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Natural microbial communities are complex ecosystems with myriads of interactions. To deal with this
complexity, we can apply lessons learned from the study of model organisms and try to find simpler sys-
tems that can shed light on the same questions. Here, microbial model communities are essential, as they
can allow us to learn about the metabolic interactions, genetic mechanisms and ecological principles gov-
erning and structuring communities. A variety of microbial model communities of varying complexity
have already been developed, representing different purposes, environments and phenomena.
However, choosing a suitable model community for one’s research question is no easy task. This review
aims to be a guide in the selection process, which can help the researcher to select a sufficiently well-
studied model community that also fulfills other relevant criteria. For example, a good model community
should consist of species that are easy to grow, have been evaluated for community behaviors, provide
simple readouts and – in some cases – be of relevance for natural ecosystems. Finally, there is a need
to standardize growth conditions for microbial model communities and agree on definitions of
community-specific phenomena and frameworks for community interactions. Such developments would
be the key to harnessing the power of simplicity to start disentangling complex community interactions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Natural microbial ecosystems are complex. Often, they contain
hundreds or thousands of species that show a myriad of interac-
tions, both within and between species, as well as with the sur-
rounding environment. Many of the ecosystem functions in these
communities, and by consequence the ecosystem services we
exploit, are inherently dependent on such complex interaction net-
works. One goal of synthetic microbial ecology is to tame these
interactions and utilize them for, e.g., biotechnological or medical
purposes [1–6]. In order to do so, it is imperative to maintain the
key microbial populations that keep these beneficial processes
active, as well as the microbial species and environmental factors
that support growth and stability of these key populations. How-
ever, our current understanding of these interactions – or even
the governing principles behind microbial interactions in general
– is severely limited, in large part simply because microbial inter-
actions are often complex and complicated to study.

One of the most powerful tools in the scientific arsenal is the
use of simpler and more accessible models that serve as represen-
tatives of more complicated systems. This has been the reasoning
behind our use of a wide range of model systems, including Escher-
ichia coli as a model for bacterial metabolism and molecular biol-
ogy more generally [7], Saccharomyces cerevisiae as a model for
the eukaryotic cell [8], Drosophila melanogaster as a model for
embryonic development [9], and Caenorhabditis elegans as a model
of neuronal development [10]. The remarkable extent to which we
have been able to learn and extrapolate from these simplistic
model systems conveys fundamental information regarding how
the biological world is organized. The evolutionary processes that
have led to the diversity of life we observe today offer plenty of
symmetries and similarities that we can exploit to better under-
stand all living organisms.

There are several benefits of using models rather than the sys-
tem primarily of interest. First, model systems provide settings
where far more parameters can be controlled and maintained over
time, and where replication of experiments is made much easier.
Second, model systems are generally less complex; an ideal model
system should be sufficiently complex to answer the question at
hand, but not more complicated than required. Third, most model
systems offer increased ease of experiments, such as shorter gener-
ation times, simpler genetics, less demanding growth conditions,
and lower costs. With these factors in mind, the same principles
of reduction can be applied to microbial communities as well, in
order to understand the interactions driving ecosystem processes
and manipulate their outcomes. In this paper, the various existing
microbial model communities will be compared and their feasibil-
ity in terms of ease of use, readouts and ability to capture
community-intrinsic properties and interactions will be discussed.
The paper will not discuss computational and mathematical mod-
eling of microbial communities in detail, as this has been excel-
lently done recently by others [11–13].

2. What constitutes a good microbial community model?

Many microbes can be reproducibly grown in the lab under pre-
cisely controllable conditions. In addition, they are single-celled
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and have fairly well-defined metabolism and lifecycles but can at
the same time show complex interaction behaviors. On top of that,
a long range of bacteria are easy to quickly grow in the lab at large-
scales and are amendable to genetic manipulation. These aspects
together position communities of microbes as seemingly perfect
models to study ecological and evolutionary principles as well as
the genetic mechanisms governing interspecies interactions [14].
Furthermore, understanding of microbial communities has direct
applications in biotechnology, health and agriculture [2,3,5,15],
meaning that these microbial models may provide both theoretical
knowledge and direct practical applications of biology.

Still, there has been considerable debate regarding the value of
microbial model communities in terms of generating actual biolog-
ically relevant knowledge [16]. The experimental systems have
been (rightly) accused of being highly artificial, the relevance of
synthetic communities or reduced-diversity selection of organisms
from a natural community has been questioned, the dramatically
smaller number of possible interactions in a four-species commu-
nity compared to one with thousands of species may result in
important connections being lost, and so forth. There are also the
questions of to what extent microbial ecology follows the same
principles as the ecology of macroorganisms [17,18] and if model
systems capture the aspect of scale in ecology [19]. While much
of this critique is relevant, some of it also misses the greater points;
two main purposes of investigating microbial model systems are to
deduce if there are general mechanisms in small-scale communi-
ties that also apply to real-world complex systems, and to generate
mechanistic hypotheses that can be tested in more complex set-
tings. Model communities could, for example, be used to elucidate
how microorganisms share metabolites and partition resources
[20–22], under what conditions communities are dominated by
competitive or cooperative interactions [23–25], which specific
genes that govern community interactions through e.g. secondary
metabolites [26,27], and to what extent interactions are dependent
on environmental changes [28]. Furthermore, model systems can
aid in understanding the links between taxonomic and functional
diversity [29], what factors that contributes to community stability
in the face of invasion from non-resident strains or other stressors
[30,31], highlight important keystone species for functional stabil-
ity of a community [32,33], and shed light on the evolution of
mutualism between microbes [34,35]. In addition, microbial model
communities can address specific concerns in human health (what
allows a pathogenic strain to outcompete less harmful bacteria)
[36,37] or what a minimal set of species would be to maximize
production of an industrially important compound [38,39]. The
simplistic nature of these microbial model communities allows
testing of hypotheses under controlled conditions, while also per-
mitting manipulation of the organisms’ genomes, enabling mecha-
nistic understanding of ecological patterns and interactions [40].
This mechanistic understanding can then be used when interpret-
ing the results of large-scale analyses of real-world systems, using
e.g. metagenomic, transcriptomic or proteomic data [41,42]. Pes-
sotti et al. have suggested criteria for model ecological systems
that are very worthwhile to consider in this context: (i) they
should have an easily detectable output that indicates healthy
microbiome function, (ii) they should contain microbial
members that are culturable and genetically tractable, and (iii)



Table 1
Overview of microbial model communities. Community designations have been taken from the original publications whenever possible; otherwise designations have been created for the communities in order to be able to reference
them in the text. This table is a collection of the author’s best effort to accurately collect data from the source papers for each community. This may not be an exhaustive list of all microbial model communities that exist, nor may it be
complete in terms of e.g. measurable interactions. That said, the table can serve as a guide to which model communities that may be suitable for certain purposes.

Community
designation

Authors Year No.
species

Species Basis Combination strategy Known interactions Measurable behaviours

SXMP Ren et al. 2014 4 Stenotrophomonas rhizophila,
Xanthomonas retroflexus,
Microbacterium oxydans,
Paenibacillus amylolyticus

Agricultural
bacterial
isolates

Best biofilm-forming capacity among
combinations of 7 different agricultural
bacterial isolates

Increased biofilm
formation

Biofilm formation [45]

PPK Lee et al. 2014 3 Pseudomonas aeruginosa,
Pseudomonas protegens,
Klebsiella pneumoniae

Biofilm
isolates

Commonly co-occuring, biofilm-forming
bacteria

Potential metabolic
cooperation

Resistance to tobramycin and
SDS, Biofilm formation

[28]

SF356 Kato et al. 2005 4 Clostridium straminisolvens
CSK1, Clostridium sp. strain FG4,
Pseudoxanthomonas sp. strain
M1-3, Brevibacillus sp. strain
M1-5, Bordetella sp. strain M1-6

Cellulose-
degrading
defined
mixed
culture

The five dominant bacterial strains in an
enrichment culture capable of degrading
cellulosic materials

Metabolic cooperation
(described substrate
flows)

Paper degradation,
accumulation of
oligosaccharides, acetate and
ethanol (unclear how the
community differs to single-
strains though)

[38]

Wolfe-Cheese Wolfe et al. 2014 6 Staphylococcus), Brevibacterium
JB5, Brachybacterium JB7,
Candida 135E, Penicillium JBC,
Scopulariopsis JB370

Cheese rinds Most common members from a large
study of cheese rind diversity

pH regulation Pigment production [46]

SaPa-CF Filkins et al. 2015 2 Staphylococcus aureus,
Pseudomonas aeruginosa

Cystic
fibrosis lung
co-infections

Described co-culture of model members
in cystic fibrosis patients from the
literature

Coexistance,
competition

S. aureus fermentation [47]

Yeast-LAB Ponomarova
et al.

2017 3 Saccharomyces cerevisiae,
Lactococcus lactis, Lactobacillus
plantarum

Fermented
food

Described symbiosis between model
members from the literature

Yeast-bacteria
metabolic cooperation
(amino acids)

Bacterial growth in presence of
yeast

[48]

Guo-Freshwater Guo &
Boedicker

2016 4 Escherichia coli, Aeromonas
veronii, Aeromonas hydrophila,
Shewanella oneidensis

Freshwater
isolates

Four known freshwater isolates, three of
which were from the Los Angeles area

Metabolic cooperation
and competition

Metabolic activity [49]

Gutierrez-Gut Gutiérrez &
Garrido

2019 14 Escherichia coli, Lactobacillus
plantarum, Flavonifrator plautii,
Ruminococcus gnavus,
Lachnoclostridium symbiosum,
Lachnoclostridium
clostridioforme, Bifidobacterium
adolscentis, Bacteroides dorei,
Bacteroides vulgatus, Bacteroides
fragilis, Bacteroides
cellulosilyticus, Bacteroides
ovatus, Bacteroides
thetaiotaomicron, Bacteroides
finegoldii

Human gut
isolates

Species commonly found in the human
gut with sequenced genomes

Metabolic cooperation Short-chain fatty acid
production, relative growth,
inulin consumption

[32]

Venturelli-Gut Venturelli
et al.

2018 12 Bacteroides thetaiotaomicron,
Bacteroides ovatus, Bacteroides
uniformis, Bacteroides vulgatus,
Blautia hydrogenotrophica,
Collinsella aerofaciens,
Clostridium hiranonis,
Desulfovibrio piger, Eggerthella
lenta, Eubacterium rectale,
Faecalibacterium prausnitzii,
Prevotella copri

Human gut
isolates

Species selected to mirror the functional
and phylogenetic diversity of the human
gut and contribute significantly to human
health and disease

Metabolic cooperation
and competition

Metabolic activity, relative
growth

[22]

Clostridium-Syntrophy Charubin &
Papoutsakis

2019 2 Clostridium acetobutylicum,
Clostridium ljungdahlii

Industrial
applications

Syntrophy between two industrially
important Clostridium species

Reciprocal syntrophy 2-propanol and 2,3-butanediol
production, C. ljungdahlii
growth in glucose

[50]

(continued on next page)
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Table 1 (continued)

Community
designation

Authors Year No.
species

Species Basis Combination strategy Known interactions Measurable behaviours

Kim-Soil Kim et al. 2008 3 Azotobacter vinelandii, Bacillus
licheniformis, Paenibacillus
curdlanolyticus

Soil Designed to survive under nutrient-
limited conditions (no evidence for
natural interaction)

Reciprocal syntrophy Population stability in spatially
separated conditions

[51]

THOR Lozano et al. 2019 3 Pseudomonas koreensis,
Flavobacterium johnsoniae,
Bacillus cereus

Soil co-
isolates

Bacillus cereus ‘‘hitchhikers” (co-isolates)
showing competitive and synergistic
interactions between each other

Increased biofilm
formation, inhibition,
nutritional
enhancement,
protection from
growth inhibition

Colony expansion, biofilm
formation, koreenceine
accumulation

[52]

Ec-Predator Balagaddé
et al.

2008 1 Escherichia coli Synthetic Two genetically modified E. coli
populations (modified to become predator
and prey)

Inhibition, protection
from inhibition

Relative growth (induction of
inhibition and protection
possible)

[23]

SeMeCo Campbell
et al.

2016 1 Saccharomyces cerevisiae
BY4741

Synthetic A strain deficient in certain metabolic
functions is complemented with plasmids
encoding these functions. The plasmids
are gradually lost, creating a metabolically
diverse population

Metabolic cooperation Loss of metabolic function [21]

Pp-A Christensen
et al.

2002 2 Pseudomonas putida,
Acinetobacter strain C6

Synthetic Two species able to utilize benzyl alcohol
as their sole carbon and energy source

Competition,
metabolic cooperation

Biofilm formation, relative
growth, physiological activity

[53]

Bs-Nanotubes Dubey &
Ben-Yehuda

2011 2–3 Bacillus subtilis, Staphylococcus
aureus

Synthetic Investigation of nanotube formation Nanotube formation,
molecule exchange

Nanotube formation
(microscopy)

[54]

Harcombe-ESM Harcombe
et al.

2014 2–3 Escherichia coli, Salmonella
enterica, (Methylobacterium
extorquens)

Synthetic No known previous interspecies
interaction

Metabolic cooperation Relative growth [35]

C-S-R Kerr et al. 2002 1 Escherichia coli BZB1011 Synthetic Three E. coli strains (one colicin-producer,
one with colicin-resistance mutations and
one wildtype), forming a ‘‘rock-paper-
scissor” relationship

Inhibition, competition Relative growth [55]

Kong-NZ9000 Kong et al. 2018 1 Lactococcus lactis Synthetic Engineered strains of L. lactis showing
commensalism, amensalism, neutralism,
cooperation, competition and predation in
pairs

Signaling, antibiotic
inhibition

Relative growth (fluorescent
markers)

[56]

ZmEc-Mutualism Kosina et al. 2016 2 Zymomonas mobilis, Escherichia
coli

Synthetic Two industrially important species
without known ecological interactions

Inhibition, metabolic
cooperation

Relative growth [57]

SAB Villa et al. 2015 2 Synechocystis PCC 6803,
Escherichia coli K12

Synthetic Representatives of the communities
formed on limestone stone-air interfaces

Longterm biofilm
coexistance

Biofilm formation [58]

Ec-Coculture Zhang &
Reed

2014 1 Escherichia coli Synthetic Two E. coli auxotrophs grown in co-
culture

Metabolic cooperation Growth in minimal media [59]

Cp-CBP Zuroff et al. 2013 2 Clostridium phytofermentans,
Candida molischiana/
Saccharomyces cerevisiae

Synthetic Species selected for their ability to
ferment cellodextrins (consolidated
bioprocessing)

Respiratory protection,
metabolic cooperation

Ethanol production, cellulose
fermentation

[39]

Ec-Crossfeeding Mee et al. 2014 1 Escherichia coli Synthetic
(metabolic
crossfeeding)

Engineered E. coli mutants with
auxotrophic phenotype of 1 of 14 essential
amino acids

Metabolic cooperation Relative growth [60]

PaSa-Wound DeLeon et al. 2014 2 Pseudomonas aeruginosa,
Staphylococcus aureus

Wound
infection
isolates

Species commonly co-present in wound
infections

Antibiotic tolerance Antibiotic tolerance [36]

CWPB Sun et al. 2008 3 Pseudomonas aeruginosa,
Enterococcus faecalis,
Staphylococcus aureus

Wound
infection
isolates

Three of the most important species
associated with multispecies biofilms
clinically seen in wound infections

Unclear Relative growth [37]
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the community behaviors should be readily recapitulated in a lab-
oratory setting and scalable to higher throughput [40]. The authors
also list two criteria relating to being based on a natural system,
which has advantages from a direct relevance point of view, but
is more debatable as general criteria for selecting a model system,
as this would depend on the objectives of the research [43]. In
addition, these criteria could be supplemented with other proper-
ties that a model community would need to have to answer certain
research questions. However, these criteria would generally not be
broadly applicable to all uses of microbial model communities. For
example, a microbial model community that will be used to assess
interactions with the host in the human gut needs to be able to
grow anaerobically and probably need to be able to attach to
epithelial surfaces. Similarly, if one wants to investigate the effect
of species removal on the relation between taxonomic and func-
tional diversity, one needs to select a sufficiently diverse model
community to begin with. In the overview of microbial model com-
munities below, the three criteria listed above have been consid-
ered in the selection process and the origin of the community
has been noted so that the reader can make up their own mind
regarding the relevance of natural versus synthetic communities
based on their research questions.

It should be noted that while all the models described in this
paper contain members that are fairly easily cultivable under lab-
oratory conditions, not all of these microbes are equally easy to
genetically manipulate, which is an important consideration when
selecting a model system [14,40]. Furthermore, they are all scalable
to some degree and most are easy to adapt to high-throughput
experiments at least for some readouts. In one respect these model
communities differ from one another; not all of the suggested
models in the literature have an output that is easy to measure that
indicates whether the community is performing ‘normally’, is
stable relative to the expected outcome and whether interactions
take place in the community model. Such outputs can be relatively
simple, such as degree of biofilm formation, production of certain
molecules, growth in the absence of some essential metabolite,
or increased tolerance to certain chemicals. Relative abundances
of the community members can also be used to detect community
stability, but is a less reliable and/or informative indicator of inter-
actions and community health than the former readouts.
3. Community models – From simple to complex

Already, there are a long range of microbial community model
systems that have been developed for different purposes (Table 1).
Some of these have found uses outside of the original studies they
were developed in, while others were designed to answer a more
specific research question and have so far found little use outside
of that specific setting [44]. Roughly speaking, the available model
systems can be divided by a few different criteria: (i) whether it is
of natural or synthetic origin [40,43], (ii) if its members lack the
ability to produce essential metabolites that are produced by other
members of the community [25], (iii) the number of species in the
community, and (iv) the type of known interactions in the commu-
nity (Fig. 1). This division essentially creates three groups of model
communities: the mutant-based communities, the multispecies
synthetic communities and the (semi-) natural communities.

The mutant-based communities are distinguished by being
based on a single species, of which several mutants are introduced,
usually deficient in some key metabolic function (SeMeCo [21], Ec-
Coculture [59], Ec-Crossfeeding [60]) or producing some combina-
tion of toxin and tolerance mechanism (Ec-Predator [23], C-S-R
[55]). These models are by design not very complex and are gener-
ally not intended to reflect real world situations, but rather to
answer specific questions related to metabolic interactions and
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predatory relationships, such as to what degree dispersal influ-
ences biodiversity, the stability of predator–prey relationships
and how and when a community show cooperative dynamics.
Notably, what sets these communities apart from other model sys-
tems using mutants to address specific research questions is in
essence the focus on ecological interactions and concepts. Indeed,
there is a very fine line between the model communities men-
tioned above and systems to measure, e.g., horizontal gene transfer
of plasmids between two different strains, and many such experi-
mental systems occupy a grey-zone adjacent to community
research.

The synthetic communities are built from organisms not known
to interact or co-inhabit the same environment in nature, which
have been combined either in order to force novel interactions to
take place, or to exploit potentially beneficial interactions expected
from what is known about the individual community members, for
example for industrial purposes. The semi-natural and natural
communities are a large and heterogenous group of model sys-
tems. This group encompasses communities based on various
ecosystems, such as soil (THOR [52], Kim-Soil [51], SXMP [45]),
water (Guo-Freshwater [49]), cheese rinds (Wolfe-Cheese [46]),
the human body (SaPa-CF [47], PaSa-Wound [36]) and industrial
settings (SF356 [38]). Lastly, this group also contains two different
model systems based on bacteria in the human gut. It is interesting
to note that this medically important type of environment is this
far only represented by two relatively complex and species rich
model communities, despite that e.g. soil is arguably a much more
diverse type of environment in terms of microbial species present
[61] and is yet only represented by model communities consisting
of three to four species..
3.1. Mutant-based model communities

Arguably the most simplistic and reductionist type of microbial
model communities are those that are based on mutants of a single
species. These mutants are often constructed in such a way that
they are auxotrophic, i.e. that they are dependent on the metabolic
output of the other strains in order to grow. This allows a high
degree of control over the experimental system, but at the expense
of losing almost any direct relevance to natural microbial commu-
nities. That said, for the purpose of studying general interaction
phenomena, such as partitioning of metabolic tasks and establish-
ment of dependence structures in communities, the approach is
highly suitable, as interaction patterns can be directly connected
to clearly defined traits in the form of auxotrophy. A related, but
different, approach was taken by Kong et al. [56], who constructed
six different pairs of Lactococcus lactis strains showing different
types of interactions. These pairs were then mixed with strains
from the other interaction types to engineer certain outcomes. This
type of approach is promising for future ecosystem engineering
efforts, although it very specifically is based upon well-
established interactions built into the system in advance. It is
notable that except for the Kong-NZ9000 communities, these
mutant-based systems have almost exclusively been developed
using well-known model organisms such as E. coli and S. cerevisiae,
testament to the origins of this approach in classical genetics and
molecular biology. Importantly, the mutant-based model commu-
nities have a drawback in that the members only differ in pre-
defined mutations, which limits the amount of novel interactions
that can be discovered using this approach. Furthermore, while
these methods can help generate hypotheses regarding between-
species interactions, they do not really provide any data towards
understanding of multispecies relationships, as the mutant-based
communities generally only comprise mutants of a single species.



Fig. 1. Stratification of microbial model communities by number of species in the model community and number of different types of measurable interaction behaviors as
listed in the original publication of the model community (more measurable interactions may have been discovered since the original publication). For details on the
communities, see Table 1.
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3.2. Multi-species synthetic model communities

Another set of highly artificial communities are those based on
assemblages of different species of microbes that have certain
properties that make their potential interactions interesting but
that are not known to cooccur naturally. This category encom-
passes communities such as Pp-A [53], consisting of two species
that can utilize benzyl alcohol as a carbon source, Bs-Nanotubes
[54], in which the members are selected based on their ability to
form nanotubes together with Bacillus subtilis, Clostridium-
Syntrophy [50], which show several potentially valuable industrial
properties in co-culture, and Cp-CBP [39], where the members
were selected for their ability to ferment cellodextrins. In many
of these instances, scientists have tried to force these microbes into
community behavior out of a desire to increase biotechnological
yields. There are also a few examples of model communities cho-
sen to avoid any known interactions between the members, in
order to be able to study the emergence of novel interactions in
communities, such as in the cases of Harcombe-ESM [35] and
ZmEc-Mutualism [57]. This type of model community is ideal for
studying the evolutionary processes leading to mutualisms
between different species. A practical benefit of synthetic model
communities is that their members can be selected in such a
way that they are easy to genetically manipulate and cultivate in
the lab, which may not always be the case with model communi-
ties based on naturally interacting microbes.
3.3. Soil-based model communities

We will next examine the diversity of semi-natural and natural
model communities, based on the specific habitat or microbial life-
style of their source organisms. There are, first of all, model com-
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munities aiming to recapture interactions in soil, including SXMP
[45] and THOR [52] comprising members known to interact in nat-
ure, and Kim-Soil [51] where members are not known to interact
naturally. Both the members of SXMP and THOR were partially
selected on ability to form biofilms and both also have increased
biofilm formation as an easily measured readout of community
interactions. That said, they comprise completely non-
overlapping sets of members; SXMP consists of Stenotrophomonas
rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and
Paenibacillus amylolyticus, while THOR is built on Pseudomonas
koreensis, Flavobacterium johnsoniae and Bacillus cereus. Arguably,
the members of THOR would be easier to genetically manipulate
using standard protocols, but that has not prevented the SXMP
community to be used in a variety of studies [30,42,62–65], com-
pared to THOR which was more recently introduced as a model
[26,52]. The ease of genetic manipulation and the many known
interactions between the species in these model communities
make them ideal for identifying which genes that are responsible
for interaction behaviors between microbial species. However, if
any of these two model communities describe interactions in soil
more accurately, or if they complement each other, is currently
unknown. The Kim-Soil community is interesting in that its mem-
bers were selected on the criteria of being able to grow under
nutrient-limited conditions. The authors of the study then used
the community to study interactions via dispersal of molecules
between spatially separated populations of the three member spe-
cies [51].
3.4. Biofilm-based model communities

Aside from the soil bacterial model communities forming bio-
films described above (SXMP and THOR), there are also model
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communities that have been selected explicitly on their ability to
form biofilms, specifically PPK [28] and SAB [58]. PPK is based on
three species that are commonly found together in multi-species
biofilms: Pseudomonas aeruginosa, Pseudomonas protegens and
Klebsiella pneumoniae. This community is actually one of the most
well-studied model communities, although most of the research
done on it emanates from the same research constellation
[29,31,66]. The relative simplicity of the system and the amount
of information that can be extracted from how these three
microorganisms interact still make this one of the more appealing
model systems for microbial interactions. For example, the PPK
community has been used to study community tolerance to
antimicrobials [29], multi-species spatial organization of biofilms
[28] and the role of specific polysaccharides in biofilm community
assembly [31]. SAB, on the other hand, is a very specific community
model, designed to mimic the relationships between microbes liv-
ing on the limestone-air interface. It is an interesting model in that
it features a cyanobacterium (Synechocystis PCC 6803) and a com-
monly used lab strain of E. coli (K12), setting it apart from most
other model communities in that it contains a primary producer.

3.5. Industrial model communities

Thanks to the great interest in utilizing consortia of microbes to
improve biotechnological processes, there are a number of micro-
bial model communities based on or mimicking food production
or industrial process applications. These include the cellulose-
degrading community SF356 [38], the cheese rind community
Wolfe-Cheese [46], the Yeast-LAB [48] community isolated from
fermented food, as well as the synthetic communities Pp-A [53]
and ZmEc-Mutualism [57] described earlier. SF356 is interesting
because it, owing to its industrially useful properties, has quite
easily measurable community behaviors: it can degrade paper
and accumulates oligosaccharides, acetate and ethanol. On the
other hand, none of the members of SF356 is that commonly used
for genetic studies, so the ability to manipulate the genomes of
these strains is a large uncertainty with this community model.
The two food-based communities both incorporate interkingdom
interactions between fungi and bacteria. The Yeast-LAB commu-
nity is selected in such a way that the bacteria are dependent on
S. cerevisiae to grow, providing a very simple readout for commu-
nity interactions. The Wolfe-Cheese community is the most
species-rich non-human associated model community described
here, comprising six different microbial species. A diversity of spe-
cies allows for more complex interactions, but unless there is a suf-
ficiently good way to disentangle these interactions, this may be
more of a problem than a benefit. At the same time, a large number
of different species in the model community makes it possible to
investigate the impact of removing or replacing certain species
on the impact on functional stability. Importantly, a common com-
ponent of all these industrial and food-based model communities
is that any results that come out of studies of their interactions
may have direct relevance for biotechnological applications.

3.6. Model communities of the human microbiome

One of the major incitements to develop microbial model com-
munities is the desire to understand how interactions between
microbes affect human health. It is therefore not surprising that
many model communities are based on the human microbiome
(Gutierrez-Gut [32], Venturelli-Gut [22]) or human pathogens
(SaPa-CF [47], PaSa-Wound [36], CWPB [37]). The two most
species-rich model communities described here are based on the
human gut microbiome. There are a few important observations
related to these two communities. First, despite encompassing
many different species – 23 in total – only three are shared
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between both model communities (Bacteroides thetaiotaomicron,
Bacteroides ovatus and Bacteroides vulgatus). This begs the question
to what extent these model communities actually mirror the
human gut microbiome and whether these 12 to 14 species are
needed to capture the most important interactions in the gut, both
questions that currently remain unanswered. Second, these two
communities are among the more complicated systems to work
with, due to the requirement of a low-oxygenic atmosphere for
most of the community members to grow. This fact is hard to get
around if one aims for any relevance to the human gut ecosystem,
but is worth consideration as part of the choice of model system.
Third, the overrepresentation of one genus (Bacteroides) in these
model communities makes them somewhat different on a struc-
tural level to many of the other microbial model systems (Fig. 2).
It is plausible that the large intra-genus diversity of these model
communities may foster more competitive relationships than in
other model systems with less species from the same closely
related group of bacteria [67,68]. Such relationships would be
interesting to study further, both from a methodological point of
view, but also from a perspective of how taxonomic structuring
drives competition and cooperation.

The pathogen-based communities all have in common that they
contain P. aeruginosa and Staphylococcus aureus. In addition, the
CWPB community also contains Enterococcus faecalis. PaSa-
Wound and CWPB are both based on wound-infection isolates,
while SaPa-CF is based on isolates from cystic fibrosis lung infec-
tions. These are all highly relevant infection models, but they
may be lacking in terms of beneficial microbes mitigating infec-
tions. The fact that they are based around the same, biofilm-
forming, species is telling, as it shows the importance of biofilm
interactions between pathogenic microbes in causing human dis-
ease. One should remember that e.g. the PPK model also comprises
human opportunistic pathogenic bacteria, including P. aeruginosa
[28]. The ability to use community models to predict disease out-
comes is one of the key allures of building and studying microbial
model communities, but much of this power is yet to be realized.

3.7. Other alternative model systems for communities

All of the model systems described this far are well-defined in
terms of which species and strains they contain, which – at least
in theory – allows clear definition of measurable outputs, speci-
ficity in which microbes that are interacting with each other, and
the possibility to genetically engineer one or more members of
the model community to alter these interactions and outputs. Fur-
thermore, using a defined set of starting strains or mutants enables
a great degree of reproducibility, compared to e.g. starting with
similar, but not identical, inocula from environmental settings.
That said, there are examples of community model systems and
methods that are highly useful and interesting for studying com-
munity interactions, despite not being as clearly defined. One such
method is the E. colimutant system introduced byWintermute and
Silver [20], in which different fluorescently labeled deletion
mutant strains are grown together in pairs to identify synergistic
interactions. This concept is similar to many of the mutant-based
model communities, but is designed to uncover a very specific type
of interactions. Another method that could be used to identify
community-intrinsic properties (see below) at the community
assembly level is the approach used by Goldford et al. [69], in
which diverse natural microbial communities are transferred to
minimal media, which reduces their diversity in a predictable
manner. Potentially, this approach could be used to design model
communities, but as it is clear that the choice of medium has a
strong sorting effect on which microbes that remain such a design
process has to be carefully crafted. Finally, there are also different
approaches to measure community responses to stressors, such as



Fig. 2. Representation of different genera across the microbial model communities identified in Table 1. Note that each genus can be represented by more than one species in
a single model community, such as for Bacteroides and Pseudomonas, inflating the number for that genera. The purpose of the figure is to show a picture of the taxonomic
distribution of current microbial model communities.
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antibiotics. These methods generally use some type of environ-
mental inoculum that is similar over time, although not identical,
and introduce it to an artificial system allowing for e.g. exposure
studies in controlled settings [70,71]. While these systems in prin-
ciple allow for detection of interactions between the members, the
readouts are fairly complex and it is often hard to attribute effects
to specific interactions between microbes in the community.

4. Community-intrinsic properties

One of the most important aspects of studying microbial model
communities is to capture and understand how microbes growing
together interact in a way that is not predictable from how they
grow in isolation. Indeed, if the constituent members of a commu-
nity behave the same in the community setting as when grown
alone, there is not really much point of studying them in a commu-
nity context. Behaviors that are altered or specific to growth in
community settings are often referred to as community-intrinsic
properties [72] or, if they only appear when certain sets of microbes
are growing together, emergent community properties [73].

4.1. Definitions

A community-intrinsic property could be defined as a behavior
or outcome that cannot be predicted from the sum of the parts of
the community [72]. Such a property could, for example, be stable
oscillations in species abundances or predator–prey dynamics [74]
but could also be an entity indicative of collective community
function, such as increased biofilm formation in a community set-
ting compared to what is produced by the individual species alone.
The latter scenario will be used an example in the following text.
Unfortunately, there are some additional complications to this def-
inition. To begin, one could assume that the maximum possible
biofilm formation (in the absence of any interaction) in a pair of
two species would be the sum of the biofilm formation of the
two species in the pair individually. However, in most cases this
3994
is an unreasonable assumption. Due to competition for resources,
the total biofilm production would most likely be less than the
sum of biofilm formation of the individual members, unless they
are using completely different sets of nutrients and resources
[24]. Such a scenario where the species do not share resources is
referred to as niche complementarity, and happens when the species
involved have non-overlapping requirements and therefore very
minimal interactions despite occupying the same physical space
[75–77]. This leads to the observation that if the biofilm formation
when the pair is grown together is less than the sum of the produc-
tion of each individual, it is likely that the two species have a com-
petitive relationship (Fig. 3). At the same time, if the biofilm
formation of the pair is roughly equal to sum of the individual pro-
ductions, that indicates complementary of niches, which would
mean no competition and no (substantial) interaction. This also
leads to the interpretation that if biofilm formation in the pair is
greater than the sum of the individual biofilm formation, there is
an interaction effect (potentially, but not necessarily, mutualistic).
This kind of greater-than-expected outcome will be used as the
definition of a community-intrinsic property in this paper. Note that
in many cases it may be that two species do have some type of syn-
ergistic interaction even in the competitive case, but it would be
hard or maybe even impossible to separate that effect from the
competition for resources that would also be taking place in paral-
lel. Furthermore, as can be seen in Fig. 3B, it can sometimes be very
hard to distinguish a competition scenario from a niche-
complementary situation, particularly when communities get
more complex.

The above reasoning can be extended to communities with
more than two species. For example, in order to show a
community-intrinsic property, a community with three members
forming biofilm should have a total biofilm formation greater than
the sum of all the biofilm produced by the constituents when
grown alone. Should such a community also show biofilm produc-
tion greater than the sum of all the pairs in order to be considered
showing a community-intrinsic behavior? This is much less clear,



Fig. 3. Example of different types of interactions among (fictional) biofilm-forming microbes. In (A), all three species are able to form biofilm on their own, albeit in different
quantities, while in (B) only A is capable of forming biofilm on its own, while B and C are boosting the biofilm formation ability of A, akin to the situation in the THOR and
SXMP model communities. In both (A) and (B), three scenarios are depicted. First, a scenario where all three species compete for the same resources is presented (i.e. the
maximal biofilm formation is capped at 3). Second, a scenario where each species uses their own set of resources and therefore show limited interactions with the other
species (niche complementarity) is shown. The final scenario is one of community-intrinsic behaviors, where interactions and cooperation among the three species result in
more efficient resource utilization and increased biofilm output.
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especially as the community gets more complex with the addition
of even more species. Here, it is useful to look at the average con-
tribution of each species to the biofilm formation of the pair, across
all pairs, rather than the total quantity of biofilm itself. If the
increase of biofilm formation in the three-species community is
greater than the sum of the amounts of biofilm for each pair
divided by two (the average biofilm contribution per species in
the pair), that would be an indicator of community-intrinsic prop-
erties (Fig. 3).

While this example deals with biofilm formation, the same rea-
soning can be extended to relative growth, production of metabo-
lites or any measurable property of a community. It is important to
note that while competition is a type of interaction, and almost by
definition would be a community-intrinsic behavior, it is not a par-
ticularly interesting intrinsic property to study, as it is fairly self-
evident that if you combine two species under resource limitation,
they will compete for the available resources. Hence, competition
will be considered separately from other community-intrinsic
properties in this paper. That said, in communities with more than
two species, differences between the expected degree of competi-
tion based on species-pairs grown together and the actual compe-
tition observed in the full community should be considered
community-intrinsic properties, as they may be indicative of com-
munity protection from e.g. predation or chemical inhibition
[52,55].

4.2. How to quantify community-intrinsic properties?

Community-intrinsic properties of microbial communities are
important in two different ways. First, their very existence hints
at something fundamentally different about a cooperative lifestyle
among microbes. Furthermore, the fact that some species seem to
be better at inducing these community-intrinsic properties [52]
shows that not all microbes are created equal in terms of coopera-
tivity – some are more social than others. Second, obvious
community-intrinsic properties can function as reporters for ongo-
ing interactions in a community, both in the natural world and in
the models we have discussed here. By measuring some easily
observable community-intrinsic property (such as biofilm forma-
tion used in the example above), we can discern at what timepoint
and under what conditions the members of a community show a
high degree of interaction. Through assuming that strong interac-
tions are likely to take place in the same timeframe (which may
not always be true, but is more likely than the opposite), an easily
measurable community-intrinsic property can be used to, for
example, select optimal timepoints and conditions for an
experiment.
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Measuring these community-intrinsic properties can be tricky,
especially in real time. Biofilm formation, for example, is fairly
straightforward to measure. Typical assays for measuring biofilm
formation include staining with crystal violet or other dyes, count-
ing colony forming units from the biofilm on selective plates, coul-
ter counting and flow cytometry [78]. However, these assays are
quite intrusive and the results can take hours to obtain. This can
be partially alleviated by carefully planning the experiment before-
hand and using many parallel technical replicates of which some
can be scarified for measurements of desired properties. Neverthe-
less, having some easily measured property, such as a change in
pH, color of the media, or production of a fluorescent substance,
makes on-the-fly measurements of the community interaction
state much easier, and this is one of the many factors that should
be weighted in when selecting a model community for studying
a phenomenon (Table 1).

Another approach to measuring metabolic interactions in
microbial communities is to label the metabolites themselves
and follow their fate in the community. This can be achieved using
stable-isotope tracing, in which a substrate such as glucose is
labeled with 13C and then introduced as a nutrient source to the
community [79,80]. Due to metabolite exchanges, the 13C-labeled
products that are produced in the community are indicative of
which metabolic interactions that have taken place between the
members. This allows for, e.g., flux analysis of these labeled com-
pounds (13C-MFA), given that the members in the model commu-
nity can be sorted or separated by strain and that the species
have their metabolismwell described [11]. However, the technique
is at present somewhat complicated to scale up to model commu-
nities with many species due to these cell sorting requirements.

There is substantial literature on computational and statistical
tools for modeling microbial community dynamics and fitting
observations from microbiome data to these model predictions
[11–13], and this paper will not address all the specific methods
that can be used for these purposes. To some extent, any tool that
has been devised to model or analyze complex microbiomes can be
easily adapted to microbial model communities as well. There are,
however, some community modelling approaches that lend them-
selves particularly well to model communities. For example,
genome-scale metabolic models (GSMs) are much more easily
extended from single-species assumptions to a community of
well-known organisms with described genomes than to large and
complex communities in natural settings. As such, GSMs provide
a very useful computational framework for predicting model com-
munity behavior and detect deviations from expected interactions.
Suitable computational approaches in this context have recently
been reviewed by Frioux et al. [12] and Antoniewicz [11]. Further-
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more, models based on ordinary differential equations (ODEs) are
well equipped for modelling consumption and production of
metabolites in model communities with few species or strains
[13]. The ODE models capture the dynamics of co-cultured species
using kinetic data. For example, an ODE model may be fed with
information on how polysaccharides are converted to monosaccha-
rides, how substrates are consumed and the individual growth
rates, all of which can be estimated in monoculture setups. These
predictions can then be experimentally tested in the model com-
munity setting. Finally, in the context of differentiating competi-
tion effects and community-intrinsic properties, it is useful to
consider ecological models, including the generalized Lotka-
Volterra model, often referred to as the predator–prey model,
and models for synergisms, such as those proposed by Wintermute
and Silver [20] and Mee et al. [60].

4.3. Examples of community-intrinsic properties in model
communities

Due to the assorted definitions and unclear terminology around
community properties, it is somewhat difficult to identify which
microbial model communities that display clear and easily mea-
surable community-intrinsic properties. In many microbial model
communities, the only way of studying the community interac-
tions is through the relative growth rates and yields of the commu-
nity members (Table 1). Depending on the system, measuring
relative growth can be a quite invasive procedure, which disrupts
the community and/or takes time. Furthermore, relative growth
is among the most sensitive properties to competition, as funda-
mental resources are generally shared and limited. Consequently,
most directly growth-related interactions will be competitive,
although exceptions exist (see below). As such, relative growth
may not be an ideal endpoint for measuring community
interactions.

A relatively large number of model communities use biofilm
formation as a way to measure community interactions (SXMP,
PPK, THOR, Pp-A [28,45,52,53]). Of these, SXMP and THOR both
clearly show community-intrinsic properties as defined in this
paper, with one species dominating the biofilm in both cases and
the other species boosting the biofilm production of that species
(as in Fig. 3B). While both PPK and Pp-A also show increased bio-
film formation in the community setting, it is less clear whether
this is a community-intrinsic property or a case of niche-
complementarity. Another type of growth-related readout is the
ability to tolerate higher levels of antimicrobials, including
antibacterial biocides. This property is shown by the PPK and
PaSa-Wound [36] communities when grown together and can be
useful for showing interactions in these model communities. How-
ever, this is also a readout that can be destructive and time-
consuming to obtain. Similar ‘survival only in community settings’
types of properties can be used to detect community interactions
in the Yeast-LAB (bacterial growth only in the presence of yeast),
as well as in the auxotrophic mutant-based model communities
[21,48,59,60].

In a few of the model communities, production of some specific
chemicals can be used as an indicator of community interactions.
For example, in SF356 the degree of accumulation of oligosaccha-
rides, acetate and ethanol is dependent on the presence of the com-
munity [38], in SaPa-CF S. aureus is only capable of fermentation
when grown in the presence of P. aeruginosa [47], and in Cp-CBP
ethanol production and cellulose fermentation is dependent on
the presence of both the bacterium and a yeast species [39]. Such
production of specific metabolites may be easier to measure than
the relative growth of bacteria, and may also be more indicative
of actual interaction between the community members. Finally,
changes of e.g. pH and pigmentation may be possible to measure
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in real time, as in the Wolfe-Cheese community [46]. However,
as can be seen here, it is generally not that easy to find community
properties that can be measured non-destructively on-the-fly.
Thus, methods such as fluorescent markers of the different mem-
bers may help to obtain real time measurements of relative growth
of the community members [21,23,28,58,81,82].
5. Challenges and future work

5.1. Diversity of microbial model communities

One of the great challenges of research aiming to understand
the complex interactions in natural systems is that these systems
are most often highly diverse and therefore cover hundreds or
thousands of microbial interactions. These interactions may look
different in different systems and vary between combinations of
microbial taxa. For the use of model communities to be of rele-
vance in describing this myriad of interactions, there is a need
for at least some degree of diversity of model communities, with
models representing different types of environments and settings.
At the same time, if specific models would be required to explain
the community phenomena of every given setting, the ability to
transfer any ecological knowledge from these model systems to
full-scale microbial communities could be called into question.
That said, if previous knowledge of biology provides any guidance,
it seems likely that many of the findings regarding how interac-
tions work in model communities would be translatable to a vast
variety of full-scale ecological systems. For example, the ability
to manipulate population dynamics using AI-2 quorum sensing
was first discovered and explored in simple co-culture systems
[83,84], but was then transferred to mouse gut microbial commu-
nities [85], showing that there are indeed genetic mechanisms
behind community interactions that are functional across scales.
Nevertheless, it is likely that community interactions look different
in planktonic settings compared to biofilms, in free-living commu-
nities compared to host-associated, in nutrient-rich compared to
nutrient-deprived environments, and so on. This suggests that
there is a need of some degree of diversity in terms of microbial
model communities reflecting different microbial lifestyles.

Nevertheless, it is clear from this overview of available model
systems that there is a considerable degree of overlap between sys-
tems, and that instead of focusing on a few well described systems,
current model community efforts have been largely scattered
across many different models. This is an inefficient use of scientific
resources, and it would be useful if microbial model community
researchers could come together and decide on a set of systems
that would be considered ‘gold standard’ models. These should
preferably be model systems we know much about already, that
consist of microbes that are easy to grow and manipulate, that
have relevance in real-world applications, that show community
properties that are indicative of healthy microbiome function,
and that are highly reproducible between labs (see also [40]).
The model communities should also be easy to adapt to different
scales and allow high-throughput experiments. There are only a
limited number of model communities described in this paper that
live up to all these criteria, but good candidates would be the PPK
[28], Yeast-LAB [48], SXMP [45], and THOR [52] model communi-
ties, which contain easily grown species, have already been evalu-
ated for at least some more complex community behaviors, have
simple readouts and at least some degree of relevance for different
natural systems (biofilms, fermented food and soil, respectively).
For human-associated communities, the two model communities
comprising the P. aeruginosa and S. aureus species pair – PaSa-
Wound and SaPa-CF – represent the best-studied models [36,47].
However, both these models represent a largely disruptive patho-
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genic situation. The two gut microbial model communities
(Venturelli-Gut and Gutierrez-Gut) represent more normal condi-
tions; however, they both are fairly complex, have less crystal-
clear readouts and comprise several species that are somewhat
problematic to grow under laboratory conditions [22,32]. It should
be determined if such complex models are necessary to accurately
describe the most important interactions in the human gut and
what could potentially be learned from simpler model
communities.

5.2. Controlled settings are crucial

Another challenge related to model communities is that many
community-intrinsic properties may be highly dependent on
specific environmental conditions. For example, community-
intrinsic properties may only appear in certain media [37,46,52],
or may require that the environment is deprived on some key ele-
ment or compound [51,53,59]. It is also common that the commu-
nities require specific substrates for e.g. biofilm formation [36,58].
In most cases, such specifics are less important in single-species
culture than in multi-species communities. When a strain is grown
alone, it can use up all resources and does not have to compete for
space and nutrients. This means that differences in growth temper-
ature or substrate may have effects on growth that are barely dis-
cernable, as the final yield is the same regardless of these minor
changes. However, when a strain has to compete for resources with
other species and strains, constraints such as optimal growth tem-
perature, osmotic pressure, pH, available substrates, as well as ini-
tial inoculum size, start having large downstream effects on
growth relative to the other strains in the community. Even small
changes in growth temperature have been shown to dramatically
alter biofilm formation ability in the THOR community, for exam-
ple (Burman et al., unpublished data). It is therefore instrumental
to i) agree upon standards for growing model communities in the
lab (although these standards can be different for different pur-
poses), ii) state exactly what inoculum sizes and growth conditions
were used in community experiments (not only using ‘‘room tem-
perature”, for example), iii) relate community properties to the
growth of the individual members of the community, and iv) care-
fully study how different model communities grow under different
conditions and how temperature, media, starting inoculum, sub-
strates etc. affect the expression of community properties and
community dynamics. In order for such experiments to be worth-
while, it would be important to unite around a smaller number of
priority model communities – the ‘gold standard’ communities dis-
cussed above.

5.3. Common definitions, terms and frameworks

Similar to the need for agreement on growth conditions for
microbial model communities, there is a need to settle on a com-
mon set of definitions for phenomena in model communities. It
would, for example, be useful to have agreed-upon definitions of
community-intrinsic and emergent properties, niche complemen-
tarity and competitive interactions. As pointed out by Madsen
et al. [72], it is also important to determine what constitutes a rea-
sonable null model for how a non-interacting community would
behave that encompasses more complex scenarios than those
shown in Fig. 3. Such a null model could easily get complicated,
particularly as the number of community members grow. There-
fore, the development of such models is an entire area of research
in itself, where experimentalists, computational biologists and
ecologists need to work together to achieve an agreement on a
common framework for community interactions in model systems,
in order to allow the field to progress as efficiently as possible. The
use of null models is common in addressing community assembly
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[86,87], but is not as well established for microbial interaction net-
works [11]. Only when a framework for generating relevant null
models is in place will it be possible to fully take advantage of
the power of computational approaches to predict the behavior
of microbial communities [88].
5.4. Disentangling complexity requires an understanding of simplicity

The endeavor to tease apart interactions in complex microbial
communities needs to start small. Microbial model communities
of different scales have contributed to our understanding of micro-
bial predator–prey relationships [23,30,55], resource partitioning
[35,48,53,57], pathogenicity [37,47], antibiotic tolerance
[28,89,90], resistance to stress [28,31], as well as the conditions
that trigger the production of secondary metabolites [26,46,52].
This, however, is just scratching the surface of what model com-
munities could reveal about community dynamics; it is apparent
that there is a plethora of biological phenomena related to interac-
tions between microbes to explore, and model communities pro-
vide a means to start assessing these interactions and the
mechanisms behind them. The model systems offer an opportunity
to track down the genetic mechanisms behind interactions and
predict how these mechanisms would play out in more complex
systems. For example, by studying disturbances to model commu-
nities and the genes that are important for resilience to disruption,
we can predict how complex natural communities in various set-
tings would respond to the same perturbations. Deviation from
these predictions can then be interpreted in a functional context,
for example by investigating if there is functional redundancy in
the more diverse and complex natural community [91]. That ques-
tion can really only be tackled knowing the genetic mechanisms
behind, in this case, community stability. Knowledge of how to
maintain community interactions could be instrumental in treat-
ing diseases with diffuse causes connected to the human micro-
biome, such as IBS and IBD [92–95]. Despite all this, one of the
major shortcomings of microbial model communities is that there
have been very few attempts to translate findings from model
communities into real-world complex communities. There is a
clear need to verify the interactions claimed to be important for
microbial communities and their mechanisms in complex systems
in order to ascertain the relevance of the microbial model commu-
nity systems we already use, if not else to determine the limita-
tions of this approach to yield generalizable conclusions.
Furthermore, by understanding which genes are responsible for
interactions in biotechnologically important communities, we
could potentially either simplify these consortia using genetic
engineering, or increase their total productivity by adding benefi-
cial community members [96]. Identifying these additional mem-
bers that would allow for more efficient resource utilization
(from a human perspective) requires a well-understood model
community to pinpoint relevant interactions. Common to these
endeavors is the need to understand genetic and molecular mech-
anisms in less complex settings before proceeding to disentangle
the many intricate relationships in full-scale microbial communi-
ties in natural environments.
6. Summary and outlook

As stated from the start, natural microbial ecosystems are com-
plex. Our best shot at understanding this complexity is to reduce it
into components we can more easily disentangle and then figure
out the larger picture piece by piece, sometimes extrapolating from
the limited data we have. In order to do so, microbial model com-
munities are essential instruments to learn about metabolic inter-
actions, genetic mechanisms and ecological principles governing



Table 2
Suggested model communities for different types of research questions.

Research question Suggested model communities References

(1) Sharing of metabolites and partitioning of resources SeMeCo, Ec-Coculture, Ec-Crossfeeding [21,59,60]
(2) Competitive vs. cooperative interactions in microbial

communities
C-S-R, Ec-Predator, Venturelli-Gut, Gutierrez-Gut [22,23,32,55]

(3) Identifying genes governing microbial interactions THOR, SXMP, Kim-Soil; see also the approach of Wintermute and Silver, and
the models under question (10)

[20,45,51,52]

(4) How interactions are affected by environmental changes PPK, THOR, SXMP, PaSa-Wound, Kim-Soil [28,36,45,51,52]
(5) The links between taxonomic and functional diversity The approach of Goldford et al. [69]
(6) The effect of stressors (including invasion by non-native

species) on community stability
PPK, THOR, SXMP, PaSa-Wound, Kim-Soil, Venturelli-Gut, Gutierrez-Gut [22,28,32,36,45,51,52]

(7) The importance of keystone species for functional stability Wolfe-Cheese, Venturelli-Gut, Gutierrez-Gut [22,32,46]
(8) The evolution of mutualism in microbial communities Harcombe-ESM, ZmEc-Mutualism [35,57]
(9) Identification of factors that allow pathogens to outcompete

commensal bacteria
PPK, Venturelli-Gut, Gutierrez-Gut, CWPB [22,28,32,37]

(10) Improving yields of certain desired compounds Yeast-LAB, SF356, Pp-A, Cp-CBP, Clostridium-Syntrophy, Wolfe-Cheese [38,39,46,48,50,53]
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and structuring communities. There already exists a range of
microbial model communities of varying complexity, designed to
answer different questions and reflect different phenomena, envi-
ronments and applications. Choosing the right model community
for the questions asked is key to achieve relevant results, but is
no easy task. A few suggestions of model communities suitable
for different types of research questions are given in Table 2. This
review can function as a guide in this selection process, but does
by no means provide a universal answer to all situations where
model communities would be useful. That said, focusing on well-
studied models and centralizing around a smaller number of
experimental systems would be highly useful. Some of the best
studied models for microbial communities are PPK [28], Yeast-
LAB [48], SXMP [45], and THOR [52]. All of these community mod-
els also consist of species easily grown in the lab, have been eval-
uated for community behaviors, have simple readouts and are of
relevance for natural ecosystems. There are fewer really good
and well-studied models for human-associated communities, so
unfortunately the choice of model in that context is much more
open at this time. Finally, there is a need for agreement and stan-
dardization of growth conditions for microbial model communi-
ties, definitions of community-specific phenomena, and
frameworks for how (non–) interacting communities would
behave. All this would require scientists across disciplines to come
together in an effort to reduce the complexity of the universe of
model systems itself.
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