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Abstract

The epidemiology of multiple sclerosis has been extensively investigated and two features have consistently emerged: marked 
geographical variation in prevalence and substantial familial clustering. At first sight, geographic variation would seem to imply an 
environmental cause for the disease, while familial clustering would seem to suggest that genetic factors have the predominant etiological 
effect. However, given that geographic variation in prevalence could result from variation in the frequency of genetic risk alleles and that 
familial clustering might result from shared environmental exposure rather than shared genetic risk alleles, it is clear that these crude 
inferences are unreliable. Epidemiologists have been resourceful in their attempts to resolve this apparent conflict between “nurture and 
nature” and have employed a whole variety of sophisticated methods to try and untangle the etiology of multiple sclerosis. The body 
of evidence that has emerged from these efforts has formed the foundation for decades of research seeking to identify relevant genes 
and this is the obvious place to start any consideration of the genetics of multiple sclerosis.
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Review: Systematic

Epidemiology

Although prevalence studies are diffi  cult to perform 
and have an inherent tendency to underestimate the 
true frequency of disease, many such studies have been 
completed in multiple sclerosis and, together, they 
provide an almost global map of the distribution of the 
disease.[1] The core feature of this distribution is oft en 
summarized as a latitudinal gradient, with the disease 
being common in temperate regions and rare in topical 
climes [Figure 1].[2] Some authors have pointed out that 
the observed distribution also refl ects the migration 
patt ern of Northern Europeans, with the disease being 
common in those parts of the world in which Northern 
Europeans have sett led.[3] In considering the global 
distribution of multiple sclerosis it is also important to 
note that there are exceptions to this general latitudinal 
gradient: some populations having rates of disease 
that are signifi cantly diff erent from that seen in their 
geographically nearby neighbors.[4] Studies looking 
at the risk of disease in migrant individuals moving 
from regions of low risk to regions of high risk, and 
vice versa[5–9] [Figure 1], suggest that risk changes with 
migration. These studies provide some of the clearest 
evidence supporting the role of environmental factors 
in the etiology of the disease. In any given part of 

the world, the risk of multiple sclerosis seems to be 
greatest in white individuals of European descent.

Figure 1: Global distribution of multiple sclerosis and migrations
The fi ve continents are depicted, showing areas of medium 
prevalence of multiple sclerosis (orange), areas of exceptionally 
high frequency (red), and areas with low rates (grey-blue). Some 
regions are largely uncharted so these colors are only intended to 
provide an impression of the geographical trends. Major routes of 
migration studied from high-risk zone of northern Europe are shown 
as dotted arrows. Studies involving migrants from low-risk to high-risk 
zones are shown as solid arrows. Reprinted from The Lancet, Vol. 
372, Compston and Coles, Multiple sclerosis, 1502-1517, Copyright 
(2008), with permission from Elsevier.[2]
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Amongst white individuals living in temperate regions 
such as Europe, Canada, and North America, 15–20% 
of those aff ected by multiple sclerosis report a family 
history of the disease—a rate which is signifi cantly 
greater than would be expected given the prevalence 
of multiple sclerosis in these regions (typically 1 per 
1,000).[1] Population-based studies of familial recurrence 
risk have confi rmed and quantifi ed the increased risk of 
the disease in the relatives of aff ected individuals.[10–12] 
This familial clustering can be usefully summarized as 
λs – the relative risk of the disease seen in the siblings 
of aff ected individuals as compared to the risk seen in 
the general population.[13] In multiple sclerosis this risk 
ratio takes a value of approximately 15[14] and, of course, 
refl ects the combined eff ects of all shared etiological 
infl uences, both genetic and environmental.[15] In order 
to tease these infl uences apart, investigators have studied 
a variety of informative subgroups, including twins,[16–20] 
adoptees,[21] conjugal pairs,[22,23] half-siblings,[24] and step-
siblings.[25] Taken together these data suggest that living 
with someone who has, or who will eventually develop, 
multiple sclerosis has litt le or no eff ect on one’s risk of 
developing the disease unless one is genetically related to 
that person, in which case one’s risk of having the disease 
increases with the degree of relatedness.[25] This is not to 
imply that environmental factors have no role, only that 
they seem to exert their eff ects mainly at a population 
level, with the micro-environmental diff erences between 

families within a given population seeming to be of 
relatively litt le importance.[25]

The epidemiology of multiple sclerosis continues to be 
studied, and interesting twists suggesting unsuspected 
possibilities will no doubt emerge in the future. However, 
as these studies are diffi  cult to perform, are frequently 
subject to confounding and bias, and are also generally 
underpowered, it seems unlikely that they will ever 
provide any major insights. That said, it has been pointed 
out that the variation in recurrence risk with the degree 
of genetic relatedness can provide a useful indication 
of the genetic architecture underlying susceptibility to 
a complex disease.[26] In multiple sclerosis, these data 
[Figure 2] indicate that perhaps 100 common variants 
(those with a minor allele frequency of more than a 
few percent), each exerting only a modest eff ect on risk 
(increasing the odds of developing the disease by a factor 
of approximately 1.2–1.3) are likely to be involved.[27,28]

Major Histocompatibility Complex

Early att empts to identify susceptibility genes in multiple 
sclerosis were highly successful and quickly identifi ed 
the now well-established relevance of the Major 
Histocompatibility Complex (MHC) on chromosome 
6p21. The fi rst successes emerged in the early 1970s, 
when investigators showed that multiple sclerosis was 

Figure 2: Recurrence risks for multiple sclerosis in families
Age-adjusted recurrence risks for different relatives of probands with multiple sclerosis and the degree of genetic sharing between relatives and 
the proband. Pooled data from population-based surveys. Error bars indicate 95% confi dence intervals. Reprinted from The Lancet, Vol. 372, 
Compston and Coles, Multiple sclerosis, 1502-1517, Copyright (2008), with permission from Elsevier.[2]
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associated with various Human Leukocyte Antigens 
(HLA), in particular HL-A3,[29] HL-A7,[30] and LD-
7a[31] (in today’s nomenclature HLA-A3, HLA-B7, and 
DR2, respectively). It was quickly realized that these 
associations were not independent but were, rather, a 
refl ection of linkage dysequilibrium (LD; the tendency 
for certain alleles from linked loci to occur together on 
the same chromosome more oft en than you would expect 
by chance alone) between the corresponding alleles.
[32,33] Over the years, technology has improved and the 
resolution of the associated alleles has been refi ned.[34–36]

The MHC is a gene-dense region of the genome that 
is characterized by extensive LD and extreme levels 
of polymorphism.[37] In light of these features, it is not 
surprising to fi nd that many variants from this region 
show association with multiple sclerosis as a result 
of LD (correlation) between these various associated 
alleles.[38,39] The modest levels of LD between the class I 
region (containing the HLA-A and HLA-B genes) and the 
class II region (containing the DRB1 and DQB1 genes) 
enabled researchers to quickly establish that association 
primarily derived from the class II region.[32,33] However, 
the more extensive LD between DRB1 and DQB1 made 
it much more diffi  cult to refi ne which of these genes 
was primarily responsible for the association. Studying 
African American patients, who have less intense LD 
between DRB1*1501 and DQB1*0602, Oksenberg et al.[40] 
provided the fi rst convincing evidence that the primary 
association was with the DRB1 gene, an observation 
which has been confi rmed in subsequent studies in large 
cohorts of patients of European descent.[39]

Our understanding of the association between multiple 
sclerosis and the MHC continues to improve. It is now 
well established that MHC haplotypes other than just 
those carrying the DRB1*1501 allele also exert infl uence 
on susceptibility, either independently[41] or by modifying 
the risk associated with *1501.[42–44] What is unclear is 
whether or not these additional signals stem primarily 
from the DRB1 gene or from the eff ects of other MHC 
loci. Many researchers have found evidence supporting 
the existence of an independent signal from the class I 
region,[39,41,45–48] while others have not.[38,49] Establishing 
the presence of additional susceptibility loci located 
close to a primary locus is a complex problem, especially 
in the presence of prominent LD and likely allelic 
heterogeneity.[50] The necessity to correct for the eff ects of 
LD with the DRB1*1501 allele limit the power of studies 
based on white European populations in which this allele 
is common.[38,39,42,43] Despite these diffi  culties, a role for 
the DRB1*03 haplotype is now well established[39,42,43] 
and Sardinian data would suggest that this association, 
at least, most likely stems from the DRB1 gene.[41] The 
nature and origin of the remaining signals from the MHC 
region remain unresolved.

The role of HLA genes has also been studied in Asian 
multiple sclerosis. Serological studies performed in the 
1980s found association with HLA-B12[51,52] rather than 
with B7, while molecular genetic analysis of the class 
II HLA genes, DRB1, DQA1, and DQB1, revealed the 
expected association with the European susceptibility 
haplotype DRB1*1501 –DQB1*0602.[53] In Asians, the 
DRB1*1502 and DRB1*16 subtypes of DR2 are more 
common than in Europeans and the extent of LD 
between DRB1*1501 and DQB1*0602 is signifi cantly less 
intense.[54] In an analysis of Indian migrants living in the 
US, Rosenberg et al.[55] found that there was surprisingly 
litt le variation in ancestry across India, although there 
was a clear diff erence between Indian Asians and other 
ethnic groups.

By cataloguing variation in the MHC through the 
resequencing of specifi c haplotypes[56] and empirically 
establishing the complex patterns of LD across 
the region,[57] it has been possible to establish a 
comprehensive panel of haplotype-tagging Single-
Nucleotide Polymorphisms (SNPs).[58] These SNPs are 
currently being typed in multiple sclerosis and a number 
of other autoimmune diseases as part of the International 
MHC and Autoimmunity Genetics Network (IMAGEN) 
project. Hopefully these systematic fi ne-mapping eff orts 
will help to unravel this complex association, although it 
can be anticipated that large sample sizes will be needed 
to confi rm the fi ndings emerging from IMAGEN.

Other than the fi ndings related to the MHC, the genetic 
analysis of multiple sclerosis has only very recently 
started to yield to the eff orts of researchers. Prior to 2007, 
the lack of any convincing progress was a source of great 
frustration, and the inconsistency in early claims was 
rightly criticized.[59] It is now clear that two main issues 
have confounded the identifi cation of relevant genes 
– the modest size of eff ects att ributable to individual 
loci[60] and the failure to correctly allow for the statistical 
consequences that result from the enormous size of 
the genome.[61] The search for the genes of relevance 
in multiple sclerosis has been likened to searching 
for a handful of rather small needles in a very large 
haystack.[62,63]

Linkage studies
Although available epidemiological data confi rms that 
genetic factors are unequivocally relevant in multiple 
sclerosis, large extended families with multiple aff ected 
individuals in multiple generations are extremely 
uncommon. Most families contain no more than two 
or three affected individuals and no clear mode of 
inheritance can be inferred.[1] Parametric linkage analysis 
of the few larger families that have been described[64–68] 
has failed to identify any rare penetrant alleles that 
infl uence the risk of developing multiple sclerosis.
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Since large extended families are not available for study, 
researchers have relied on nonparametric methods of 
linkage analysis based on looking for excess sharing 
of alleles amongst related individuals, most typically 
aff ected sibling pairs. In 1996, the results from the fi rst 
att empts to systematically screen the genome for linkage 
to multiple sclerosis were reported in back-to-back 
publications from three populations – the UK,[69] the 
US,[70] and Canada.[71] Each of these studies was based 
on approximately 100 aff ected sib pairs and employed 
300–400 microsatellite markers. Subsequently, similar 
studies were reported from Finland,[72] Sardinia,[73] 
Italy,[74] Scandinavia,[75] Australia,[76] and Turkey[77] and, in 
addition, each of the original three groups extended their 
analysis using further families and more microsatellite 
markers.[78–80] Disappointingly, none of these studies 
identifi ed any statistically signifi cant linkage, not even in 
the region of the MHC. Att empts at meta-analysis of these 
linkage data were no more successful, although linkage 
to the MHC just reached genome-wide signifi cance in 
some of these studies.[81,82] In order to compensate for the 
inadequacies inherent in low-resolution microsatellite-
based studies[83] the International Multiple Sclerosis 
Genetics Consortium (IMSGC) typed 4,506 SNPs in 
730 multiplex families from Australia, Scandinavia, the 
US, and the UK. The enhanced power provided by this 
SNP–based screen is evident from the overwhelming 
evidence for linkage found in the MHC region, where a 
lod score of 11.7 was observed.[84] Once again, however, 
no other region of statistically signifi cant linkage was 
identifi ed. The comprehensive marker map used in this 
study makes it virtually impossible that any signals of 
a magnitude similar to that att ributable to the MHC 
could have been missed. As with the previous studies, 
the number of suggestive linkage peaks was signifi cantly 
greater than would have been expected to occur by 
chance alone,[84] indicating that there is excess allele 
sharing but providing no clear guide as to the location 
of the relevant genes.

Although these linkage data provide no useful 
information concerning the location of non-MHC 
susceptibility loci, the observed allele sharing does 
provide useful guidance concerning the size of eff ects 
att ributable to such loci.[13] Employing the approach 
suggested by Risch and Merikangas,[85] and remembering 
that the observed allele sharing is expected to provide 
a signifi cantly infl ated estimate of eff ect size,[86] it is 
a straightforward matt er to show that common non-
MHC risk alleles are highly unlikely to increase the risk 
of the disease by more than a factor of 2. Under these 
circumstances it is clear that further linkage analysis is 
almost certain to be unrewarding since the number of sib 
pair families necessary to demonstrate signifi cant linkage 
is impractically large.[85] These extensive linkage eff orts 
are consistent with the fi ndings from segregation analysis 

in suggesting that common risk alleles in multiple 
sclerosis are highly unlikely to exert more than a modest 
individual eff ect on risk. Fortunately, association-based 
studies are signifi cantly more powerful and thus provide 
a means to identify genes exerting eff ects that fall below 
the resolution of linkage analysis.[85] However until 
recently studies looking at candidate genes in multiple 
sclerosis generally only considered modest numbers of 
cases, with the result that most of these studies were 
seriously underpowered to detect eff ects of the size now 
realized to be relevant. On the other hand this also means 
that there are no loci investigated prior to 2007, with the 
possible exception of APOE,[87] where published studies 
have been adequately powered to confi dently exclude the 
possibility of a meaningful eff ect. It seems highly likely 
that many of the entirely plausible candidates considered 
to have been excluded on the basis of the absence of any 
consistent evidence to date will eventually emerge as 
genuinely relevant in the disease. It is surely the virtual 
absence of any power that is responsible for nearly all 
the apparent inconsistency in the literature concerning 
the genetics of multiple sclerosis.[88]

Association studies
In the human population as a whole the total number 
of genetic variants runs into billions. However, most of 
these are exceedingly rare[89] and only around 10 million 
have a minor allele frequency (MAF) of greater than 
a few percent.[89,90] Although these common variants 
represent only a small fraction of the total number, they 
are responsible for 90% of the genetic diff erence between 
any two individuals.[26] Given that segregation analysis 
suggests that around 100 of these 10 million common 
variants might influence susceptibility to multiple 
sclerosis (see above) it is clear that the odds that any 
randomly chosen common variant is relevant in multiple 
sclerosis are approximately 100,000 to 1 against. These 
very low prior odds have a profound infl uence upon the 
odds that any nominally signifi cant result identifi ed in 
an association study is a true positive rather than false 
positive (the posterior odds).[91]

From Figure 3 it is obvious why P-values in the range of 
5% to 0.1% will nearly always be false positives, even in 
well-powered studies. Importantly, Figure 3 also shows 
that the lower the power of a study, the more extreme the 
P-value must be before any result becomes more likely 
to be true rather than false.[93] The Wellcome Trust Case 
Control Consortium (WTCCC) proposed this Bayesian 
approach and through similar reasoning suggested that 
association studies in complex diseases should employ a 
minimum of 2,000 cases and that in this sett ing P-values 
of < 5 × 10-7 would more likely be true than false.[93]

One way to improve the likelihood of success in 
an association study is to use additional sources of 
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information, such as animal models or expression data, 
to guide the selection of variants and thereby improve 
the prior odds. This candidate gene approach formed 
the bedrock of association studies in multiple sclerosis 
prior to the advent of Genome-Wide Association Studies 
(GWAS). However, even when multiple sources of 
alternate information are employed in a systematic way 
(so-called genomic convergence[94]) it is unlikely that 
the prior odds can be reduced below 1000:1.[91] In 2005, 
Fernald et al. [95] applied genomic convergence to multiple 
sclerosis and identifi ed a short list of candidate genes, 
including the interleukin 7 receptor (IL7R), a locus that 
had previously been considered by Australian[96] and 
Swedish researchers.[97] In a follow-up study involving 
collaborators from the UK and Belgium, these US 
researchers studied 197 multiplex families, 1,901 trio 
families, 1,515 cases and 3,204 unrelated controls and 
identifi ed a highly signifi cant association (P = 2.9 × 
10-7) with rs6897932 a non-synonymous SNP (nsSNP) 

from exon 6 of the IL7R gene,[98] a result which was 
replicated in an accompanying paper from Swedish 
researchers.[99] This locus was thus the fi rst non-MHC 
susceptibility gene to be identifi ed in multiple sclerosis.

It is worth pausing to consider the nature of this 
association. The multiple sclerosis–associated allele of 
rs6897932 has a frequency of 72%, which means that 
approximately 9 out of every 10 white Europeans carry 
this risk allele. The allele is estimated to increase the 
risk of the disease by a factor of just 1.2. Using these 
parameters, we can calculate the P-value that would be 
expected in studies att empting to replicate this fi nding 
as a function of the sample size considered, as shown 
in Figure 4.

It is clear from Figure 4 that studies attempting to 
replicate association with eff ects of this size need to 
involve at least 2,000 cases and 2,000 controls if they 
are to have > 95% power to demonstrate nominally 
signifi cant P-values (5%). Most att empts at replication 
involving more than 600 cases and 600 controls can be 
expected to yield a P-value of < 5% but not all. Studies 
with less than 600 cases and 600 controls are unlikely 
to identify even nominally significant association. 
It is important to keep these values in mind when 
interpreting replication studies. If a study involving just 
400 cases and 400 controls fails to identify nominally 
signifi cant association, this should not be interpreted 
as evidence that the association is not relevant in the 
tested population; in fact, this is perhaps the least likely 
explanation. Given the eff ect size and allele frequency, we 

Table 1: Established multiple sclerosis non-
MHC risk alleles

Implicated Associated RAF/% Odds ratio
gene SNP
IL7R rs6897932 72 1.2

IL2R rs2104286 72 1.3

CLEC16A rs12708716 65 1.2

CD226 rs763361 47 1.1

CD58 rs2300747 89 1.3

GPC5 rs9523762 35 1.3

RAF = Risk Allele Frequency / %

Figure 4: Expected P-value in follow-up studies of rs6897932, the 
IL7R–associated SNP
The red line indicates the expected P-value and the dotted lines the 
95% confi dence intervals on this estimate (plotted as the negative 
log). It can thus be expected that 95% of the time the observed 
P-value will fall within this space. The horizontal dotted line indicates 
the nominal 5% signifi cance level. Reprinted from Brain, Vol. 131, 
3118-31, Copyright (2008), with permission from Oxford University 
Press.[63]

Figure 3: Posterior odds that a result is true, assuming risk alleles 
with a frequency of 10% and a genotype relative risk (GRR) of 1.2 
and a multiplicative model
This fi gure indicates the posterior odds that a result is true (plotted 
on a log scale on the y-axis) against the signifi cance of the result 
(plotted as the negative log of the P-value on the x-axis). Five sample 
sizes are listed in the legend; in each, the number of cases and 
controls are equal. The 200 line thus indicates the posterior odds for 
a study involving 200 cases and 200 controls, and so on. Power was 
calculated using the online genetic power calculator.[92] Reprinted 
from Brain, Vol. 131, 3118-31, Copyright (2008), with permission from 
Oxford University Press.[63]
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can also calculate that the lod score that rs6897932 would 
be expected to generate in a set of 100 sib pairs is just 0.01. 
It is therefore clear that loci such as rs6897932 would not 
be expected to generate any linkage signals discernable 
in previously published linkage screens, and that any 
apparent concordance between identifi ed susceptibility 
loci such as IL7R and previously reported linkage peaks 
is entirely coincidental.

Another way to improve the chances of identifying 
susceptibility genes would be to consider all common 
variation rather than just a single randomly selected 
or candidate variant. If all common variation were 
to be typed in a study, then this study would be sure 
to include an analysis of the relevant variants. In this 
situation, concerns about prior odds might be ignored 
and tests simply interpreted aft er some correction for 
multiple testing. However, rather predictably, nothing 
is gained by adopting this approach to analysis since 
the statistical penalty required to correct for multiple 
testing is equivalent to that incurred by allowing for 
the prior odds.[100] This is not surprising since both are 
simply a refl ection of the size of the genome. This type of 
comprehensive (direct) GWAS would seem to be ideal, 
but in fact the extent of LD between common variants 
is so extensive that an indirect screen involving just a 
fraction of the markers relying on LD between tested and 
untested variants enables a large proportion (typically 
>80%) of common variation to be screened in a highly 
effi  cient manner.[101] Direct GWAS remains unaff ordable 
and impractical at this time, whereas available technology 
means that indirect GWAS are possible and have proven 
to be a highly successful means of identifying the common 
variants infl uencing susceptibility to complex diseases.[90]

GWAS in multiple sclerosis

In 2007, the IMSGC published the fi rst GWAS completed 
in multiple sclerosis. In this study, 931 trio families (half 
from the US and half from the UK) were screened using 
the Aff ymetrix 500K chip, this yielded usable data from 
334,923 SNPs.[102] The limited power provided by this 
modest number of trios meant that no unequivocal 
associations were identified in the screening phase, 
outside of the expected signals from the MHC. However, 
by utilizing additional control data from the WTCCC 
(n = 1,475) and the National Institutes of Mental Health 
(NIMH) (n = 956) along with candidate gene information, 
110 SNPs were identifi ed and followed up in an additional 
609 trio families, 2,322 cases and 2,987 controls. In the 
fi nal analysis (employing a total of 12,360 individuals), 
association with rs6897932 (from IL7R) was confi rmed and 
signifi cant association was also established with two SNPs 
from the interleukin-2 receptor (IL2R) gene, rs12722489 (P 
= 3.0 × 10-8), and rs2104286 (P = 2.2 × 10-7).[102] Studying these 
three SNPs in additional cohorts from Australia, Belgium, 

Denmark, Finland, Germany, Ireland, Italy, Netherlands, 
Norway, Sardinia, Spain, and Sweden, the IMSGC went on 
to extensively replicate these fi ndings and were also able 
to show that the association with rs12722489 was entirely 
secondary to LD with rs2104286.[103]

Several investigators have observed an increased risk 
of a second autoimmune disease in the families of 
individuals affected by multiple sclerosis.[104,105] This 
familial clustering of autoimmune diseases immediately 
suggests the possibility that some genetic variants might 
influence the risk of autoimmunity in general and, 
therefore, that risk alleles for one autoimmune disease 
might make logical candidates for multiple sclerosis. 
Following this logic, IMSGC typed seven SNPs established 
as being relevant in type 1 diabetes in 2,369 trio families, 
5,737 cases and 10,296 controls. This analysis confi rmed 
highly signifi cant association with rs12708716 from the 
C-type lectin domain family 16, member A (CLEC16A) 
gene (P = 1.6 × 10-15) and rs763361 from the CD226 gene 
(P = 5.4 × 10-8).[106] Both these associations were replicated 
in accompanying papers.[107,108]

The CLEC16A gene (aka KIAA0350) had been identifi ed as 
potentially associated in the original IMSGC GWAS,[102] as 
had CD58. Follow-up eff orts in CD58 have also confi rmed 
this association.[109]  

In 2007, the WTCCC also produced a multiple sclerosis 
GWAS[110] that was based on 975 cases and 1,466 controls 
screened with 12,374 nsSNPs. Again, the limited power 
provided by the cohort size meant that the screen failed to 
identify any unequivocally associated markers. However, 
it is relevant to note that rs6897932 was the eighth most 
associated marker identifi ed, further confi rming that 
a GWAS–based approach would have identified this 
association had it not already been established through 
genomic convergence and the candidate gene approach.

The recent publication of the ‘Gene MSA’ (Multiple 
Sclerosis Association) GWAS,[111] the product of a 
collaboration between US, Dutch, and Swiss researchers 
(and supported by GlaxoSmithKline), brings the total of 
multiple sclerosis GWAS to three. This study typed the 
Illumina HumanHap550 chip in 978 cases and 883 controls 
and considered extensive phenotyping data, including 
that from magnetic resonance imaging (MRI). As would 
be expected, there were no unequivocal associations 
outside of the MHC, but association with the Glypican-5 
(GPC5) locus was suggested, and further supported in an 
additional 974 US cases. Table 1 shows the current list of 
established non-MHC risk alleles for multiple sclerosis.

The future
Further GWAS in multiple sclerosis are expected to 
emerge in the near future and will no doubt add to the 
growing list of established candidate susceptibility genes. 
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Refi ning these associations and understanding how these 
variants exert their eff ect will engage researchers for 
some time but seems likely to shed new light on our 
understanding of this enigmatic disease.[90]

Note added in proofs a further multiple sclerosis GWAS 
has been reported since this review was contructed - 
Australia and New Zealand Multiple Sclerosis Genetics 
Consortium (ANZgene). Genome-wide association study 
identifi es new multiple sclerosis susceptibility loci on 
chromosomes 12 and 20. Nat Genet. 2009 41:824-8.
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