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Abstract

Semantic priming is usually studied by examining ERPs over many trials and subjects. This article aims at detecting semantic
priming at the single-trial level. By using machine learning techniques it is possible to analyse and classify short traces of
brain activity, which could, for example, be used to build a Brain Computer Interface (BCI). This article describes an
experiment where subjects were presented with word pairs and asked to decide whether the words were related or not. A
classifier was trained to determine whether the subjects judged words as related or unrelated based on one second of EEG
data. The results show that the classifier accuracy when training per subject varies between 54% and 67%, and is
significantly above chance level for all subjects (N = 12) and the accuracy when training over subjects varies between 51%
and 63%, and is significantly above chance level for 11 subjects, pointing to a general effect.
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Introduction

Semantic priming with written word pairs has been investigated

since the first study by Mayer and Schwaneveldt [1]. In this first

experiment subjects were asked to indicate whether pairs of strings

were in the same or in a different category, where the categories

were words and non-words. The first string in the pair is called the

prime and the second is called the probe. When both prime and

probe were words they could either be related or unrelated. The

authors showed that there was a difference in response times and

errors made when both strings were related words versus when

they were unrelated words.

However, Meyer and Schwaneveldt [1] only studied behavioral

effects. Kutas and Hillyard [2] published the first semantic priming

experiment where they also investigated brain potentials. They

studied the N400 ERP component, a negative going wave around

400 ms after word onset, in the response to sentence-final words.

They presented sentences which ended in an expected word,

a word related to the expected word, or a word unrelated to the

expected word. The response to a word expected based on the

sentence context resulted in the smallest N400 peak. Words that

were unrelated to the expected word resulted in the largest N400

peak. Words that were related to the expected word showed

a N400 peak amplitude that was between the expected and related

word responses. Where Kutas and Hillyard [2] showed this effect

for words in a sentence, Rugg [3] and Bentin et al. [4] showed this

effect also occurs with words in isolation.

A number of theories and models have been developed to

explain this phenomenon, i.e., the spreading activation model [5],

the compound-cue retrieval theory [6], and the distributed

memory model [7]. The spreading activation model is based on

the assumption that activation spreads from one node (the prime-

word) to surrounding nodes (related words) which facilitates

retrieval of related probes as their nodes are already activated. In

the compound-cue retrieval theory, prime and probe are

combined to form the compound cue, which is used to access

memory. If the compounds are associated in memory it facilitates

responses to the probe. The distributed memory model states that

words are not single nodes, but consist of a distributed collection of

nodes representing their characteristics. When some of these

characteristics are activated by a related prime-word, it facilitates

responses to probe-words. All three models have in common that

they model the automatic process of lexical access. There is a long-

standing debate on whether priming is only influenced by

automatic processes (lexical access) or is also influenced by

controlled processes (lexical integration) [8–10], and which of

these processes is the basis of the N400 effect found in semantic

priming studies. Although evidence has been gathered for both

theories, there is no conclusive answer yet. Providing evidence for

one of the above-mentioned theories falls outside the scope of this

article.

The studies mentioned above only examine grand average

ERPs, where for each condition several hundred examples are

averaged, requiring hours of measurement time spread over

multiple subjects. However, machine learning techniques [11]

have successfully been applied to detect differences in brain

responses between conditions at the single-trial level [12],

requiring just seconds to minutes of measurement time with

a single subject. This means that, after a short training period, an

algorithm is able to determine whether a short period of EEG data

is the response to one condition or the other. The P300 brain

component, elicited by an odd-ball paradigm is an example of an

ERP that can be successfully detected at the single-trial level

[13,14]. A brain-computer interface (BCI) is an example of an

application of single-trial level detection of ERP components. A

BCI allows subjects or patients to control a device, usually

a computer, based exclusively on brain activity [12]. The current

article aims at determining whether similar success can be
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achieved by using the N400 component as elicited by a semantic

priming experiment.

Van Vliet, Mühl, Reuderink, and Poel [15] showed that

semantic priming not only occurs when the subject is explicitly

primed with a word or picture, but also when subjects prime

themselves by thinking of a certain word or object. If subjects are

able to prime themselves and it is possible to accurately detect

priming on the single-trial level, it may be feasible to predict which

concept a subject is thinking of.

In this work we want to answer the following basic question: ‘Is

it possible to reliably detect semantic priming at the single-trial level?’ Our

hypothesis is that semantic priming is detectable at the single-trial

level and that accuracy differs significantly from chance level. It is

established that the N400 amplitude is correlated with the degree

of association or relatedness [16]. However, as this is a first study

we chose to focus on distinguishing between strongly related and

unrelated word pairs. The relatedness is determined by using the

Leuven association database [17]. For the related word pairs we

tried to select the word pairs with the highest association strength,

without resorting to the use of synonyms.

Methods

Ethics Statement
The procedures used in the experiment were according the

Declaration of Helsinki, and all subjects gave written informed

consent. The procedures were approved by the Ethical Committee

of the Faculty of Social Sciences at the Radboud University

Nijmegen.

Subjects
Measurements were obtained from 12 native Dutch subjects, 7

of whom were female. They were aged between 22 and 33 with

a mean of 26.75 (63.08). All subjects had normal or corrected-to-

normal vision and were free of medication and without central

nervous system abnormalities. Subjects participated in the study

voluntarily, signed an informed consent form, and did not receive

a reward.

Stimuli
The stimuli consisted of two sets of Dutch word pairs: related

and unrelated word pairs. The superset of related words was

constructed by choosing 400 word pairs from the Leuven

association dataset [17]. The Leuven association dataset was

constructed by having subjects perform a continuous word

association task. The cues were constructed by the researchers,

while the associated words were generated by the subjects. For

each word pair their association strength was determined by

dividing the number of times the response was given to that

particular cue by the total number of responses to that cue. 400

pairs were selected for which the association strength exceeded

0.1, i.e., word pairs where that word was given in more than 10%

of the responses.

The superset of unrelated words was constructed by combining

400 cue words from the Leuven association dataset with random

word forms obtained from the Celex database [18], making sure

the random combination did not already occur in the Leuven

association dataset.

Both sets were constructed in such a way that all 1600 words

were unique. In the current experiment, the cues, constructed by

the researchers of the Leuven dataset, were used as primes and the

responses given by the subjects were used as probes.

To exclude confounding factors the stimuli in the two conditions

were matched for word occurrence, number of letters and number

of syllables. A matching program [19] was used to select 200 pairs

from each of the two supersets in such a way that both primes and

probes were matched for the confounding factors. The results of

the matching are shown in Table 1. A number of example stimuli

can be found in Table 2. A full list of stimuli can be found in the

supporting information: Stimuli S1.

To validate the stimuli, a web survey was conducted in parallel

with the EEG measurements, where subjects were asked to rate all

word pairs on a 5-point relatedness scale from not related to very

strongly related. 31 native Dutch subjects, 4 male, participated in the

survey, aged between 17 and 61, with a mean of 24.4 (69.9). Two

subjects were rejected as outliers (more than 10% of the responses

differed more than 3 standard deviations from the mean). The

results of the survey can be found in Figure 1. Since the word pairs

were selected to be either strongly related or not related at all,

responses are predicted to be at the extremes of the scale. This is

indeed the case, however there is some overlap in responses

between the two sets. 13% of the responses do not correspond to

the expected categorization. The unexpected categorization is not

centered around a small amount of word pairs, but spread out over

many, suggesting they are due to inter-subject variability in word

knowledge and subjectivity in association rather than an error in

the selection of the word pairs. 3% of the responses to unrelated

pairs are labeled as related (strong relation and very strong

relation), 7% of the responses to related pairs are labeled as

unrelated (no relation and very weak relation). Another explana-

tion for more related pairs being labeled as unrelated could be

that, when subjects do not know the meaning of a word, they will

label it as unrelated.

Procedure
Subjects were seated in a chair in front of a computer screen.

After receiving the instructions, subjects first completed a short

practice block in which they could familiarize with the task. The

actual experiment is graphically represented in Figure 2. Subjects

were presented with four blocks of about 15 minutes with a short

pause between blocks. Each block consisted of twenty sequences,

Table 1. Stimulus matching properties for the related and
unrelated sets.

Property Min Max Mean STD

Unrelated

Prime LogFreq 0 2.48 0.55 0.60

Probe LogFreq 0 2.76 0.78 0.61

Prime LettCnt 3 16 6.50 2.66

Probe LettCnt 3 12 5.94 1.99

Prime SylCnt 1 5 2.07 0.95

Probe SylCnt 1 4 1.82 0.76

Related

Prime LogFreq 0 2.46 0.55 0.60

Probe LogFreq 0 2.63 0.72 0.62

Prime LettCnt 3 16 6.64 2.51

Probe LettCnt 3 12 6.45 2.22

Prime SylCnt 1 6 2.08 0.93

Probe SylCnt 1 4 1.95 0.77

LogFreq: Logarithm of word frequency, LettCnt: Number of letters, SylCnt:
Number of syllables.
doi:10.1371/journal.pone.0060377.t001
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which in turn consisted of a baseline period of four seconds and

five trials. One word pair was presented per trial. Subjects had to

press a button to proceed from one sequence to the next. In each

trial, first the prime was presented using a green colored font for

2000 ms. Next, a fixation cross appeared for 1500 ms, followed by

the probe, presented in a white colored font. The probe was visible

for 350 ms, followed by another fixation cross for 1500 ms.

Subjects were instructed to pay attention to the words appearing

on the screen and to determine whether the white probe-word was

related to the green prime-word. To ensure subjects kept paying

attention during the experiment, each block had 6 catch trials

randomly distributed over the sequences. In a catch trial the

subject was asked whether the last two words presented were

related or not and they had to respond using two buttons. The

word pair the subjects were asked about was always the last pair in

a sequence.

Equipment
The stimuli were presented with Psychtoolbox [20–22] version

3.0.8 running in Matlab 7.4. The stimuli were displayed on a 17"

TFT screen, with a refresh rate of 60 Hz. The data was recorded

using 64 sintered Ag/AgCl active electrodes using a Biosemi

ActiveTwo AD-box and sampled at 2048 Hz. The electrodes were

placed according to the 10/20 electrode system [23]. The EEG

was recorded in an electrically shielded room. The EEG offset for

each channel was kept below 25 mV. A button box was used to

allow participants to answer the catch trials and start the next

sequence.

Data Analysis
All preprocessing was done using the Fieldtrip toolbox [24].

Two different pipelines were used in data analysis. One for the

grand average ERP statistics and one for the single-trial

classification.

For the grand average ERPs the data was sliced to the trial level,

i.e. from prime onset to second fixation cross offset with 0 at probe

onset (23.5 s–1.85 s). Next, the data was temporally down-

sampled to 256 Hz. The data was detrended, a low-pass filter was

applied at 30 Hz, and a linked-mastoid reference was computed.

Relative baseline correction was applied using data from 100 ms

before probe onset to probe onset. The preprocessing parameters

were chosen to be able to compare them to other semantic

priming experiments [3,8,10,25]. To test for significant differences

between the two conditions the cluster-based non-parametric

statistic described by Maris and Oostenveld [26] was used. This

test corrects for the multiple comparisons problem by incorporat-

ing a permutation test. For the statistical test the time of interest

was set from 0 to 1000 ms after probe onset, and all 64 channels

were used.

Table 2. Examples of stimuli used in the experiment.

Prime Probe

Unrelated

tang (pliers) – opbrengst (yield)

berg (mountain) – drankje (small drink)

eland (moose) – eerbied (respect)

rog (ray) – maaier (mower)

inktvis (squid) – tentakel (tentacle)

slurf (trunk) – olifant (elephant)

Related

mier (ant) – klein (small)

tram (tram) – spoor (track)

racket (racket) – tennis (tennis)

naald (needle) – draad (thread)

gesp (buckle) – reflectie (reflection)

specht (woodpecker) – verpleger (male nurse)

Taken from the related and unrelated sets.
doi:10.1371/journal.pone.0060377.t002

Figure 1. Histogram of perceived relation between word pairs of both sets. The 5-point scale on degree of relatedness is on the x-axis and
the number of responses per pre-determined category, related (black) versus unrelated (red), is on the y-axis.
doi:10.1371/journal.pone.0060377.g001
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For the single-trial classification the data was again sliced to the

trial level. It was detrended, bandpass filtered between 0.1 and

10 Hz and temporally down sampled to 32 Hz to reduce the

number of features. Next, a linked-mastoid reference was

computed. The time of interest was set from 0 to 1000 ms after

probe onset, and all 64 channels were used, resulting in 2048

features (64 channels632 time points). The preprocessing param-

eters were chosen to allow comparison with other classification

analyses of single-trial ERPs [27]. Classification was performed

using an L2 regularized logistic regression algorithm [11]. The

regularization parameter (C) that was used resulted from a simple

grid search where the variance in all the data is used as an estimate

of the scale of the data, which is then multiplied by [.001.01.1 1 10

100]. This range has been shown to result in a high performance

[27]. Two classification procedures were performed. First, the

classifier was trained for each subject, ten-fold cross-validation was

applied where each fold consisted of 360 training epochs and 40

test epochs. The data was divided into ten equally sized blocks of

sequential trials, each block was designated as validation set in one

of the folds. Second, to determine the generalizability of the signal

used by the classifier, leave one subject out cross-validation was

applied. This resulted in 4400 training epochs and 400 test epochs,

where all the tests epochs belong to a single subject. A binomial

statistical test was used to determine whether classification

accuracies differed significantly from chance level (50%).

In order to be able to compare the classification results with

other studies the Information Transfer Rate (ITR) is calculated.

This measure combines the accuracy, the number of classes and

the time needed for a classification. Wolpaw et al. [28] defined the

ITR for a BCI as

B~V :R ð1Þ

where B is the ITR in bits per second, V is the number of

classifications per second and R is the amount of information

gained per classification, where R depends on the accuracy and

the number of classes. For details, see Wolpaw et al. [28].

Results

Grand Average ERPs
The grand average ERP responses to the two conditions (related

and unrelated word pairs) were calculated for each channel and

each time point. A cluster-based non-parametric statistic [26] was

used to determine whether the difference between the two

conditions was significant. The significance-level was set to 0.01.

The statistic returned one significant cluster between 330 and 600

milliseconds after probe onset. This cluster is mostly located

centrally on the scalp, see the left panel of Figure 3, channels with

more than 100 ms of significant different time-points are indicated

with an asterisk. A representative channel was selected from these

channels; channel CPz, which is shown in the right panel of

Figure 3. It shows an enhanced (more negative) N400 response for

unrelated probes compared to related probes. This difference

remains to the end of the trial. However, it is no longer statistically

significant outside the N400 window.

Single-Trial Detection
The results of the classification can be found in Figure 4. The

accuracies for the classifier trained on individual subjects can be

seen on the left and the accuracies for the classifier trained over

subjects can be seen on the right. The reported accuracies are

mean accuracies of test set performance over ten folds.

When calculating the ITRs using Equation (1) with the time

required to gather the data needed to make a classification (5.35 s),

the mean ITR is 0.3660.29 (Maximum: 0.98) for the individually

trained classifier and 0.1660.14 (Maximum: 0.53) for the classifier

trained over subjects.

Figure 2. Schematic overview the experimental design. From global in time (top), to local in time (bottom).
doi:10.1371/journal.pone.0060377.g002
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Discussion

The results show one cluster around CPz where the response to

related word pairs differs significantly from the response to

unrelated word pairs; a central negative cluster. This cluster shows

the typical N400 effect found earlier in semantic priming studies

[2–4,8–10]. The late negative trend, has also been found in earlier

studies [4,8,25]. The differences found in the responses between

related and unrelated pairs are not caused by differences in word

frequency, letter count or syllable counts, as the means were the

same for both conditions for each of these possible confounds.

When training the classifier for each individual subject, the

single-trial detection accuracies vary between 54% and 67%,

where in all subjects the accuracy is significantly above chance

level (50%). Even when training the classifier on data from other

subjects, 11 out of 12 subjects show an accuracy significantly above

chance level. This shows that the classifier is able to use

a component in the subject’s response that is the same over all

subjects, pointing to a general effect.

There are a number of other ERP components which have also

been studied at the single trial level: mainly the P300, Mismatch

Negativity (MMN), and Error-Related Potential (ErrP). The P300

ERP can be divided into four conditions: (i) the overt visual P300,

which has a detection accuracy of 77–85% [14,29–31], (ii) the

covert visual P300, which has a detection accuracy of around 58%

[31], (iii) the tactile P300, with a detection accuracy of around

Figure 3. Grand average results for the negative component. Left panel: A topographic representation of the negative component between
330–600 ms. The marked channels show a significant difference between related and unrelated probe responses. Right panel: ERP waveforms for
channel Cz for related (black, dashed) and unrelated (red, solid). The area around each line represents the standard deviation, corrected for a within
subject design ([37], p. 361–366). Channel Cz has been chosen as an example channel, as other significant channels are similar. Areas marked in grey
show a significant difference.
doi:10.1371/journal.pone.0060377.g003

Figure 4. Classification accuracies for the individually trained classifier and the classifier trained across subjects. Accuracies are mean
accuracies of test set performance over ten folds. (* 0.001,p,0.05, **p,0.001).
doi:10.1371/journal.pone.0060377.g004
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67% [31], and (iv) the auditory P300, with a detection accuracy of

65–74% [32,33]. The overt P300 results are higher than the other

condtions, because there the subject foveates on the intended

stimulus, leading to differences in the primary visual responses,

which are also included in the classification, which means it is not

detection of only the P300 component. The Mismatch Negativity

has been detected with an accuracy of 69% [34], and the Error-

Related Potential with an accuracy between 66–80% [35,36].

It has been established that the amplitude of the N400 response

is correlated with the degree of relatedness between the prime and

probe [16]. In the current experiment the stimuli have been

selected in such a way that the two categories the classifier needs to

distinguish are as far apart as possible, i.e., the mean difference in

relatedness of prime and probe is as large as possible. In a practical

setting where such a constraint is not possible, we expect the

detection accuracy to drop slightly, as the difference in amplitude

of the N400 will be smaller in the situation where prime and probe

are less strongly related. In future work, we will look at the effect of

a lower degree of relatedness on the classification performance.

The significant classification results for the cross-subject

classifier would allow the detection of semantic priming from the

start of an experiment. Generally when using an online classifier it

needs to be trained first. This is done by gathering data where one

knows to which class each data segment belongs, i.e., a training

block. A training block usually takes about ten to twenty minutes.

However, when the classifier can be trained on data from previous

subjects, new subjects can skip the training block. The classifier

could later improve, i.e., adapt to an individual user, by retraining

when subject data becomes available. However, the lower

classification accuracy would mean that the performance is worse

than when including a training block.

The ITRs achieved here are low compared to other word

communication BCIs, such as the visual speller [13]. However, by

relying only on the users’ ability to identify associated concepts this

approach offers the potential to detect a desired concept without

the user having to know the correct word or even how spell it. This

offers potential applications beyond simple communication, such

as helping aphasic’s communicate the concept they are unable to

say, or to help other users stuck in a ‘tip-of-the-tongue’ state.

Concluding, it is possible to detect semantic priming at the

single-trial level, though the classification accuracies are low. The

classification over subjects shows that there is a common response

that is the same in all subjects and this response can be exploited

for the detection of semantic priming.

When using the semantic priming response for BCI purposes

using the timing parameters described here, it takes 5.35 seconds

to present one probe. This could be reduced by using the timing

parameters described by Brown and Hagoort [8], reducing the

time per probe to 3.94 seconds. Both these methods show one

probe per target. If we show multiple probes for one target we

could bring the time per probe down to about 1.5 seconds. This

would increase the Information Transfer Rates reported in the

results section. The ITR would increase from 0.3660.29 (Best:

0.98) to 1.361.0 (Best: 3.5) for the individually trained classifier

and from 0.1660.14 (Best: 0.53) to 0.5760.50 (Best: 1.9) for the

classifier trained over subjects.

We have shown that it is possible to detect semantic priming at

the single-trial level and that the single-trial accuracies differ

significantly from chance level for all measured participants.

Supporting Information

Stimuli S1. Full list of stimuli. List of all stimuli used in the

experiment, including the information extracted from Celex.

(PDF)
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