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Abstract

Microbes are key components of aquatic ecosystems and play crucial roles in global biogeochemical cycles.
However, the spatiotemporal dynamics of planktonic microbial community composition in riverine ecosystems are still
poorly understood. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified 16S and 18S
rRNA gene fragments and multivariate statistical methods to explore the spatiotemporal patterns and driving factors
of planktonic bacterial and microbial eukaryotic communities in the subtropical Jiulong River, southeast China. Both
bacterial and microbial eukaryotic communities varied significantly in time and were spatially structured according to
upper stream, middle-lower stream and estuary. Among all the environmental factors measured, water temperature,
conductivity, PO4-P and TN/TP were best related to the spatiotemporal distribution of bacterial community, while
water temperature, conductivity, NOx-N and transparency were closest related to the variation of eukaryotic
community. Variation partitioning, based on partial RDA, revealed that environmental factors played the most
important roles in structuring the microbial assemblages by explaining 11.3% of bacterial variation and 17.5% of
eukaryotic variation. However, pure spatial factors (6.5% for bacteria and 9.6% for eukaryotes) and temporal factors
(3.3% for bacteria and 5.5% for eukaryotes) also explained some variation in microbial distribution, thus inherent
spatial and temporal variation of microbial assemblages should be considered when assessing the impact of
environmental factors on microbial communities.
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Introduction

Microbes are mainly composed of bacteria, archaea, algae,
protozoa, fungi and small metazoa, representing the most
abundant and diverse group across ecosystems, and playing
crucial roles in aquatic ecosystem functioning [1,2]. Microbes
can be an important group of primary producers, can
decompose organic matter and have unique capabilities in
transforming nutrients along food webs in aquatic ecosystems
[2]. In the past few decades, our knowledge on the
spatiotemporal patterns of microbial abundance and production
are well understood in oceans [1,3,4] and temperate lakes
[5-7]. However, there are fewer studies focusing on patterns of
microbial community composition in large rivers (e.g. hundreds
of kilometers long) [8-10].

In river ecosystems, microbial communities are driven by
many interacting factors and processes, and it has been shown
that environmental factors play the most important role in
shaping the composition of microbial communities [11-13].
However, spatiotemporal variation in the distribution and
abundance of microbes is an inherent property of ecological
systems. Therefore, insufficient knowledge of microbial
spatiotemporal variation can hinder the effective assessment of
the relative importance of environmental factors in driving
microbial community succession in structure and function [14].
A very powerful tool to address this issue is variation
partitioning and ordination. Previous studies investigated
microbial assemblages and their explanatory factors using
variation partitioning and ordination procedures to partition the
variation of species data into environmental and spatial
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components [15,16]. Here, we used a third matrix of
explanatory variables that correspond to the temporal variation.
Although partitioning in two independent matrices (eg.
environmental and spatial matrices) has been carried out
frequently in previous studies (see [15,16]), to the best of our
knowledge, few microbial community fingerprinting studies
published so far used the third matrix containing temporal
variables.

The Jiulong River is the second largest river in Fujian
province, southeast China. It is an important drinking,
agricultural and industrial water source for Longyan,
Zhangzhou and Xiamen cities [17]. The upper stream of this
river is one of the most important agricultural regions in Fujian.
The excess input of nitrogen and phosphorus from intensive
agricultural activities has significantly degraded the water
quality in the upper Jiulong River in recent years. In a previous
study, we investigated the composition of the microbial
community in relation with agricultural and saltwater intrusion
factors [12]. However, so far there is no information available
concerning the seasonal change of microbial assemblages and
their driving factors.

Thus, in this study we used denaturing gradient gel
electrophoresis of PCR-amplified 16S and 18S rRNA gene
fragments and multivariate statistical methods to explore the
spatial (from the upper river to the estuary) and temporal
(between dry and wet seasons) heterogeneity of planktonic
bacterial and microbial eukaryotic communities in the Jiulong
River. We were particularly interested in assessing the relative
contribution of spatial, temporal and environmental factors
affecting their composition. Our results showed that both
bacterial and eukaryotic communities showed significant
differences in composition over spatial and temporal scales in
the river. Environment variables played the most important role
in structuring microbial spatiotemporal patterns in the river,
however, spatial and temporal factors also explained some
variation in the composition of microbial communities.

Materials and Methods

Study area and sampling
The Jiulong River Watershed (116°46′55′′ - 118°02′17′′ E,

24°23′53′′ - 25°53′38′′ N) is located in southeast China. It is
situated in the subtropical zone with monsoonal climate, which
makes the river subject to seasonal changes in hydrology and
aquatic environmental conditions. The rainfall is concentrated
in spring and summer (wet season, April to September), while
in autumn and winter (dry season, October to March) rainfall is
much smaller in amount [17].

Surface water samples (2.5 L) were collected along the
Jiulong River from eighteen sites in January and July 2010,
respectively (Figure 1). Our sampling locations are not national
park or other protected area of land. No specific permissions
were required for our locations/activities and we confirm that
the field studies did not involve endangered or protected
species. Sites 1–4 were located at the upstream areas with
intensive agricultural pollution (nitrogen and phosphorus). Sites
5–15 and sites 16–18 were located at the middle-lower Jiulong
River and estuary, respectively. Water samples were

transported to the laboratory as soon as possible. Microbial
communities (500 mL water) for DGGE analysis were collected
on 0.22 µm pore size polycarbonate filters (47 mm diameter,
Millipore, USA). The water was pre-filtered through 200 µm
mesh to remove the larger particles and metazoan. Then the
filters were stored at -80°C until DNA extraction.

Environmental variables
Water temperature, conductivity, salinity, pH and dissolved

oxygen (DO) were measured in situ with a Horiba W-23XD
Multi-Parameter Water Quality Meter (Horiba, Japan). Water
transparency was determined with a 30 cm Secchi disc.
Suspended solids (SS) were determined gravimetrically by
filtering 350 ml water sample through a pre-weighed filter (pore
size of 0.45 µm), then weighing the filter again after drying at
105 °C. Total organic carbon (TOC) and total nitrogen (TN)
were determined using a Shimadzu TOC-VCPH analyzer
(Shimadzu, Japan). Total phosphorus (TP) was analyzed by
spectrophotometry after digestion. Ammonium nitrogen (NH4-
N), nitrite and nitrate nitrogen (NOx-N) and phosphate
phosphorus (PO4-P) were measured with a Lachat QC8500
Flow Injection Analyzer (Lachat Instruments, USA).

DNA extraction and PCR amplification
Total DNA was extracted directly from a 0.22-μm filter using

an E.Z.N.A Soil DNA Kit (Omega Bio-Tek, USA) according to
the manufacturer’s instructions. The DNA was quantified by
spectrophotometer and stored at −40°C until further use.

The partial 16S and 18S rRNA genes were amplified by
using the bacterial primers 341F-GC (5’-CGC CCG CCG CGC
CCC GCG CCC GTC CCG CCG CCC CCG CCC GCC TAC
GGG AGG CAG CAG-3’) [18] and 907R (5’-CCG TCA ATT
CMT TTG AGT TT-3’) [19] and the eukaryotic primers Euk1A
(5’-CTG GTT GAT CCT GCC AG-3’) and Euk516r-GC (5’-ACC
AGA CTT GCC CTC CCG CCC GGG GCG CGC CCC GGG
CGG GGC GGG GGC ACG GGG GG-3’) [20], respectively.
The PCR mixtures (50 µl) contained 1 × PCR buffer, 1.5 mM
MgCl2, 200 µM each deoxynucleoside triphosphate, 0.3 µM of
each primer, 2.5 U of Taq DNA polymerase (TaKaRa, Japan),
and approximately 40 ng of template DNA. The PCR program
for bacterial primers began with a 5 min denaturation at 94°C;
this was followed by 30 cycles of 94°C for 30 s, 52°C for 30 s,
and 72°C for 60 s. The final cycle was extended at 72°C for 10
min. The PCR program for eukaryotic primers began with an
initial 130 s at 94°C; followed by 30 cycles of 30 s at 94°C, 45 s
at 54°C, and 130 s at 72°C; followed by 10 min at 72°C.

DGGE
DGGE was performed with a DCode mutation detection

system (Bio-Rad, USA) by using a 6% (w/v) polyacrylamide gel
with a 30% to 60% gradient of a DNA-denaturant agent for
separation of the 16S rRNA genes and 25% to 55% for the 18S
rRNA genes, respectively. The 100% denaturant is defined as
7 M urea and 40% (v/v) deionized formamide. For each
sample, 800 ng of PCR product was loaded, and the
electrophoresis was conducted at 100 V for 16 h at 60°C in
1×TAE buffer [19]. The gels were stained with SYBR Green I
for 30 min, rinsed with distilled water, and then visualized under
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UV. DGGE patterns were analyzed using the Quantity One
software (Bio-Rad, USA) as previously described [21].
Reproducibility was tested by replicate DGGE runs from all
samples. The bands present in both replicate gels and the
same position in the different lanes were identified and
documented.

Data analysis
The normality of the environmental variables were checked

using Shapiro–Wilk test and variables were log(x+1)
transformed with the exception of pH, to improve normality and
homoscedasticity for multivariate statistical analyses. We used
principal component analysis (PCA) to show main gradients in
environmental variables.

We constructed two matrices for both bacterial and
eukaryotic DGGE profiles, respectively. The first took into
account the presence or absence of individual bands in all
lanes (binary matrix), and the second contained the percentage
of the intensity for each band based on the total intensity in the
lane (intensity matrix). Statistical analyses were then performed
based on the binary matrix (Figures 2, 3 and 4) and the
intensity matrix (Figures S1, S2 and S3), respectively.
However, the general trend of results obtained with these two
matrices was similar. For these reasons, we only show the
results obtained with binary matrix.

Bray-Curtis similarity matrices were constructed with the
DGGE profiles generated from each site. The non-metric

multidimensional scaling (MDS) ordination was used to
investigate differences in microbial communities among sites
[22]. To evaluate the significant differences between groups,
we used the randomization/permutation procedure analysis of
similarities (ANOSIM). The ANOSIM statistic R is calculated by
the difference of the between-group and within-group mean
rank similarities, thus it displays the degree of separation
between groups. Complete separation is indicated by R = 1,
whereas R = 0 suggests no separation [22].

Spearman rank correlations were used to determine the
relationships between the similarity of microbial community
composition (the Bray-Curtis similarity) and the geographic
distance among samples.

Redundancy analysis (RDA) was performed to explore the
relationships between microbial communities and
environmental variables. This method was chosen because
preliminary detrended correspondence analysis (DCA) on both
bacterial community and eukaryotic community data revealed
that the longest gradient lengths were shorter than 3.0,
indicating that the majority of species exhibited linear
responses to the environmental variation [23]. A forward
selection procedure was first used to all environmental
variables. To evaluate the significance of the conditional
effects, Monte Carlo permutation of full models was applied
with 999 unrestricted permutations [24].

A set of spatial variables were generated through the use of
principal coordinates of neighbor matrices (PCNM) analysis

Figure 1.  Location of sampling sites in the Jiulong River Watershed.  
doi: 10.1371/journal.pone.0081232.g001
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[25,26] based on the longitude and latitude coordinates of each
site. Further, a temporal matrix composed of two binary
descriptive variables corresponding to the dry and wet seasons
was used to represent the time. We used partial RDA as
described by Anderson and Gribble [27] to partition the
variation of the microbial data explained by environmental,
spatial and temporal factors. To avoid artificially increasing the
explanatory power in our analyses through the inclusion of
redundant explanatory variables, we first ran a series of partial
RDAs constrained to each individual environmental, spatial and
temporal variable alone. Variables were only retained in the
analyses if they explained a significant (P < 0.01) variation in
the microbial data. All significance testing was assessed by
Monte Carlo permutation tests using 999 unrestricted
permutations in CANOCO version 4.5 [24]. Following the
exclusion of all non-significant explanatory variables, we then
ran three separate RDAs for all the significant environmental,
spatial and temporal variables remaining. To eliminate
collinearity among variables within each category, explanatory
variables with the highest variance inflation factor (VIF) were
sequentially removed until all VIFs were less than 20 [24].
Following this, we ran a forward-selection procedure to select

Figure 2.  MDS ordination of DGGE fingerprints for
bacterial and eukaryotic communities from the Jiulong
River.  The numbers indicate the sampling sites, which were
collected in dry (△) and wet (▼) seasons, respectively.
doi: 10.1371/journal.pone.0081232.g002

the minimum set of environmental, spatial and temporal
variables that could explain a significant amount (P < 0.01) of
variation in the microbial data. Finally, four environmental
(water temperature, conductivity, PO4-P and TN/TP), two
spatial (PCNM1 and PCNM2) and two temporal (dry and wet
seasons) variables were selected to perform bacterial variation
partitioning. Similarly, four environmental (water temperature,
conductivity, NOx-N, and transparency), two spatial (PCNM1
and PCNM2) and two temporal (dry and wet seasons)
variables were selected to perform eukaryotic variation
partitioning.

Results

Environmental characteristics
Fifteen environmental variables in two seasons from 18

sampling sites are summarized in Table 1. The concentrations
of TN, TP, PO4-P, TC and TOC were significantly higher in the
dry season than in the wet season. In contrast, the temperature
and TN/TP displayed significantly lower values in the dry
season than in the wet season. PCA of 15 environmental
parameters provided a clear distinction between the dry and
wet seasons (Figure 5). The first two axes explained 68.9% of
the total variability and effectively captured the main patterns of
variation in the original variables. Along the first axis, variability
was mainly explained by an increase in the TN/TP (r = 0.817, P
< 0.01) and temperature (r = 0.793, P < 0.01) and a decrease
in the PO4-P (r = –0.935, P < 0.01), TP (r = –0.935, P < 0.01),
TOC (r = –0.807, P < 0.01) and TN (r = –0.715, P < 0.01).
Variability along the second axis mainly corresponded to an
increase in salinity (r = 0.936, P < 0.01) and conductivity (r =
0.900, P < 0.01) and a decrease in NOx-N (r = –0.550, P <
0.01).

Microbial community
In total, 57 distinct bacterial bands were detected on the

DGGE gels, the number of bacterial bands varied from 16 (site
3 in January) to 36 (site 18 in July) per sample (mean = 23, SD
= 5, n = 36). The band number of eukaryotes was higher than
that of bacteria (77 vs. 57) (Figure S4 and S5). The number of
eukaryotic bands varied between 17 (site 18 in July) and 36
(site 6 in January) per sample (mean = 33, SD = 10, n = 36).
The bacterial DGGE band number was significantly lower in dry
season than in wet season. However, the number of eukaryotic
bands was significantly higher in dry season than in wet
season (Table 1).

MDS ordination showed a clear separation of bacterial
community composition as well as eukaryotic community
composition between two seasons. However, both microbial
communities separated into upper stream, middle-lower stream
and estuary groups within seasons (Figure 2). In dry season,
ANOSIM analysis revealed that the global R between upper
stream, middle-lower stream and estuary groups was 0.577 at
P = 0.001 for bacterial community and 0.869 at P = 0.001 for
eukaryotic community. In wet season, the global R between
upper stream, middle-lower stream and estuary groups was
0.950 at P = 0.001 for bacterial community and 0.812 at P =
0.001 for eukaryotic community, respectively. Also, the global
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Figure 3.  RDA ordination showing the microbial community composition in relation to significant environmental
variables.  The environmental variables were significantly related to the variation of microbial community composition (P < 0.05).
The numbers indicate the sampling sites, which were collected in dry (△) and wet (▼) seasons, respectively.
doi: 10.1371/journal.pone.0081232.g003

Figure 4.  Variation partitioning between environmental, spatial and temporal variables.  A = the pure temporal explanation; B
= the temporal explanation that is shared by the environmental explanation; C = pure environmental explanation; D = the
environmental explanation that is shared by the spatial explanation; E = pure spatial explanation.
doi: 10.1371/journal.pone.0081232.g004
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Table 1. Physicochemical and biological parameters of the
Jiulong River in the dry and wet seasons.

 Dry season (n = 18)  Wet season (n = 18)P
Parameter Mean SD  Mean SD  
Temperature (°C) 16.14 0.89  28.23 2.08 < 0.01
Transparency (m) 0.51 0.31  0.36 0.15 NS
Conductivity (μs cm-1) 5045 11608  2851 9460 NS
Salinity (‰) 2.95 7.32  1.69 6.02 NS
pH 7.29 0.44  7.26 0.27 NS
Suspended solids (mg l-1) 109.7 212.2  27.2 21.0 NS
DO (mg l-1) 7.75 1.63  7.51 0.98 NS
TC (mg l-1) 46.348 15.653  11.173 7.498 < 0.01
TOC (mg l-1) 32.037 14.672  1.827 1.013 < 0.01
TN (mg l-1) 7.831 5.200  4.376 2.275 < 0.05
NH4-N (mg l-1) 0.714 0.943  0.253 0.239 NS
NOx-N (mg l-1) 2.433 2.890  2.220 1.486 NS
TP (μg l-1) 448 526  60 67 < 0.01
PO4-P (μg l-1) 149 166  15 25 < 0.01
TN/TP mass ratio 25.88 12.20  135.16 90.05 < 0.01
Number of bacterial bands 19 2  27 3 < 0.01
Number of eukaryotic bands 42 5  25 4 < 0.01

n - Sample number; P - Level of significance (Independent-Samples T Test, P <
0.05) between the dry and wet seasons, NS – Not significant; SD - Standard
deviation, DO - dissolved oxygen, TC - total carbon, TOC - total organic carbon,
TN - total nitrogen, TP - total phosphorus.
doi: 10.1371/journal.pone.0081232.t001

Figure 5.  PCA plots showing the resemblance of
environmental characteristics of sampling sites along the
Jiulong River.  The numbers indicate the sampling sites,
which were collected in dry (△) and wet (▼) seasons,
respectively.
doi: 10.1371/journal.pone.0081232.g005

R between two seasons was 0.946 at P = 0.001 for bacterial
community and 0.488 at P = 0.001 for eukaryotic community,
respectively.

Relationships between microbial communities and
environmental factors

Forward-selection in RDA identified water temperature,
conductivity, PO4-P and TN/TP were significant in explaining a
large portion of the variation in bacterial community
composition (P < 0.05), while water temperature, conductivity,
NOx-N and transparency (SD) were significantly related to the
variation of eukaryotic community composition (P < 0.05) in the
Jiulong River (Figure 3). The cumulative variance of the
species–environment relationship explained by the first two
RDAs were 85.0% in bacterial communities and 72.4% in
eukaryotic communities, respectively.

Correlation between the similarity of microbial
community composition and geographic distance

Spearman correlations revealed that the correlation
coefficient was -0.371 (P < 0.01) between the similarity of
bacterial community composition and geographic distance,
while the coefficient of spearman correlation was -0.348 (P <
0.01) between the similarity of eukaryotic community
composition and geographic distance.

Variation partitioning
The partial RDA revealed that the environmental, spatial and

temporal factors combined explained 53.8% and 46.5% of the
total variation in bacterial and eukaryotic communities,
respectively. The amount of variation explained by the pure
environmental factors (11.3% for bacteria and 17.5% for
eukaryotes) was the largest, followed by the pure spatial (6.5%
for bacteria and 9.6% for eukaryotes) and the pure temporal
(3.3% for bacteria and 5.5% for eukaryote) factors in both
communities. More interestingly, 28.2% of the temporal
variation and 4.5% of the spatial variation in bacterial
communities were environmentally correlated, respectively,
while 10.6% of the temporal variation and 3.3% of the spatial
variation in eukaryotic communities were environmentally
correlated, respectively (Figure 4).

Discussion

Environmental factors driving the bacterial community
Our results showed that water temperature was strongly

related to the seasonal variation of bacterial community
composition. Field investigations in lacustrine and riverine
ecosystems have demonstrated that water temperature
covaried with the abundance and composition of bacterial
community since each bacterial phylotype has its own optimal
temperature range [28-30]. For example, Adams et al [31]
showed that aquatic bacterial populations had different
temperature optima in Arctic lakes and streams. At the optimal
temperature, the bacterial activity was 2 to 11 fold higher than
at other incubation temperatures. Consequently, abundance of
each bacterial population probably changed as the water

Spatiotemporal Patterns of Microbial Communities

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e81232



temperature fluctuates, which resulted in variation of bacterial
community composition in the Jiulong River.

Nutrient concentrations and composition may have a
significant influence on bacterial community composition
because different bacterial organisms are adapted to different
nutritional conditions [6,11]. Our results showed that the PO4-P
and TN/TP explained the second largest portion of the
variability in bacterial community composition. In fact, the
discharge of excess nitrogen (N) and phosphorous (P) from
agricultural activities and urban wastewater caused a serious
water quality problem in the Jiulong River in recent decades
[17]. Especially, during the dry season, the nutrients were
concentrated due to the rare rainfall and low river flow. Hence,
elevated concentration of nutrients may have contributed to
changes in community composition via the direct inhibition of
the microbes which were sensitive to environmental conditions,
the increased dominance of microorganisms adapted to
consume the N and P effectively, and their predator (i.e. ciliate)
[32].

In the present study, the salinity increased gradually from
site 16 to site 18, and the highest salinity was 27‰ in dry
season site 18. The salinity strongly changed the bacterial
community composition in Jiulong River estuary. In estuarine
region, salinity is correlated highly with conductivity, and it is a
major regulatory factor of aquatic bacterial communities
[33,34]. Salinity influences the osmoregulation and metabolism
of bacterial cells, such as the ability to assimilate different DOC
compounds [35]. Our data suggest that estuarine bacteria are
able to tolerate changes in salinity, which resulted in distinct
change of bacterial community composition compared to the
adjacent river [36]. Salinity also has a pronounced impact on
the abundance and composition of zooplankton [37], which can
strongly influence bacterioplankton diversity via top-down
regulations.

Environmental factors driving the eukaryotic
community

In this study, RDA ordination revealed that water
temperature was a key factor in regulating eukaryotic
community composition. This result agrees with the
observation of several studies that temperature can
significantly influence the seasonal variation in microbial
eukaryotic community composition [13,38,39]. As one of the
main seasonal factors, water temperature may directly
influence abundance and composition of eukaryotic
communities. For example, some species may benefit from
warm temperature, since they have high optimum growth
temperatures, while other species do not. Hence, the
differences of water temperature between winter and summer
in the Jiulong River could select different taxa by favoring the
growth of some specific phylotypes, and thereby explaining
variation of eukaryotic microbial communities.

NOx-N was the only nutrient that significantly related to the
eukaryotic community composition in this study. NOx-N is an
important form of inorganic nitrogen that can be taken up by
phytoplankton, and every group of phytoplankton in different
period has different ratio of NOx-N uptake [40,41]. In our study
period, the concentration of NOx-N was higher, compared to

the NH4-N, suggesting that the NOx-N might be a suitable
nitrogen source for phytoplankton in the Jiulong River. Hence,
NOx-N mediated the variation of phytoplankton community
composition, and indirectly influenced the whole eukaryotic
community composition in the river.

In this study, the conductivity increased quickly in the
estuarine sites owing to the elevated salinity. Salinity has a
strongly effect on abundance and composition of eukaryotic
communities [42,43]. For example, Greenwald et al [37]
assessed the effects of salinity on plankton assemblages, and
demonstrated that the total zooplankton abundance decreased
with salinity when salinities were above 17 ppt. In contrast, the
total phytoplankton abundance increased with salinity, for
salinities above 17 ppt. In our study, salinity was higher in the
estuarine sites than those in the other sites, and three sites had
salinity in excess of 17 ppt. Hence, the salinity was a primary
influence on microbial eukaryotic communities in the Jiulong
River estuary.

Transparency was correlated significantly with the eukaryotic
community composition only. The RDA ordination revealed that
the arrow of transparency point to the middle-low river sites. In
the middle-low Jiulong River, the flow of water was slower than
that of the upstream sites, and the transparency increased with
the sedimentation of the suspended solids. The low
transparency at the upstream sites restricted the growth of
phytoplankton because of light limitation. An increase in
transparency may alleviate this light limitation and promote the
growth of phytoplankton, with a resulting change in the
composition of the eukaryotic communities in the middle-low
river sites.

Temporal and biogeographical patterns of the total
microbial community

The explanation of pure temporal factors was fairly low (3.3%
for bacterial and 5.5% for eukaryotic communities) indicating
that the inherent temporal variation of microbial assemblages
may be low in the Jiulong River. However, many of the
environmental variables included in this study were temporally
structured. This was not surprising, given that water
temperature and nutrient concentrations were driven mainly by
the seasonal climate and hydrology. In the Jiulong River
Watershed, rainfall is concentrated in the spring and summer
(from April to September), and the river flow is high during this
period. On the contrary, rain events are scarce from October to
January, characterizing a low river flow period in the region
[17]. In our study, microbial communities in dry season were
sampled during an extended period of low river flow, and the
nutrients were significantly concentrated. In contrast, microbial
communities in wet season were sampled during a high river
flow period, which resulted in a dilution of the nutrients in the
water column [44]. It appears that both climatic and
hydrological conditions significantly influence the water
physicochemical parameters and drive changes in the
composition of microbial communities, thus suggesting a strong
linkage between climate, hydrology, water quality and microbial
communities.

The spatial distribution and the distance between
ecosystems might influence the dispersal of microbial cells and
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alter the aquatic microbial community composition [45-47].
There is some evidence that the spatial patterns of microbial
dispersal clearly exist, and the microbial community
composition is significant different when medium- (kilometers to
tens of kilometers) to large- (hundreds to thousands of
kilometers) scale data are analyzed [2,15,45,48]. Our analyses
showed a robust relationship between the spatial configuration
and microbial composition (P < 0.01, Figure 4), and the
similarity of community composition decreased with increasing
geographic distance. This suggests that spatial factors may be
important in structuring assemblages and determining the
degree of similarity between the different sites along the
Jiulong River. In addition, the bacterial pure spatial explanation
was lower than the eukaryotic pure spatial explanation. The
possibility is that bacteria have better dispersal ability via water
course, since they are smaller in size than the eukaryotic
phytoplankton and zooplankton. Small and unicellular bacteria,
without appendages and feeding apparatuses, are less
susceptible to damage by turbulence and debris, when they
transport through watercourses [49,50]. On the other hand,
however, the transportation of zooplankton may be more
limited, due to the physical damage and lower survivability by
turbulence [51,52].

In conclusion, the microbial communities, both bacterial and
eukaryotic, in the Jiulong River showed a similar and significant
spatiotemporal change in composition during the study period.
Most of the temporal variation in the composition of microbial
communities was explained by the seasonal environmental
variables such as water temperature, nutrients (PO4-P and TN/
TP). However, the high concentration of NOx-N in upper
stream, the high transparency in middle and low stream, and
the high conductivity in estuary significantly influenced the
spatially distribution of microbial communities. Although
environment variables played the most important role in
structuring microbial assemblages in the Jiulong River, pure
spatial and temporal factors also explained some variation in
the composition of microbial communities. Thus, inherent
spatial and temporal variation of microbial assemblages should
be considered when assessing the impact of environmental
factors on microbial community at large spatial and temporal
scales.

Supporting Information

Figure S1.  MDS ordination of DGGE fingerprints for
bacterial and eukaryotic communities from the Jiulong

River. The result was based on the DGGE relative intensity
matrices. The numbers indicate the sampling sites, which were
collected in dry (△) and wet (▼) seasons, respectively.
(TIF)

Figure S2.  RDA ordination showing the microbial
community composition in relation to significant
environmental variables. The environmental variables were
significantly related to the variation of microbial community
composition (P < 0.05). The result was based on the DGGE
relative intensity matrices. The numbers indicate the sampling
sites, which were collected in dry (△) and wet (▼) seasons,
respectively.
(TIF)

Figure S3.  Variation partitioning between environmental,
spatial and temporal variables. The result was based on the
DGGE relative intensity matrices. A = the pure temporal
explanation; B = the temporal explanation that is shared by the
environmental explanation; C = pure environmental
explanation; D = the environmental explanation that is shared
by the spatial explanation; E = pure spatial explanation.
(TIF)

Figure S4.  DGGE profile of 16S rRNA gene fragments
amplified from natural community in the Jiulong River.
Lanes 1-18 denote sampling sites 1-18, M - Marker.
(TIF)

Figure S5.  DGGE profile of 18S rRNA gene fragments
amplified from natural community in the Jiulong River.
Lanes 1-18 denote sampling sites 1-18, M - Marker.
(TIF)
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