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This paper is devoted to investigating the numerical solution for a class of fractional diffusion-wave equations with a variable
coefficient where the fractional derivatives are described in the Caputo sense. The approach is based on the collocation technique
where the shifted Chebyshev polynomials in time and the sinc functions in space are utilized, respectively. The problem is reduced
to the solution of a system of linear algebraic equations. Through the numerical example, the procedure is tested and the efficiency
of the proposed method is confirmed.

1. Introduction

Fractional models have been increasingly shown by many
scientists to describe adequately the problems with memory
and nonlocal properties in fluid mechanics, viscoelasticity,
physics, biology, chemistry, finance, and other areas of
applications [1–6]. In particular, the fractional diffusion-wave
equation has been used to model many important physical
phenomena ranging from amorphous, colloid, glassy, and
porous materials through fractals, percolation clusters, and
random and disorderedmedia to comb structures, dielectrics
and semiconductors, polymers, and biological systems [7–
10]. It is a generalization of the classical diffusion-wave
equation by replacing the integer-order time derivative with
a fractional derivative of order 𝛼 (1 < 𝛼 < 2). This
equation can be derived from the anomalous superdiffusion
in continuous time random walk which is generally non-
Markovian processes [11].

Although the considerable work on the numerical solu-
tion of fractional diffusion equations has been done [12–
15], there are very limited numerical methods for solving
the fractional diffusion-wave equations [16–18]. However,
all the above mentioned papers dealt with the fractional
diffusion-wave equations by finite difference methods. It is

well known that any algorithm based on the finite difference
discretization of a fractional derivative has to take into
account its memory or nonlocal structure; thus this means
a high storage requirement [19].

In the present paper, we consider the following differ-
ential equation with the Caputo fractional derivative and a
variable coefficient:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

= 𝑎 (𝑥, 𝑡)

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥
2

+ 𝑓 (𝑥, 𝑡) ,

𝑎 < 𝑥 < 𝑏, 0 < 𝑡 ≤ 𝜏,

(1)

with the initial conditions,

𝑢 (𝑥, 0) = 𝜙 (𝑥) ,

𝜕𝑢 (𝑥, 0)

𝜕𝑡

= 𝜓 (𝑥) , 𝑎 < 𝑥 < 𝑏, (2)

and the boundary conditions,

𝑢 (𝑎, 𝑡) = 0, 𝑢 (𝑏, 𝑡) = 0, 0 < 𝑡 ≤ 𝜏, (3)

where 𝑥 ∈ [𝑎, 𝑏] and 𝑡 ∈ (0, 𝜏] are space and time
variables, respectively, 𝑎(𝑥, 𝑡) is a continuous function, and
𝑓(𝑥, 𝑡) denotes the field variable. For 1 < 𝛼 < 2, the
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fractional equation (1) is known as the fractional diffusion-
wave equation which fills the gaps between the diffusion
equation and wave equation [16, 20].

We develop a sinc-Chebyshev collocation method to
solve numerically problem (1) with (2) and (3). Since a
fractional derivative is a nonlocal operator, it is natural to
consider a global scheme such as the collocation method
for its numerical solution [19, 21]. The required approxi-
mate solution is expanded as a series with the elements of
shifted Chebyshev polynomials in time and sinc functions in
space with unknown coefficients. By utilizing the collocation
technique and some properties of the shifted Chebyshev
polynomials and sinc functions, the problem is reduced
to the solution to a system of linear algebraic equations.
And a matrix representation of the system is obtained to
calculate the solution. The presented method is effective and
convenient.

The remainder of this paper is organized as follows: in
the next section, we introduce some necessary definitions
and relevant results for developing this method. Section 3
is devoted to constructing and analyzing the numerical
algorithm. As a result, a system of linear algebraic equations
is formed and the solution of the considered problem is
obtained. In Section 4, the numerical example is given to
demonstrate the effectiveness and convergence of the pro-
posedmethod. A brief conclusion is given in the final section.

2. Notations and Some Preliminary Results

In this section, we introduce some basic definitions and
derive several preliminary results for developing the pre-
sented method.

2.1. The Caputo Fractional Derivative

Definition 1 (see [22]). Let 𝛼 ∈ R
+
. The operator 𝐽𝛼

𝑎
defined

on 𝐿
1
[𝑎, 𝑏] by

𝐽
𝛼

𝑎
𝑓 (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 (4)

for 𝑎 ≤ 𝑡 ≤ 𝑏 is called the Riemann-Liouville fractional
integral operator of order 𝛼. For, 𝛼 = 0, we set 𝐽0

𝑎
:= 𝐼, that is,

the identity operator.

Definition 2 (see [22]). Let 𝛼 ∈ R
+
and 𝑛 = ⌈𝛼⌉. The Caputo

fractional differential operator 𝐶𝐷𝛼
𝑎
for 𝑎 ≤ 𝑡 ≤ 𝑏 is defined

as

𝐶

𝐷
𝛼

𝑎
𝑓 (𝑡) = 𝐽

𝑛−𝛼

𝑎
𝐷
𝑛

𝑓 (𝑡)

=

1

Γ (𝑛 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
(𝑛)

(𝑠) 𝑑𝑠.

(5)

2.2. The Composite Translated Sinc Functions. The sinc func-
tions and their properties are discussed in [23, 24]. For any

ℎ > 0, the translated sinc functions with equidistant space
nodes are given as

𝑆 (𝑘, ℎ) (𝑧) = sinc(𝑧 − 𝑘ℎ
ℎ

) , 𝑘 = 0, ±1, ±2, . . . , (6)

where the sinc functions are defined on the whole real line by

sinc (𝑥) =
{

{

{

sin (𝜋𝑥)
𝜋𝑥

, 𝑥 ̸= 0,

1, 𝑥 = 0.

(7)

If 𝑓 is defined on R, then for any ℎ > 0 the series

𝐶 (𝑓, ℎ) (𝑧) =

∞

∑

𝑘=−∞

𝑓 (𝑘ℎ) 𝑆 (𝑘, ℎ) (𝑧) (8)

is called theWhittaker cardinal expansion of𝑓whenever this
series converges. 𝑓 can be approximated by truncating (8).

To construct our needed approximations on the interval
[𝑎, 𝑏], we choose

𝜑 (𝑥) = ln(𝑥 − 𝑎
𝑏 − 𝑥

) (9)

which maps the finite interval [𝑎, 𝑏] onto R. The basic
functions on [𝑎, 𝑏] are taken to be the composite translated
sinc functions:

𝑆
𝜑
(𝑘, ℎ) (𝑥) = 𝑆 (𝑘, ℎ) (𝜑 (𝑥)) = sinc(

𝜑 (𝑥) − 𝑘ℎ

ℎ

) . (10)

Thuswemay define the inverse image of the equidistant space
node {𝑖ℎ} as

𝑥
𝑖
= 𝜑
−1

(𝑖ℎ) =

𝑎 + 𝑏𝑒
𝑖ℎ

1 + 𝑒
𝑖ℎ

, 𝑖 = 0, ±1, ±2, . . . . (11)

The class of functions such that the known exponential
convergence rate exists for the sinc interpolation is denoted
by 𝐵(𝐷

𝐸
) and defined in the following text.

Definition 3 (see [21]). Let 𝐵(𝐷
𝐸
) be the class of functions 𝑓

which are analytic in𝐷
𝐸
and satisfy

∫

𝜑
−1

(𝑥+𝐿)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧) 𝑑𝑧

󵄨
󵄨
󵄨
󵄨
󳨀→ 0, 𝑥 󳨀→ ±∞, (12)

where 𝐿 = {𝑖𝜐 : |𝜐| < 𝑑 ≤ 𝜋/2}, and

∫

𝜕𝐷
𝐸

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑧) 𝑑𝑧

󵄨
󵄨
󵄨
󵄨
< ∞ (13)

on the boundary of𝐷
𝐸
(denoted 𝜕𝐷

𝐸
).

Theorem 4 (see [21, 23]). If 𝜑󸀠𝑓 ∈ 𝐵(𝐷
𝐸
), then, for all 𝑥 ∈

[𝑎, 𝑏],

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑥) −

∞

∑

𝑘=−∞

𝑓 (𝑥
𝑘
) 𝑆
𝜑
(𝑘, ℎ) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

2𝑁 (𝜑
󸀠

𝑓)

𝜋𝑑

𝑒
−𝜋𝑑/ℎ

. (14)
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Further, one assumes that there are positive constants 𝐶 and
𝛽 so that |𝑓(𝑥)| ≤ 𝐶 exp(−𝛽|𝜑(𝑥)|). And if one selects ℎ =
√𝜋𝑑/𝛽𝑁 ≤ 2𝜋𝑑/ ln 2, then,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑
𝑚

𝑓 (𝑥)

𝑑𝑥
𝑚

−

𝑁

∑

𝑘=−𝑁

𝑓 (𝑥
𝑘
)

𝑑
𝑚

𝑑𝑥
𝑚
𝑆
𝜑
(𝑘, ℎ) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐾𝑁
(𝑚+1)/2 exp(−√𝜋𝑑𝛽𝑁)

(15)

for all𝑚 = 0, 1, . . . , 𝑛.

Theabove expressions show that the sinc interpolation on
𝐵(𝐷
𝐸
) converges exponentially.We also require the following

derivatives of the composite translated sinc functions evalu-
ated at the nodes. Consider

𝛿
(0)

𝑘,𝑖
= [𝑆
𝜑
(𝑘, ℎ) (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥
𝑖

= {

1, 𝑘 = 𝑖,

0, 𝑘 ̸= 𝑖,

(16)

𝛿
(1)

𝑘,𝑖
=

𝑑

𝑑𝜑

[𝑆
𝜑
(𝑘, ℎ) (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥
𝑖

=

{
{

{
{

{

0, 𝑘 = 𝑖,

(−1)
𝑖−𝑘

(𝑖 − 𝑘) ℎ

, 𝑘 ̸= 𝑖,

𝛿
(2)

𝑘,𝑖
=

𝑑
2

𝑑𝜑
2
[𝑆
𝜑
(𝑘, ℎ) (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥
𝑖

=

{
{
{
{

{
{
{
{

{

−𝜋
2

3ℎ
2
, 𝑘 = 𝑖,

−2(−1)
𝑖−𝑘

(𝑖 − 𝑘)
2

ℎ
2

, 𝑘 ̸= 𝑖.

(17)

2.3.The Shifted Chebyshev Polynomials. TheChebyshev poly-
nomials {𝑇

𝑖
(𝜎); 𝑖 = 0, 1, . . .} are a well-known family of

orthogonal polynomials defined on the interval [−1, 1] and
can be determined with the aid of the recurrence formulae
[25, 26]:

𝑇
𝑛+1
(𝜎) = 2𝑥𝑇

𝑛
(𝜎) − 𝑇

𝑛−1
(𝜎) , 𝑛 = 1, 2, . . . ,

𝑇
0
(𝜎) = 1, 𝑇

1
(𝜎) = 𝜎.

(18)

In order to use these polynomials on the interval 𝑡 ∈
[0, 𝜏], it is necessary to define the so-called shifted Chebyshev
polynomials by the variable substitution: 𝜎 = (2𝑡/𝜏) − 1.
Let the shifted Chebyshev polynomials 𝑇

𝑖
((2𝑡/𝜏) − 1) be

denoted by𝑇
𝜏,𝑖
(𝑡).The analytic form of the shifted Chebyshev

polynomials 𝑇
𝜏,𝑖
(𝑡) is given by

𝑇
𝜏,𝑖
(𝑡) = 𝑖

𝑖

∑

𝑘=0

(−1)
𝑖−𝑘 (𝑖 + 𝑘 − 1)!2

2𝑘

(𝑖 − 𝑘)! (2𝑘)!𝜏
𝑘

𝑡
𝑘

, 𝑖 = 1, 2, . . . ,

𝑇
𝜏,0
(𝑡) = 1.

(19)

Specially, 𝑇
𝜏,𝑖
(0) = (−1)

𝑖 and 𝑇
𝜏,𝑖
(𝜏) = 1.

Caputo’s fractional derivative of order 𝛼 > 0 for the
shifted Chebyshev polynomials 𝑇

𝜏,𝑖
(𝑡) is given by

𝐶

𝐷
𝛼

0
𝑇
𝜏,𝑖
(𝑡) =

𝑖

∑

𝑘=⌈𝛼⌉

𝑏
𝑖,𝑘
𝑡
𝑘−𝛼

, 𝑖 = ⌈𝛼⌉ , ⌈𝛼⌉ + 1, . . . ,

𝐶

𝐷
𝛼

0
𝑇
𝜏,𝑖
(𝑡) = 0, 𝑖 = 0, 1, . . . , ⌈𝛼⌉ − 1,

(20)

where

𝑏
𝑖,𝑘
= 𝑖(−1)

𝑖−𝑘 (𝑖 + 𝑘 − 1)!2
2𝑘

𝑘!

(𝑖 − 𝑘)! (2𝑘)!𝜏
𝑘
Γ (𝑘 − 𝛼 + 1)

. (21)

3. The Derivation of the Sinc-Chebyshev
Collocation Method

In order to solve problem (1) with (2) and (3), first of all, we
approximate 𝑢(𝑥, 𝑡) by the 2𝑚 + 1 composite translated sinc
functions and 𝑛 + 1 shifted Chebyshev polynomials as

𝑢
𝑚,𝑛
(𝑥, 𝑡) =

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
𝑆
𝜑
(𝑖, ℎ) (𝑥) 𝑇

𝜏,𝑗
(𝑡) . (22)

It is noted that the approximate solution 𝑢
𝑚,𝑛
(𝑥, 𝑡) satisfies the

boundary conditions in (3) since 𝑆
𝜑
(𝑖, ℎ)(𝑥), 𝑖 = −𝑚, −𝑚 +

1, . . . , 𝑚, tend to zeros when 𝑥 tends to 𝑎 and 𝑏. For
discretizing (1) with (2), the lemma is given as follows.

Lemma 5. Let 1 < 𝛼 < 2 and 𝑥
𝑘
be spatial collocation points

given in (11). Then the following relations hold:

𝜕
𝛼

𝑢
𝑚,𝑛
(𝑥
𝑘
, 𝑡)

𝜕𝑡
𝛼

=

𝑛

∑

𝑗=2

𝑗

∑

𝑟=2

𝑐
𝑘𝑗
𝑏
𝑗,𝑟
𝑡
𝑟−𝛼

,

𝜕
2

𝑢
𝑚,𝑛
(𝑥
𝑘
, 𝑡)

𝜕𝑥
2

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
𝑞
𝑖,𝑘
𝑇
𝜏,𝑗
(𝑡) ,

𝜕𝑢
𝑚,𝑛
(𝑥
𝑘
, 𝑡)

𝜕𝑡

=

𝑛

∑

𝑗=1

𝑗

∑

𝑟=1

𝑐
𝑘𝑗
𝑑
𝑗,𝑟
𝑡
𝑟−1

,

(23)

where 𝑞
𝑖,𝑘
= 𝜑
󸀠󸀠

(𝑥
𝑘
)𝛿
(1)

𝑖,𝑘
+[𝜑
󸀠

(𝑥
𝑘
)]
2

𝛿
(2)

𝑖,𝑘
and𝑑
𝑗,𝑟
= 𝑗(−1)

𝑗−𝑟

(𝑟(𝑗+

𝑟 − 1)!2
2𝑟

/(𝑗 − 𝑟)!(2𝑟)!𝜏
𝑟

).

Proof. By (16), (20), and (22), it follows that

𝜕
𝛼

𝑢
𝑚,𝑛
(𝑥
𝑘
, 𝑡)

𝜕𝑡
𝛼

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
𝑆
𝜑
(𝑖, ℎ) (𝑥

𝑘
)
𝐶

𝐷
𝛼

0
𝑇
𝜏,𝑗
(𝑡)

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=2

𝑐
𝑖𝑗
𝛿
(0)

𝑖,𝑘

𝑗

∑

𝑟=2

𝑏
𝑗,𝑟
𝑡
𝑟−𝛼

=

𝑛

∑

𝑗=2

𝑗

∑

𝑟=2

𝑐
𝑘𝑗
𝑏
𝑗,𝑟
𝑡
𝑟−𝛼

.

(24)

Taking into account (17), we obtain

𝜕
2

𝑢
𝑚,𝑛
(𝑥
𝑘
, 𝑡)

𝜕𝑥
2

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗

𝑑
2

𝑑𝑥
2
[𝑆
𝜑
(𝑖, ℎ) (𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨𝑥=𝑥
𝑘

𝑇
𝜏,𝑗
(𝑡)
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Figure 1: Comparison of the numerical and exact solution in the domain [0, 1] × [0, 1].

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
(𝜑
󸀠󸀠

(𝑥
𝑘
) 𝛿
(1)

𝑖,𝑘
+ [𝜑
󸀠

(𝑥
𝑘
)]

2

𝛿
(2)

𝑖,𝑘
)𝑇
𝜏,𝑗
(𝑡)

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
𝑞
𝑖,𝑘
𝑇
𝜏,𝑗
(𝑡) .

(25)

Using (16) and (19), one has

𝜕𝑢
𝑚,𝑛
(𝑥
𝑘
, 𝑡)

𝜕𝑡

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
𝑆
𝜑
(𝑖, ℎ) (𝑥

𝑘
)

𝑑

𝑑𝑡

𝑇
𝜏,𝑗
(𝑡)

=

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝛿
(0)

𝑖,𝑘
𝑗

𝑗

∑

𝑟=1

(−1)
𝑗−𝑟
𝑟 (𝑗 + 𝑟 − 1)!2

2𝑟

(𝑗 − 𝑟)! (2𝑟)!𝜏
𝑟

𝑡
𝑟−1

=

𝑛

∑

𝑗=1

𝑗

∑

𝑟=1

𝑐
𝑘𝑗
𝑑
𝑗,𝑟
𝑡
𝑟−1

.

(26)

The proof is completed.

We are now ready to solve problem (1) with (2) and (3).
A collocation scheme is constructed by substituting (22) for
𝑢(𝑥, 𝑡) into (1) and evaluating the result at the points 𝑥

𝑘
in

(11) and 𝑡
𝑙
. For suitable temporal collocation points, we use

the roots 𝑡
𝑙
(𝑙 = 1, 2, . . . , 𝑛 − 1) of the shifted Chebyshev

polynomials 𝑇
𝜏,𝑛−1

(𝑡). Therefore, using Lemma 5, we have

𝑛

∑

𝑗=2

𝑗

∑

𝑟=2

𝑐
𝑘𝑗
𝑏
𝑗,𝑟
𝑡
𝑟−𝛼

𝑙

− 𝑎 (𝑥
𝑘
, 𝑡
𝑙
)

𝑚

∑

𝑖=−𝑚

𝑛

∑

𝑗=0

𝑐
𝑖𝑗
𝑞
𝑖𝑘
𝑇
𝜏,𝑗
(𝑡
𝑙
) = 𝑓 (𝑥

𝑘
, 𝑡
𝑙
) ,

𝑘 = −𝑚, −𝑚 + 1, . . . , 𝑚, 𝑙 = 1, 2, . . . , 𝑛 − 1.

(27)

Also by applying (22) to the initial conditions (2) and
collocating in 2𝑚 + 1 points 𝑥

𝑘
, we obtain

𝑛

∑

𝑗=0

(−1)
𝑗

𝑐
𝑘𝑗
= 𝜙 (𝑥

𝑘
) , 𝑘 = −𝑚, −𝑚 + 1, . . . , 𝑚,

𝑛

∑

𝑗=1

(−1)
𝑗−1
2𝑗
2

𝜏

𝑐
𝑘𝑗
= 𝜓 (𝑥

𝑘
) , 𝑘 = −𝑚, −𝑚 + 1, . . . , 𝑚.

(28)

To obtain a matrix representation of the above equations,
we let

𝐴 =
[

[

𝐴
1

𝐴
2

𝐴
3

]

]

, 𝐵 =
[

[

𝐵
1

𝐵
2

𝐵
3

]

]

,

𝐶 = [𝑐
11
, 𝑐
12
, . . . , 𝑐

1,𝑛+1
, 𝑐
21
, 𝑐
22
, . . . , 𝑐

2,𝑛+1
, . . . ,

𝑐
2𝑚+1,1

, 𝑐
2𝑚+1,2

, . . . ,𝑐
2𝑚+1,𝑛+1

]
𝑇

,

𝑝 = ⌊

𝑖

(2𝑚 + 1)

⌋ , 𝑠 = ⌊

𝑗

(𝑛 + 1)

⌋ ,

V = 𝑗 − (𝑠 − 1) (𝑛 + 1) − 1,

Δ = 𝑎 (𝑥
𝑖−𝑝(2𝑚+1)−𝑚−1

, 𝑡
𝑝
) 𝑞
𝑠,𝑖−𝑝(2𝑚+1)−𝑚−1

𝑇
𝜏,V (𝑡𝑝) ,

(29)

where

𝐴
1
= (𝑎
(1)

𝑖𝑗
)
(2𝑚+1)×[(2𝑚+1)(𝑛+1)]

,

𝐴
2
= (𝑎
(2)

𝑖𝑗
)
(2𝑚+1)×[(2𝑚+1)(𝑛+1)]

,

𝐴
3
= (𝑎
(3)

𝑖𝑗
)
[(2𝑚+1)(𝑛−1)]×[(2𝑚+1)(𝑛+1)]

,

𝑎
(1)

𝑖𝑗
= {

(−1)
𝑗−(𝑖−1)(𝑛+1)−1

, 1 ≤ 𝑗 − (𝑖 − 1) (𝑛 + 1) ≤ 𝑛 + 1,

0, else,
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𝑎
(2)

𝑖𝑗

=

{
{
{
{

{
{
{
{

{

(−1)
𝑗−(𝑖−1)(𝑛+1)

2[𝑗 − (𝑖 − 1) (𝑛 + 1) − 1]
2

𝜏

,

2 ≤ 𝑗 − (𝑖 − 1) (𝑛 + 1) ≤ 𝑛 + 1,

0, else,

𝑎
(3)

𝑖𝑗
=

{
{

{
{

{

Δ +

V

∑

𝑙=2

𝑏V,𝑙𝑡
𝑙−𝛼

𝑝
, 𝑠 = 𝑖 − 𝑝 (2𝑚 + 1) , V ≥ 2,

Δ, else,

𝐵
1
= [𝜙 (𝑥

−𝑚
) , 𝜙 (𝑥

−𝑚+1
) , . . . , 𝜙 (𝑥

𝑚
)]
𝑇

,

𝐵
2
= [𝜓 (𝑥

−𝑚
) , 𝜓 (𝑥

−𝑚+1
) , . . . , 𝜓 (𝑥

𝑚
)]
𝑇

,

𝐵
3
= [𝑓 (𝑥

−𝑚
, 𝑡
1
) , 𝑓 (𝑥

−𝑚+1
, 𝑡
1
) , . . . , 𝑓 (𝑥

𝑚
, 𝑡
1
) ,

𝑓 (𝑥
−𝑚
, 𝑡
2
) , 𝑓 (𝑥

−𝑚+1
, 𝑡
2
) , . . . ,

𝑓 (𝑥
𝑚
, 𝑡
2
) , . . . , 𝑓 (𝑥

−𝑚
, 𝑡
𝑛−1
) ,

𝑓 (𝑥
−𝑚+1

, 𝑡
𝑛−1
) , . . . , 𝑓 (𝑥

𝑚
, 𝑡
𝑛−1
)]
𝑇

.

(30)

So we get a system of (2𝑚 + 1)(2𝑛 + 1) linear equations with
(2𝑚 + 1)(2𝑛 + 1) unknown parameters 𝑐

𝑖𝑗
, 𝑖 = 1, 2, . . . , 2𝑚 +

1, 𝑗 = 1, 2, . . . , 𝑛 + 1. And this system can be expressed in a
matrix form

𝐴𝐶 = 𝐵. (31)

Equation (31) can be solved easily for the unknown coef-
ficients 𝑐

𝑖𝑗
. Consequently 𝑢

𝑚,𝑛
(𝑥, 𝑡) given in (22) can be

calculated.

4. Numerical Examples

To validate the effectiveness of the proposed method for
problem (1) with (2) and (3), we consider the example given
in [16].

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑡
𝛼

=

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑥
2

+ sin (𝜋𝑥) , 0 < 𝑥 < 1, 0 < 𝑡 ≤ 1,

𝑢 (𝑥, 0) = 0,

𝜕𝑢 (𝑥, 0)

𝜕𝑡

= 0, 0 < 𝑥 < 1,

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 0, 0 < 𝑡 ≤ 1.

(32)

The exact solution of the above problem is [27]

𝑢 (𝑥, 𝑡) =

1

𝜋
2
[1 − 𝐸

𝛼
(−𝜋
2

𝑡
𝛼

)] sin (𝜋𝑥) , (33)

where 𝐸
𝛼
(𝑧) = ∑

∞

𝑘=0
𝑧
𝑘

/Γ(𝛼𝑘 + 1) is the one-parameter
Mittag-Leffler function.

To solve the above problem with 𝛼 = 1.7 by using the
method described in Section 3, we choose 𝛽 = 1 and 𝑑 = 𝜋/2,
and this leads to ℎ = 𝜋/√2𝑚. We will report the accuracy

Table 1: Some numerical and exact solutions at 𝑡 = 1.

𝑚 \ (𝑥, 𝑡) (0.1, 1) (0.2, 1) (0.3, 1) (0.4, 1) (0.5, 1)

8 0.042229 0.080693 0.111213 0.130835 0.137592
12 0.042615 0.081166 0.111755 0.131400 0.138168
16 0.042720 0.081293 0.111903 0.131557 0.138330
20 0.042752 0.081332 0.111948 0.131606 0.138379
Exact solution 0.042779 0.081371 0.111997 0.131661 0.138436
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Figure 2: Plot of the absolute error.

and efficiency of the method based on the 𝐿2-errors and 𝐿∞-
errors. Figure 1 gives the 3D diagrams of the numerical and
exact solutions on the whole computational domain [0, 1] ×
[0, 1]with𝑚 = 15, 𝑛 = 8. A good agreement of the numerical
solution with the exact one is achieved. In Table 1, we list the
numerical and exact solutions at some points for different
numbers of collocation points with 𝑛 = 𝑚. Furthermore,
Figure 2 shows the absolute error function |𝑢(𝑥, 𝑡)−𝑢

𝑚,𝑛
(𝑥, 𝑡)|

obtained by the presented method with 𝑚 = 15 and 𝑛 = 8.
In Figure 3, we plot the curves of the absolute errors at 𝑡 = 1
for different numbers of collocation points. From Figures 2
and 3, we see that the proposed method can provide accurate
results only using a small number of collocation points.

To explore the dependence of errors on the parameters
𝑚, 𝑛, we represent the 𝐿∞-error and 𝐿2-error in semi-log
scale. Firstly, the computational investigation is concerned
with the spatial error. To this end, we fix the polynomial
degree 𝑛 = 20, a value large enough such that the error
stemming from the temporal approximation is negligible.
In Figure 4, we plot the error as functions of 𝑚, where
a logarithmic scale is used for the spatial-error-axis. As
expected, the error shows an exponential decay, since in this
semi-log representation one observes that the error variations
are approximately linear versus𝑚 [19].

Now we check the temporal error, which is more inter-
esting because of the fractional derivative in time. For a
similar reason mentioned above, we fix a large enough value
𝑚 = 20 to avoid contamination of the spatial error. We
present the error as a function of the shifted Chebyshev
polynomial degree 𝑛 in Figure 5, where a logarithmic scale
is now used for the temporal-error-axis. From Figure 5, it
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Figure 3: The error curves at 𝑡 = 1.
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Figure 4: 𝐿2- and 𝐿∞-errors versus𝑚.

is clearly observed that the temporal error depends on the
discretization parameters 𝑛.

5. Conclusion

In this paper, we develop and analyze the efficient numerical
methods for the fractional diffusion-wave equation. Based
on the collocation technique, the sinc functions and shifted
Chebyshev polynomials are used to reduce the problem to
the solution of a system of linear algebraic equations. And a
matrix representation of the above equations is obtained. In
the numerical example, the solution obtained by this method
is in excellent agreement with the exact one.The effectiveness
and convergence of the presented method are confirmed
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Figure 5: 𝐿2- and 𝐿∞-errors versus 𝑛.

through the numerical experimentation. One issue of future
work is to develop the theory analysis of the method for the
proposed fractional differential equation.
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