from the receptors
on cell membranes to several types of targets in the cell controlling MAPK and 3-phosphatidylinositol
kinase PI kinase (PI3K) signaling pathways [47]. All point mutations of the RAS gene fix the protein
activated states and, therefore, result in continuous stimulation of downstream targets of RAS [48].

The RET/PTC rearrangements occur in the chimeric oncogene RET/PTC, where the C-terminal
kinase domain of the RET transmembrane tyrosine kinase receptor is fused to one of the different
upstream partners, resulting in constitutive RET activity. At least 12 rearranged forms of the RET gene
have been isolated and detected in 30% of the PTC cases, from which RET/PTC1 and RET/PTC3 are the
most common [44,49].

In contrast, the characteristic genetic modifications that are mutually exclusive in FTC are changes
in the RAS, PTEN, and PIK3CA genes, as well as rearrangement of PAX8-PPARγ, activating the
3-phosphatidylinositol kinase PI kinase (PI3K/Protein Kinase B–AKT) [44,50].

The RAS mutations were observed in approximately 40%–50% of FTC cases [51], and the
modification was predominantly found in the NRAS codon 61, which positively associated with distant
metastases of FTC [52].
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Following, the mutation or deletion of the tumor suppressor gene – PTEN (phosphatase and tensin
homolog) and PIK3CA transcript (coding the p110α catalytic subunit of PI3K) are the classical genetic
alterations that activate the PI3K–AKT pathway in ~10% and 10%–30% of FTC cases, respectively [53,54].

The PAX8 gene encodes a transcription factor required for the generation of thyroid follicular cells
and tissue-specific gene expression in the thyroid gland. The PAX8/PPAR fusion results in significant
increases in expression of PAX8/PPAR chimeric protein and, as a result, inhibits the tumor suppressor
activity of PPAR [55]. The PAX8/PPAR rearrangement presence was detected by real-time PCR in ~35%
of FTC cases [56].

Consequently, the constitutive activation of pathways associated with the molecular changes in
PTC and FTC can give rise to the formation of more aggressive forms PDTC and ATC [45]. The sporadic
MTC development is mainly connected with RET receptor tyrosine kinase mutation, which has
an essential role in cell survival, differentiation, and proliferation [37]. However, in ~10%–30% of
patients, the RAS mutation was also found [57,58].

Additionally, through whole-genome sequencing, in many malignant THC cases, the mutations
in the promoter region of telomerase reverse transcriptase (TERT) were found, contrary to the early
stages of thyroid tumors [59]. TERT transcript is a 35 kb gene located on chromosome 5, which contains
16 exons and a 330 base pair promoter region. Two main TERT mutations: 1 295 228 C>T (C228T)
and 1 295 250 C>T(C250T) can increase the TERT transcriptional activities. Particularly prevalent
in THC is the C228T variant, which appeared in Liu X. et al.’s, 2013, analysis with 11.7% of PTCs,
11.4% of FTCs, 37.5% of PDTCs, and 42.6% of ATCs [59]. Moreover, the coexistence of TERT
with BRAF or RAS alterations had a synergistic effect on poor clinicopathologic outcomes of PTCs,
such as disease recurrence and patient mortality [60]. All data suggest that TERT promoter mutations
may play a role in the THC de-differentiation, progression, and aggressive behavior [61]. Interestingly,
Lee et al., 2019 correlated TERT and PROX1 mRNA expression levels in several cancer types, including
melanoma, esophageal and head and neck, and lung cancer, with PROX1 downregulation indicating
a poorer prognosis in melanoma [62]. The authors concluded that PROX1 perhaps regulates TERT in
an activity-dependent manner with other genetic changes. The PROX1:TERT relation can be a new
scientific aim, which has to be elucidated in THC research.

The establishment of molecular changes in THC and recent progress in this field provide
unprecedented opportunities for the development of molecular-based diagnostic, prognostic,
and therapeutic strategies for a different type of THC.

3. PROX1 mRNA/Protein Isoforms and Antisense of PROX1 Characterization

PROX1 is a transcription factor essential for the embryogenesis of a variety of organs. The human
PROX1 transcript is located on chromosome 1q32.2–q32.3 composed of five exons and four introns
and produces two variants: NM_002763 and NM_001270616, both encoding the same protein product,
but the NM_002763 transcript is longer by 322 nucleotides [7]. Long noncoding transcript (PROX1-AS1)
transcribed from the antisense strand of PROX1 is located on chromosome 1q32.3 with transcript
length 3399 bp (Figure 2A).

The existence of different mRNA isoforms (7.9 kb and 2.9 kb) coding various PROX1 protein forms
were presented by Zinovieva et al., 1996 and Dudas et al., 2008 using sequencing and hybridization [7,63].
In the performed research, the dominance of the 7.9 bp form was correlated with hepatocellular carcinoma
samples, while the shorter isoform 2.9 kb was exclusively detected in cholangiocellular carcinoma [63].

The PROX1 protein contains 737 amino acids with a molecular weight of 82.3 kDa. Structurally,
the PROX1 protein includes a unique homeodomain followed by a conserved prospero domain at
the C-terminus and two nuclear receptor boxes (NR boxes) with nuclear localization signal (NLS) at
the N-terminus (Figure 2B). PROX1 can act as a transcriptional activator, transcriptional repressor,
or a transcriptional corepressor. While Prospero-/homeodomain and NLS are responsible for DNA
binding, the NR boxes can interact with nuclear receptors, e.g., HNF4a/NR1A1 or SF-1/NR5A1 [64].
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presents two variants (1-NM_002763 and 2-NM_001270616; the first variant represents the longer
transcript; both options 1 and 2 encode the same protein); mRNA includes five exons and four introns.
The structure is available on http://atlasgeneticsoncology.org/Genes/GC_PROX1.html (B) Top—Protein
structure-based on the PDB model (ID: 2LMD; graphical visualization was made in PyMOL),
bottom—the schematic protein structure with the nuclear localization signal (NLS) and nuclear
receptor (NR) boxes at the N-terminus and prospero and homeobox domains on C-terminus.

4. PROX1 Expression in Thyroid Cancer

Choi D. et al., 2016 described that PTC specimens show a consistent downregulation of PROX1
by more than 2-fold (p < 1 × 10−4) compared to normal thyroid tissues, which was confirmed by our
simulation (with GEPIA database) using another set of thyroid cancer gene profiling studies (Figure 3).
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Figure 3. Expression pattern of PROX1 in thyroid cancer (THC) tissues. The red bar represents the PROX1
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in healthy tissues (N; the number of cases = 337), * p ≤ 0.05. The data are available on the GEPIA database.
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Authors suggested that PROX1 downregulation can be already detectable in follicular and oncocytic
adenomas, implying that this genetic event may happen in the early stage of follicular carcinogenesis [15].

Next, PROX1 downregulation in PTC-derived cells (BcPAP, TPC-1), normal thyroid cells (Nthy
ori-3-1), ATC-derived cells (8505C), and two FTC-derived cell lines (FTC236 and FTC238) in comparison
to FTC-derived cell line (FTC-133), and SCT cells (CGTH-W-1) was observed [22]. Moreover, as we
found, lower PROX1 expression levels correlated with more prolonged survival and reduced disease
severity, i.e., with I and II grades in comparison to III and IV stages. The switch of the PROX1 expression
level in different cancer stages was suggested to be negatively regulated by fibroblast growth factor
2 (FGF2) [22]. In lens epithelial cells (LCs), the positive PROX1–FGFR signaling feedback loop was
demonstrated, leading to PROX1 upregulation in response to FGF2 [65]. Additionally, the positive
stimulation of PROX1 by FGF2 in CGTH-W-1 cells was noticed [22]. Interestingly, the lower expression
of PROX1 mRNA in THC tissues and cultured cancer cells did not correspond to the protein level that
revealed accumulation in the cytoplasm [15,20]. This phenomenon was connected with the higher
stability of the cytoplasmic form of PROX1 protein. The experiments performed with Kaposi sarcoma
cells showed that PROX1 mRNA contains a canonical AU-rich element (ARE) in 3’-untranslated region
(3′-UTR) facilitating binding of RNA binding protein HuR which stabilizes the transcript [66].

5. Epigenetic Regulation of PROX1

Genetic and epigenetic mechanisms can be involved in PROX1 expression regulation [11,13].
Mutations [67], DNA methylation [11], and non-coding RNA [68] appear to be the major mechanisms
modulating the PROX1 function.

5.1. Mutations and Methylation

Post-transcriptional RNA editing is a process in which the nucleotide sequence of a nuclear
mRNA is changed from that encoded in genomic DNA. RNA editing occurs through base modification,
by deamination of cytidine (C) to uridine (U) or by deamination of adenosine (A) to inosine (I),
in nuclear mRNA. Uridine and inosine are recognized by translational apparatus as thymidine and
guanosine, respectively, so the net effects are changes in C-to-T and A-to-G [69]. In this context,
the A-to-G mutation affects PROX1 function in human specimens of pancreatic, colon, and esophageal
cancers and A to I in esophageal cancer. All detected variations were observed in cDNA PROX1 but not
at the genomic DNA level [67,70]. Still, no experimental data provide information on PROX1 mutations
in THC and their effect on PROX1 function. Importantly, several single nucleotide polymorphisms
(SNPs) present in intronic regions of PROX1 were suggested to modulate PROX1 expression levels
with potential involvement in the pathogenesis of type 2 diabetes [71]. Therefore, it cannot be excluded
that modulation of PROX1 expression levels by these SNPs will also influence THC pathogenesis
and/-or aggressiveness.

DNA methylation is one of the most common epigenetic modifications in mammals, and in healthy
cells, it ensures the proper regulation and stable gene silencing. DNA methylation that is catalyzed
by DNA methyltransferases (DNMTs) is associated with the addition of a methyl group to cytosine
residue present within CpG dinucleotides, which are concentrated in large clusters (CpG islands) [72].
It is commonly known that inactivation of specific tumor suppressor genes occurs as a consequence of
hypermethylation within the promoter regions, and numerous studies have demonstrated a broad
range of genes silenced by DNA methylation in different cancer types [72]. Epigenetic silencing is one of
the mechanisms responsible for PROX1 inactivation in tumors. For example, hypermethylation of CpG
islands was identified as a mechanism for PROX1 inactivation in breast, biliary system, and squamous
cell carcinomas [11,13,14].

Our internal analysis using an online tool with clinical data—UCSC Xena database—has detected
a heatmap showing relative methylation levels for the most variably methylated PROX1 promoter regions
in THC tissues (Figure 4A). Hierarchical clustering (from top to down) provides different THC tissues,
where blue indicates a low level or no methylation for the reported locus of PROX1, and red shows the
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high methylation. Furthermore, we provide our experimental data, where two cell lines, normal thyroid
cells (Nthy ori-3-1) and PTC-derived cell line (TPC-1), showed a significant increase in PROX1 transcript
after 24 h of treatment with a demethylating agent (5-aza-2’-deoxycytidine; 5 µM) (Figure 4B).
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no methylation for PROX1; red indicates a high methylation level. The methylation analysis was studied
using https://xenabrowser.net/heatmap/. B. Treatment of the immortalized normal thyroid cells (Nthy ori-3-1)
and PTC-derived cell line (TPC-1) with 5 µM 5-aza-2’-deoxycytidine for 24 h, ** p ≤ 0.01.

Taken together, these data suggest that PROX1 expression could be regulated by DNA methylation
status in thyroid cancer tissues and thyroid normal and cancer cells.

5.2. Non-Coding RNAs

Non-protein-coding RNAs (ncRNAs) have been associated with transcription/translation regulation
and include microRNA (miRNA; approximate length 21–23 nucleotides) and non-protein-coding transcript
(lncRNA; ≥ 200 nucleotides).

Several microRNAs have been shown to play critical roles in postnatal and pathologic
angiogenesis [73] and pose attractive targets for the generation of novel therapeutic agents to treat
vascular diseases and cancer [74].

It was demonstrated that the microRNA miR-181a is expressed in LEC cells and binds to the
PROX1 3′-UTR, resulting in rapid and efficient transcript degradation and translational inhibition,
which may have important implications for the control of PROX1 expression [68].

https://xenabrowser.net/heatmap/
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The miR-31 targets the 3’ UTR of PROX1 to suppress its expression in human LEC cells,
and conversely, miR-31 overexpression led to defective lymphangiogenesis in Xenopus and Zebrafish
embryos [75]. Next, using LEC cells and alkali burn corneal injury model, it was shown that miR-466
directly targets the 3’ UTR of PROX1, and similarly to other miRNAs, suppresses PROX1 expression
resulting in inhibition of lymphangiogenesis [76].

According to the miRDB database (http://www.mirdb.org/index.html), for example, miR-10527-5p,
miR-6867-5p, miR-4262, miR-4668-5p, and miR-3148 may still regulate PROX1 mRNA and thus can be
the future research aim, especially in THC cases, due to the lack of published data.

The expression of PROX1 can be regulated by lncRNA (PROX1-AS1), which was also shown
to be involved in THC biology [77]. According to research by Shen et al., 2018, PROX1-AS1 is
expressed in PTC-derived cell lines and regulates their malignant behavior [77]. In detail, knockdown
of PROX1-AS1 significantly inhibited proliferation, colony formation, migration, and invasion
of PTC cells. Moreover, detected changes were associated with the mesenchymal-to-epithelial
transition, where PROX1-AS1 downregulation lowered the expression of N-cadherin and Vimentin,
while E-cadherin was enhanced [77].

Using the GEPIA database, we detected ~4× higher PROX1-AS1 expression in cancer samples
(THC, n = 512) compared to healthy tissues (n = 337) (Figure 5A). Similarly to PROX1, the lower
PROX1-AS1 expression is associated with a higher tendency to the longer survival time of THC patients
(Figure 5B), and a higher expression level of PROX1-AS1 is observed in lower stages of the tumor
(Figure 5C; [22]). The significant positive PROX1: PROX-AS1 correlation (0.75; p = 0) was observed for
THC samples (Figure 5D) and healthy tissues (0.5; p = 0, Figure 5E).
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Figure 5. The PROX1-AS1 expression pattern in thyroid cancer and correlation with PROX1.
(A) Expression of PROX1-AS1 in thyroid cancer specimens (pictured on the red bar (T); the number of
cases = 512) compared to non-cancerogenic thyroid tissues (pictured on the grey bar (N); the number
of cases = 337), * p ≤ 0.05. (B) PROX1-AS1 relation to survival of patients with THC. (C) PROX1-AS1
expression compared to tumor stage I, II, III, and IV. (D,E) PROX1-AS1: PROX1 correlation in THC and
healthy thyroid (TH) specimens, respectively.
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6. The Role of the PROX1 in the Regulation of Cancer Biological Processes, Including
Thyroid Cancer

PROX1 is involved in the stimulation of multiple intracellular signaling pathways regulating
apoptosis, proliferation, lymph-/angiogenesis, and EMT of cancer cells. Thus, PROX1 in neuroblastomas
and pancreas occurs in a subset of well-differentiated, high-grade tumors [78,79]. PROX1 overexpression
enhanced the proliferation of glioblastoma cells and promoted the growth of glioblastoma xenograft
tumors, and this invasiveness potential was regulated via activation of the NF-κB signaling pathway [79].
In esophageal squamous cell carcinoma cell lines, the PROX1 protein was expressed at a lower level
compared with the healthy exocrine pancreas [10], and low expression was associated with poor patient
survival. Contrary, in colorectal cancer, depletion of PROX1 in human hepatocellular carcinoma cell
lines caused a significant increase in cell proliferation [80].

In colorectal cancer, PROX1 has been identified as a downstream target of the TCF/beta-catenin
signaling pathway [30], and its lower expression in colon cancer cells was connected with estrogen
receptor beta signaling [81]. While PROX1 does not appear to be responsible for the initiation of
colon tumor cell growth, it promotes progression from a benign to a malignant phenotype [30,82].
Analysis of the PROX1 regulatory pathways showed that this phenotypical switch is most likely
induced through alterations in cell polarity, extracellular matrix interactions, cell adhesion, and is
associated with dysplasia and frequent mitotic figures [30].

A study of Kaposiform hemangioendothelioma revealed that overexpression of PROX1 facilitates
a more aggressive behavior through induction of genes involved in cell adhesion, proteolysis,
and migration, thereby enhancing cell invasion and migration into the surrounding tissue [17].

Overall, the examples mentioned above provide indirect evidence that PROX1 may regulate
tumor progression by influencing cancer cell migration and invasion.

In the context of THC, PROX1 can be an essential regulator of secretory granules (SGs) formation in
MTC. Its presence was observed in SGs in immunohistochemistry staining, and PROX1 gene depletion
resulted in the reduced SG numbers and decreased expression of SG-related genes (Chromogranin
A, Chromogranin B, Secretogranin II, Secretogranin III, Synaptophysin, and Carboxypeptidase E).
Conversely, the introduction of a PROX1 transgene into a PTC and ATC cells induced the expression of
SG-related transcripts [83].

The downregulation of PROX1 in PTC-derived cells was a consequence of aberrantly activated
Notch signaling. Moreover, in PTC cells after transgenic PROX1 reexpression enhanced Wnt/β-catenin
signaling was observed, coupled with and regulation of thyroid cancer 1 (TC-1) protein, Serpina 1,
and Fatty acid-binding protein 4 (FABP4), that are known to be associated with PTC. Additionally,
notch-induced PROX1 inactivation significantly promoted the malignant phenotype of thyroid
cancer cells [15]. On the other hand, we observed that in FTC- and SCT-derived cells, PROX1
acts as an oncoprotein and supports malignant traits, including migration and invasion potential,
anchorage-independent growth, that were accompanied by changes in focal adhesion force [20,21].
Furthermore, PROX1 knockdown increased the angiogenic potential of FTC- and SCT-derived cells by
modulating the expression of genes involved in the angiogenic signaling pathway and was regulated in
the opposite direction than pro-angiogenic factor FGF2 [22,84]. We can hypothesize that the discrepancy
between the regulation of PTC and FTC and SCT by PROX1 may result from differences in the origin
of cancer cells, mutations, as well as signaling pathways involved.

In our previous research, we analyzed the pattern of global gene expression in CGTH-W-1 cells
lacking the PROX1 after transfection with RNA interference targeting of PROX1. We found that
transcripts of many genes involved in migration, focal adhesion, invasion, cytoskeleton reorganization,
and angiogenesis were regulated by PROX1 knockdown compared to control treated with negative
siRNA. Studies examining biological processes have confirmed the involvement of selected factors as
regulators of biological processes connected with cell–cell adhesion, cell migration, invasive behavior,
and tube formation. Further, all molecular changes were rigorously confirmed in biological testing
where cells after PROX1 knockdown revealed changed actin organization, showed the lower motility,
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increased invasive potential, and changed the tubularization of human umbilical endothelial cells
cultivated in medium conditioned using CGTH-W-1 cells transfected with siPROX1.

Here, we provide a review of other biological processes (BPs) significantly changed by downregulated
(Table 1) and upregulated (Table 2) genes in PROX1-silenced CGTH-W-1 cells, and 20 transcripts showing
the strongest differential expression (Table 3). The altered BPs are strongly connected with the aspect of
transcriptional and gene regulation, translation, and neuro-/morphogenesis control. Table 3 presents selected
genes and their role in the physiological and tumorigenic context, including function in thyroid cancer
development, if data are available. Among the listed genes: MMP1, VPS33A, CARNMT1, RASSF2, SOX2,
MXRA5, SEPT3, LPAR1, FAM129A, FTH1, TUBA1 have already been connected with THC development,
but the role of others remains unknown for THC biology. Therefore, the provided data can be a base for the
perspective research focused on thyroid cancer and the PROX1.

Table 1. Gene Ontology (biological process) analysis of up-regulated genes after Prospero homeobox 1
(PROX1) silencing in CGTH-W-1 cells.

GO ID GO Name p-Value Count

GO:0006413 translational initiation 1.60 ×
10−19 35

GO:0006415 translational termination 2.06 ×
10−17 31

GO:0006414 translational elongation 2.30 ×
10−17 35

GO:0032984 macromolecular complex disassembly 2.43 ×
10−17 61

GO:0006614 signal-recognition particle -dependent
cotranslational protein targeting to membrane

7.11 ×
10−17 35

GO:0072599 establishment of protein localization to the
endoplasmic reticulum

9.42 ×
10−16 35

GO:0044419 interspecies interaction between organisms 4.95 ×
10−15 91

GO:0044033 multi-organism metabolic process 6.53 ×
10−15 47

GO:0000184 nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay

9.84 ×
10−14 33

GO:0006612 protein targeting to membrane 4.70 ×
10−13 36

GO:0006402 mRNA catabolic process 2.46 ×
10−11 41

GO:0034660 non-coding RNA metabolic process 2.78 ×
10−11 39

GO:0071822 protein complex subunit organization 4.71 ×
10−11 59

GO:0044238 primary metabolic process 5.31 ×
10−9 224
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Table 2. Gene Ontology (biological process) analysis of down-regulated genes after PROX1 silencing in
CGTH-W-1 cells.

GO ID GO name p-Value Count

GO:0072359 circulatory system development 8.73 × 10−8 56

GO:0007275 multicellular organismal development 1.10 × 10−7 86

GO:0032879 regulation of localization 5.58 × 10−7 31

GO:0022008 neurogenesis 1.32 × 10−6 44

GO:0061564 axon development 3.51 × 10−6 37

GO:0007173 epidermal growth factor receptor signaling pathway 3.43 × 10−5 17

GO:0048812 neuron projection morphogenesis 4.84 × 10−5 34

GO:0051272 positive regulation of cellular component movement 5.25 × 10−5 24

GO:0048667 cell morphogenesis involved in neuron differentiation 5.53 × 10−5 33

GO:0030910 olfactory placode formation 0.000117108 4

GO:0071698 olfactory placode development 0.000117108 4

GO:0050896 response to stimulus 0.000131862 86

GO:0021707 cerebellar granule cell differentiation 0.000158245 3

GO:0009605 response to external stimulus 0.000216347 53

Table 3. List of 20 genes up- and downregulated in CGTH-W-1 cells upon PROX1-knockdown.

GO ID Fold Change p-Value Function

MMP1
(Matrix metallopeptidase 1) 4.025 4.30 × 10−22

An enzyme responsible for the extracellular matrix
remodeling [85] and can play a significant role in the invasion
and recurrence of thyroid cancer (THC). Contrary to healthy
thyroid cells, MMP-1 is secreted by thyroid cancer cells
in vitro, and immunofluorescence staining showed the
expression of MMP-1 protein in adenomas, papillary thyroid
cancer (PTC) and follicular thyroid cancer (FTC)
specimens [86,87]. Interestingly, an examination of the MMP1
mRNA in PTC cases revealed that the transcript was expressed
in the fibrous capsules of PTC, but not in the PTC cells [88].

ZBED2
(Zinc finger BED-type
containing 2)

2.911 2.84 × 10−9

The transcription factor regulating cellular signals in
a cell-type specific manner [89]. ZBED2 was detected in PTC
tissues as a commonly downregulated gene [90]; nonetheless,
its role is unknown in THC development.

VPS33A
(VPS33A core subunit of
CORVET And HOPS
complexes)

2.360 1.42 × 10−6

Molecule involved in the endocytic membrane transport and
autophagic pathways [91]. According to mRNA expression,
VPS33A can be considered as a favorable prognostic marker
in THC [92].

NDUFA2
(NADH: ubiquinone
oxidoreductase subunit A2)

2.337 1.11 × 10−7

A unit of the hydrophobic protein fraction of the NADH:
ubiquinone oxidoreductase (complex 1), which catalyzes the
first step in the mitochondrial respiratory chain; translocate
electron across the inner mitochondrial membrane [93].
NDUFA2 can be a useful marker in discriminating healthy
and highly invasive breast carcinoma [94].

TSEN54
(TRNA splicing endonuclease
subunit 54)

2.315 2.38 × 10−5

A part of the splicing endonuclease complex involved in
tRNA splicing and mRNA 3′ end formation [95]. TSEN54 is
scored as one of the important SEN subunits in multiple
human haploid cancer cell lines [96].

CACNA2D3
(Calcium voltage-gated
channel auxiliary subunit
alpha2delta 3)

2.285 7.69 × 10−8
Member of the voltage-dependent calcium channel complex.
CACNA2D3 can act as a cancer suppressor,
e.g., in glioblastoma [97] and endometrial cancer [98].
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Table 3. Cont.

GO ID Fold Change p-Value Function

HIST1H4A
(H4 clustered histone 1) 2.232 3.30 × 10−9

A protein is belonging to the linker histone family that is
engaged in chromatin organization. Its alteration in expression
level can be connected with cancer aggressiveness [99].

CARNMT1
(Carnosine
N-methyltransferase 1)

2.218 0.000425

A cytosolic enzyme catalyzing the N-methylation of
nicotinamide to form 1-methylnicotinamid, which plays
an essential role in controlling the intracellular concentration
of nicotinamide. CARNMT1 is upregulated in various
cancers [100]. Its activities were detected in 8 of 10 of
PTC-derived cell lines and 3 of 6 of the FTC-derived cell lines.
Immunohistochemical labeling showed abundant cytoplasmic
reactions in the sections of PTC, and scanty reaction in the
control of thyroid tissues [101]. Furthermore, healthy thyroid
tissues, primary thyroid cultures, anaplastic thyroid cancer
(ATC) cells, and medullary thyroid cancer cells showed no or
low enzyme activity.

SLCO4A1
(Solute carrier family 4
member 1
(Diego blood group))

2.179 0.000354

Protein involved in the transport of various compounds,
such as sugars, bile salts, organic acids, metal ions, amine
compounds, and estrogen. SLCO4A1 is highly expressed in
several tumors, e.g., breast, colorectal, and lung cancers [102].

RBM8A
(RNA binding motif protein 8A) 2.170 7.44 × 10−12

An RNA binding protein is a component of the exon junction
complex. Abnormal RBM8A expression is associated
with carcinogenesis [103].

RASSF2
(RAS association domain
family member 2)

0.403 2.04 × 10−7

The RAS association domain family encodes the class of tumor
suppressors. Under the tumorigenic transformation, several
RAS members are frequently silenced in human cancer. In this
context, RASSF2 was methylated in 88% of thyroid cancer
tissues, varied THC-derived cell lines, and 63% of primary
thyroid carcinomas [104].

SOX2
(SRY-box transcription factor 2) 0.411 6.61 × 10−6

SOX2 is essential for embryonic development and maintaining
the stemness of embryonic cells. On the other hand,
the deviation of SOX2 expression positively correlates with the
enhancement of cancer cell traits, such as proliferation,
migration, invasion, and drug resistance [105]. In the context
of thyroid cancer, the higher expression of SOX2 can associate
with the transformation from PTC to ATC accompanied by
tumor protein p53 (TP53) mutation [106].

MXRA5
(Matrix remodeling associated 5) 0.416 3.02 × 10−6

The role of the MXRA5 protein is not clear; however, its
anti-inflammatory and anti-fibrotic functions were shown in
tubular cells of the human renal biopsies [107]. The MXRA5
mRNA mutation was detected in some cases of follicular
variant of papillary thyroid cancer [108].

SEPT3
(Septin 3) 0.423 2.74 × 10−12

A cytoskeletal GTPase involved in many cellular processes,
including exocytosis, apoptosis, carcinogenesis,
and neurodegeneration. It can suppress the growth of some
tumors, including glioma and PTC [109].

LPAR1
(Lysophosphatidic acid
receptor 1)

0.423 2.26 × 10−14

The receptor of the G protein-coupled that mediates diverse
biologic functions, such as proliferation and survival of cells,
cytoskeleton reorganization, factor secretion, and tumor cell
invasion. LPAR1 expression level is induced in THC-derived
cell lines (BcPAP, SW173, CAL62), compared to normal
thyroid epithelium cells (Nthy-ori 3-1). In the THC cells,
LPAR1 mediates invasion through the RHOA and ERK
signaling pathway, which is amplified by heterodimerization
with a member of the adhesion G protein-coupled receptor
family—CD97 [110].

FAM129A
(Niban apoptosis regulator 1) 0.424 3.79 × 10−13

FAM129A protein is activated in the stress conditions
(e.g., ER-stress and genotoxic stress) in cells and protects them
from apoptosis and death [111]. FAM129A regulates
autophagy in a cell/context-dependent manner, increasing or
decreasing autophagocytosis activity in healthy and tumor
thyroid cells, respectively [112]. Immunohistochemistry
staining of FAM129A does not reliably distinguish follicular
thyroid carcinoma from follicular thyroid adenoma [113].
However, it was described that it can be a useful marker to
distinguish benign from malignant thyroid nodules in
preoperative diagnostic exams [114].
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Table 3. Cont.

GO ID Fold Change p-Value Function

FTH1
(Ferritin heavy chain 1) 0.434 4.15 × 10−23

A vital ferritin subunit is maintaining iron balance, which can
act as a suppressor in breast colorectal and ovarian cancer
[115,116]. On the other hand, FTH1 transcript overexpression
was detected in a two-step differential expression analysis of
six Hürthle cell follicular thyroid adenoma and their paired
normal tissues [117].

TUBA1A
(Tubulin alpha 1a) 0.446 2.05 × 10−21

Represent the major components of cytoskeleton microtubules.
The post-translational modifications of tubulin have been
reported for a range of cancers and correlated with poor
prognosis and chemotherapy resistance in
cancer treatment [118].
Greatly increased expression of TUBA1A mRNA was detected
in PTC and anaplastic carcinomas [119]. Furthermore,
TUBA1A protein was defined as one of the predictive markers
in differentiating between FTC and adenoma or between FTC
and PTC [120].

PNMA2
(PNMA family member 2) 0.448 4.67 × 10−6

PNMA2 is mainly expressed in the healthy human brain,
but its presence was also found in other human tumors.
The physiological function of PNMA2 is still unclear; however,
the investigation using cell line derived from breast cancer
(MCF-7) point out that PNMA1 promotes apoptosis and
chemo-sensitization [121].

FBXO32
(F-box protein 32) 0.449 3.57 × 10−5

F-box protein an E3 ubiquitin ligase that is involved in
phosphorylation-dependent ubiquitination and plays
remarkable roles in tumorigenesis and muscle atrophy [122].
FBXO32 can act as a suppressor in breast and ovarian cancer
cells by regulating the malignant behavior of
tested cells [122,123].

7. Relation of PROX1 with Other Lymphatic Factors

Although the importance of PROX1 in lymphangiogenesis is widely described, little is known
about the mechanisms by which PROX1 expression is controlled in other cell types and how PROX1
affects other genes/proteins.

The road of lymphangiogenesis depends on VEGF-C and -D signaling pathways through VEGFR-2
and VEGFR-3, where especially VEGF-C and –D bind with VEGFR-3 and activate PROX1. In the
cardinal vein, the PROX1-positive precursor cells differentiate into LEC cells. During asymmetrical
division, a one daughter cell becomes lymphatic and progressively upregulates PROX1, and the other
one downregulates PROX1 and stays in the vein [124]. In this process, VEGF-C controls the bipotential
precursor division and mediates activation of VEGF-3, which next regulates PROX1 by establishing
a feedback loop. Both VEGF-C and VEGFR-3 are required to PROX1-mediated cell fate reprogramming
and to maintain the identity of LEC progenitors [125]. Additionally, the PROX1 activation of VEGFR-3
can be regulated by small ubiquitin-like modifier 1 (SUMO-1; sumoylation), which can reduce PROX1
transcriptional activity and consequently stops the lymphatic differentiation [126].

The PROX1/VEGF-C/VEGFR3 positive correlation was also detected in the analysis of human
cervical neoplasia [127]. Furthermore, in vitro analysis demonstrated that PROX1 regulates cell growth,
proliferation, invasion, and lymphangiogenesis by enhanced VEGFC expression in oral squamous
cell carcinoma [128]. In thyroid cancer cell lines (FTC-133 and CGTH-W-1), PROX1 and VEGFC
are expressed, and in CGTH-W-1 cells, VEGFC was oppositely regulated by PROX-1 knockdown,
which enhanced the VEGFC expression level and its secretion [22].

On the other hand, PROX1 can be directly activated by the transcription factors SOX18 [129] and
COUP-TFII [130,131], binding to the PROX1 promoter. Overexpression of SOX18 in blood endothelial
cells induces them to express PROX1 and other lymphatic endothelial markers, while Sox18-null
embryos show a complete blockade of LEC cells differentiation from the cardinal vein [129] and loss
of PROX1 expression [132]. Furthermore, defects in the transcription factor SOX18 cause lymphatic
dysfunction in the human syndrome hypotrichosis–lymphoedema–telangiectasia [133].
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Throughout LECs development, COUP-TFII physically interacts with PROX1 to form a stable
complex. As a result, COUP-TFII is a partner for PROX1 to control several genes, including VEGFR-3,
FGFR-3, and neuropilin-1, required to LEC phenotype [134].

Similarly to PROX1, both SOX18 and COUP-TFII are associated with regulation in malignancy
of various cancer types, such as gastric, breast, and lung cancers, and they are connected with
vascularization of tumors [135–138].

PROX1 enables the reprogramming of vascular endothelial cells to become PDPN-expressing
lymphatic endothelial cells [6,139,140]. PDPN—a mucin-type transmembrane protein—is a unique
transmembrane glycoprotein receptor (38 to 50 kDa) with a heavily O-glycosylated amino-terminal
extracellular domain. PDPN does not show enzymatic activity; to accomplish its biological functions,
PDPN interacts with other proteins located in the same cell or neighbor cells [141]. Consequently,
the binding of PDPN to its ligands leads to the modulation of signaling pathways that regulate
proliferation, contractility, migration, EMT, and remodeling of the extracellular matrix [142]. In the
PTC-derived cells, PDPN silencing reduces migration, invasion, and adhesion of tested cells through
regulating the expression of the ezrin, radixin, and moesin proteins, MMP9 and MMP2 proteins [32,33].

Using chromatin immunoprecipitation assay, performed on LEC cells, PROX1 binding to the 5′

regulatory sequence of PDPN regulating PDPN mRNA expression level was detected (Figure 6A) [105].
In the context of THC, PROX1 and PDPN expression is adjusted in opposite directions. PROX1 more
highly expressed in FTC and SCT cells, whereas PDPN shows the upregulation in PTC cells [32].
Furthermore, in THC tissues, the positive co-expression of PROX1 and PDPN was on a slight level
(= 0.0052) and statistically insignificant (Figure 6B).

All the above observations can suggest that PROX1 relation with other vascular factors should be
separately investigated in THC cases.Int. J. Mol. Sci. 2020, 21, 3220 14 of 22 
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8. Conclusions and Perspectives

PROX1 shows a vital role in tumor progression and metastatic tumor growth through the impact
on the aggressiveness of various cancer types, including thyroid cancer.

However, more profound knowledge regarding the molecular mechanisms, pathways, and targets of
PROX1 in the various stages of thyroid tumor development remains to be obtained. Molecular regulation of
PROX1 was deeply investigated in LEC cells, but it is unknown how PROX1 regulates and is regulated in
other types of cells, especially under tumorigenic events.

Our work highlights the utility of PROX1 as a potential prognostic marker and adds biological
insight to its role in different thyroid cancers, where it controls a gene expression profile involved
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in migration, invasion, adhesion, and vascularization. Still, further experiments are required to
understand how the PROX1 epigenetic regulation and relation with other vascular molecules translate
into a tumor setting and development. Considering the aggressive nature of THC and the minimal
treatment window, there is an imperative need for novel molecular-based treatment strategies in which
PROX1 can be an essential factor.
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FTC Follicular thyroid cancer
LEC Lymphatic endothelial cell
PTC Papillary thyroid cancer
SCT Squamous cell carcinoma of the thyroid derived
DTC Well-differentiated thyroid cancer
PDTC Poorly differentiated thyroid cancer
ATC Anaplastic thyroid cancer
MTC Medullary thyroid cancer
ICAM1 Intercellular adhesion molecule 1
VEGFR-1 Vascular endothelial growth factor receptor 1
PDPN Podoplanin
LYVE-1 Lymphatic vessel endothelial hyaluronan receptor 1
SOX18 SRY-Box transcription factor 18
COUP-TFII Nuclear receptor subfamily 2 group F member 2
EMT Epithelial to mesenchymal transition
PI3K 3-Phosphatidylinositol kinase PI kinase
NR Nuclear receptor
NLS Nuclear localization signal
FGF2 Fibroblast growth factor 2
ARE AU-rich element
3′-UTR Three prime untranslated region
SNP Nucleotide polymorphism
DNMT DNA methyltransferase
ncRNA Non-protein-coding RNA
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TC-1 Thyroid cancer 1 protein
FABP4 Fatty acid-binding protein 4
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References

1. Oliver, G.; Sosa-Pineda, B.; Geisendorf, S.; Spana, E.P.; Doe, C.Q.; Gruss, P. Prox 1, a prospero-related
homeobox gene expressed during mouse development. Mech. Dev. 1993, 44, 3–16. [CrossRef]

2. Tomarev, S.I.; Sundin, O.; Banerjee-Basu, S.; Duncan, M.K.; Yang, J.M.; Piatigorsky, J. Chicken homeobox
gene Prox 1 related to Drosophila prospero is expressed in the developing lens and retina. Dev. Dyn. 1996,
206, 354–367. [CrossRef]

3. Sosa-Pineda, B.; Wigle, J.T.; Oliver, G. Hepatocyte migration during liver development requires Prox1.
Nat. Genet. 2000, 25, 254–255. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/0925-4773(93)90012-M
http://dx.doi.org/10.1002/(SICI)1097-0177(199608)206:4&lt;354::AID-AJA2&gt;3.0.CO;2-H
http://dx.doi.org/10.1038/76996
http://www.ncbi.nlm.nih.gov/pubmed/10888866


Int. J. Mol. Sci. 2020, 21, 3220 16 of 23

4. Risebro, C.A.; Searles, R.G.; Melville, A.A.D.; Ehler, E.; Jina, N.; Shah, S.; Pallas, J.; Hubank, M.; Dillard, M.;
Harvey, N.L.; et al. Prox1 maintains muscle structure and growth in the developing heart. Development 2009,
136, 495–505. [CrossRef] [PubMed]

5. Wang, J.F.; Kilic, G.; Aydin, M.; Burke, Z.; Oliver, G.; Sosa-Pineda, B. Prox1 activity controls pancreas
morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells.
Dev. Biol. 2005, 286, 182–194. [CrossRef] [PubMed]

6. Hong, Y.K.; Harvey, N.; Noh, Y.H.; Schacht, V.; Hirakawa, S.; Detmar, M.; Oliver, G. Prox1 is a master control
gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002, 225, 351–357. [CrossRef]
[PubMed]

7. Zinovieva, R.D.; Duncan, M.K.; Johnson, T.R.; Torres, R.; Polymeropoulos, M.H.; Tomarev, S.I. Structure and
chromosomal localization of the human homeobox gene Prox 1. Genomics 1996, 35, 517–522. [CrossRef]

8. Shimoda, M.; Takahashi, M.; Yoshimoto, T.; Kono, T.; Ikai, I.; Kubo, H. A homeobox protein, Prox1, is involved
in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clin. Cancer Res. 2006, 12,
6005–6011. [CrossRef]

9. Akagami, M.; Kawada, K.; Kubo, H.; Kawada, M.; Takahashi, M.; Kaganoi, J.; Kato, S.; Itami, A.; Shimada, Y.;
Watanabe, G.; et al. Transcriptional Factor Prox1 Plays an Essential Role in the Antiproliferative Action of
Interferon-gamma in Esophageal Cancer Cells. Ann. Surg. Oncol. 2011, 18, 3868–3877. [CrossRef]

10. Schneider, M.; Buchler, P.; Giese, N.; Giese, T.; Wilting, J.; Buchler, M.W.; Friess, H. Role of lymphangiogenesis
and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. Int. J. Oncol. 2006,
28, 883–890. [CrossRef]

11. Rodrigues, M.; Rodini, C.D.O.; Xavier, F.; Paiva, K.B.; Severino, P.; Moyses, R.A.; Lopez, R.M.; DeCicco, R.;
Rocha, L.A.; Carvalho, M.B.; et al. PROX1 Gene is Differentially Expressed in Oral Cancer and Reduces
Cellular Proliferation. Medicine 2014, 93. [CrossRef] [PubMed]

12. Nagai, H.; Li, Y.H.; Hatano, S.; Toshihito, O.; Yuge, M.; Ito, E.; Utsumi, M.; Saito, H.; Kinoshita, T. Mutations
and aberrant DNA methylation of the PROX1 gene in hematologic malignancies. Genes Chromosomes Cancer
2003, 38, 13–21. [CrossRef] [PubMed]

13. Versmold, B.; Felsberg, J.; Mikeska, T.; Ehrentraut, D.; Kohler, J.; Hampl, J.A.; Rohn, G.; Niederacher, D.;
Betz, B.; Hellmich, M.; et al. Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic
breast cancer. Int. J.Cancer 2007, 121, 547–554. [CrossRef] [PubMed]

14. Laerm, A.; Helmbold, P.; Goldberg, M.; Dammann, R.; Holzhausen, H.J.; Ballhausen, W.G. Prospero-related
homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas
of the bilary system. J. Hepatol. 2007, 46, 89–97. [CrossRef]

15. Choi, D.; Ramu, S.; Park, E.; Jung, E.; Yang, S.; Jung, W.; Choi, I.; Lee, S.; Kim, K.E.; Seong, Y.J.; et al. Aberrant
Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer
Cells. Cancer Res. 2016, 76, 582–593. [CrossRef]

16. Skog, M.; Bono, P.; Lundin, M.; Lundin, J.; Louhimo, J.; Linder, N.; Petrova, T.V.; Andersson, L.C.; Joensuu, H.;
Alitalo, K.; et al. Expression and prognostic value of transcription factor PROX1 in colorectal cancer.
Br. J. Cancer 2011, 105, 1346–1351. [CrossRef]

17. Dadras, S.S.; Skrzypek, A.; Nguyen, L.; Shin, J.W.; Schulz, M.M.P.; Arbiser, J.; Mihm, M.C.; Detmar, M. Prox-1
Promotes Invasion of Kaposiform Hemangioendotheliomas. J. Investig. Dermatol. 2008, 128, 2798–2806.
[CrossRef]

18. Elsir, T.; Eriksson, A.; Orrego, A.; Lindstrom, M.S.; Nister, M. Expression of PROX1 Is a Common Feature of
High-Grade Malignant Astrocytic Gliomas. J. Neuropathol. Exp. Neurol. 2010, 69, 129–138. [CrossRef]

19. Elsir, T.; Qu, M.; Berntsson, S.G.; Orrego, A.; Olofsson, T.; Lindstrom, M.S.; Nister, M.; von Deimling, A.;
Hartmann, C.; Ribom, D.; et al. PROX1 is a predictor of survival for gliomas WHO grade II. Br. J. Cancer
2011, 104, 1747–1754. [CrossRef]

20. Rudzinska, M.; Ledwon, J.K.; Gawel, D.; Sikorska, J.; Czarnocka, B. The role of prospero homeobox 1 (PROX1)
expression in follicular thyroid carcinoma cells. Oncotarget 2017, 8, 114136–114155. [CrossRef]

21. Rudzinska, M.; Grzanka, M.; Stachurska, A.; Mikula, M.; Paczkowska, K.; Stepien, T.; Paziewska, A.;
Ostrowski, J.; Czarnocka, B. Molecular Signature of Prospero Homeobox 1 (PROX1) in Follicular Thyroid
Carcinoma Cells. Int. J. Mol. Sci. 2019, 20, 2212. [CrossRef] [PubMed]

http://dx.doi.org/10.1242/dev.030007
http://www.ncbi.nlm.nih.gov/pubmed/19091769
http://dx.doi.org/10.1016/j.ydbio.2005.07.021
http://www.ncbi.nlm.nih.gov/pubmed/16122728
http://dx.doi.org/10.1002/dvdy.10163
http://www.ncbi.nlm.nih.gov/pubmed/12412020
http://dx.doi.org/10.1006/geno.1996.0392
http://dx.doi.org/10.1158/1078-0432.CCR-06-0712
http://dx.doi.org/10.1245/s10434-011-1683-6
http://dx.doi.org/10.3892/ijo.28.4.883
http://dx.doi.org/10.1097/MD.0000000000000192
http://www.ncbi.nlm.nih.gov/pubmed/25526434
http://dx.doi.org/10.1002/gcc.10248
http://www.ncbi.nlm.nih.gov/pubmed/12874782
http://dx.doi.org/10.1002/ijc.22705
http://www.ncbi.nlm.nih.gov/pubmed/17415710
http://dx.doi.org/10.1016/j.jhep.2006.07.033
http://dx.doi.org/10.1158/0008-5472.CAN-15-1199
http://dx.doi.org/10.1038/bjc.2011.297
http://dx.doi.org/10.1038/jid.2008.176
http://dx.doi.org/10.1097/NEN.0b013e3181ca4767
http://dx.doi.org/10.1038/bjc.2011.162
http://dx.doi.org/10.18632/oncotarget.23167
http://dx.doi.org/10.3390/ijms20092212
http://www.ncbi.nlm.nih.gov/pubmed/31060342


Int. J. Mol. Sci. 2020, 21, 3220 17 of 23

22. Rudzinska, M.; Mikula, M.; Arczewska, K.D.; Gajda, E.; Sabalinska, S.; Stepien, T.; Ostrowski, J.; Czarnocka, B.
Transcription Factor Prospero Homeobox 1 (PROX1) as a Potential Angiogenic Regulator of Follicular
Thyroid Cancer Dissemination. Int. J. Mol. Sci. 2019, 20, 5619. [CrossRef] [PubMed]

23. Davies, L.; Welch, H.G. Current Thyroid Cancer Trends in the United States. Jama Otolaryngology-Head Neck
Surg. 2014, 140, 317–322. [CrossRef] [PubMed]

24. Basnet, A.; Pandita, A.; Fullmer, J.; Sivapiragasam, A. Squamous Cell Carcinoma of the Thyroid as a result of
Anaplastic Transformation from BRAF-Positive Papillary Thyroid Cancer. Case Rep. Oncol. Med. 2017, 2017,
4276435. [CrossRef] [PubMed]

25. Schmid, K.W. Lymph node and distant metastases of thyroid gland cancer. Metastases in the thyroid glands].
Pathologe 2015, 36, 171–175. [CrossRef] [PubMed]

26. Smit, J. Treatment of advanced medullary thyroid cancer. Thyroid Research 2013, 6, 1–4. [CrossRef] [PubMed]
27. Paduch, R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell. Oncol. 2016, 39,

397–410. [CrossRef]
28. Skobe, M.; Detmar, M. Structure, Function, and Molecular Control of the Skin Lymphatic System.

J. Investig. Dermatol. Symp. Proc. 2000, 5, 14–19. [CrossRef]
29. He, Y.; Kozaki, K.; Karpanen, T.; Koshikawa, K.; Yla-Herttuala, S.; Takahashi, T.; Alitalo, K. Suppression

of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor
receptor 3 signaling. J. Natl. Cancer Inst. 2002, 94, 819–825. [CrossRef]

30. Petrova, T.V.; Nykanen, A.; Norrmen, C.; Ivanov, K.I.; Andersson, L.C.; Haglund, C.; Puolakkainen, P.;
Wempe, F.; von Melchner, H.; Gradwohl, G.; et al. Transcription factor PROM induces colon cancer
progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell 2008, 13,
407–419. [CrossRef]

31. Su, J.L.; Yang, P.C.; Shih, J.Y.; Yang, C.Y.; Wei, L.H.; Hsieh, C.Y.; Chou, C.H.; Jeng, Y.M.; Wang, M.Y.;
Chang, K.J.; et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006,
9, 209–223. [CrossRef] [PubMed]
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