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Abstract

Background: Estimating the health effects of multi-pollutant mixtures is of increasing interest in environmental
epidemiology. Recently, a new approach for estimating the health effects of mixtures, Bayesian kernel machine
regression (BKMR), has been developed. This method estimates the multivariable exposure-response function in a
flexible and parsimonious way, conducts variable selection on the (potentially high-dimensional) vector of exposures,
and allows for a grouped variable selection approach that can accommodate highly correlated exposures. However,
the application of this novel method has been limited by a lack of available software, the need to derive interpretable
output in a computationally efficient manner, and the inability to apply the method to non-continuous outcome
variables.

Methods: This paper addresses these limitations by (i) introducing an open-source software package in the R
programming language, the bkmr R package, (ii) demonstrating methods for visualizing high-dimensional
exposure-response functions, and for estimating scientifically relevant summaries, (iii) illustrating a probit
regression implementation of BKMR for binary outcomes, and (iv) describing a fast version of BKMR that
utilizes a Gaussian predictive process approach. All of the methods are illustrated using fully reproducible
examples with the provided R code.

Results: Applying the methods to a continuous outcome example illustrated the ability of the BKMR implementation
to estimate the health effects of multi-pollutant mixtures in the context of a highly nonlinear, biologically-based dose-
response function, and to estimate overall, single-exposure, and interactive health effects. The Gaussian predictive
process method led to a substantial reduction in the runtime, without a major decrease in accuracy. In the
setting of a larger number of exposures and a dichotomous outcome, the probit BKMR implementation was
able to correctly identify the variables included in the exposure-response function and yielded interpretable
quantities on the scale of a latent continuous outcome or on the scale of the outcome probability.

Conclusions: This newly developed software, integrated suite of tools, and extended methodology makes
BKMR accessible for use across a broad range of epidemiological applications in which multiple risk factors
have complex effects on health.
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Background
Estimating the health effects of several concurrent expo-
sures is of increasing interest in epidemiology. For ex-
ample, in environmental health interest lies in estimating
the impacts of multi-pollutant mixtures, such as air pollu-
tion [1], toxic waste [2], and persistent organic chemicals
[3]. Although studies have traditionally focused on esti-
mating the health impacts of individual exposures, it is in-
creasingly being recognized that populations are exposed
to a wide range of factors across multiple domains, includ-
ing environmental stressors and genetic and psychosocial
determinants, and that these factors should be considered
in conjunction [4].
A major barrier to studying the joint effects of many

exposures concurrently is the lack of established statis-
tical methods and corresponding software. Estimating
the health effects of environmental mixtures is challen-
ging because (i) exposures often have nonlinear and
non-additive (eg, interactive) relationships with health
outcomes, (ii) a high-dimensional vector of exposures
may lead to poorly fitting regression models as the num-
ber of exposures increases relative to the number of ob-
servations in the dataset, and (iii) exposures are often
highly correlated. Additionally, there are often several
objectives of a multi-exposure health effect analysis,
which may include estimating the overall effect of the
mixture, identifying individual components that are re-
sponsible for the health effects of the mixture, visualiz-
ing the exposure-response function, and detecting
interactions among pollutants [5]. Several statistical
methods have been proposed for estimating the health
effects of multiple exposures, including machine learning
methods such as random forests [6]; clustering methods
and other dimensional reduction methods such as prin-
cipal components analysis, factor analysis, and structural
equation models; and regression penalization methods
such as the lasso [7]. However, these methods have typ-
ically addressed some but not all of the challenges and/
or scientific objectives described above. Reviews of prior
methods and their limitations, as well as systematic
comparisons of the performance of selected methods,
have been published previously [1, 8–12].
Recently, we developed a new approach for estimating

the joint health effects of multivariate exposures, Bayes-
ian kernel machine regression (BKMR), that simultan-
eously addresses the challenges and scientific objectives
described above [13]. First, through use of a kernel func-
tion, this approach estimates the multivariable exposure-
response function in a flexible way that allows for non-
linear and non-additive effects, while adjusting for
covariates including potential confounding factors. Sec-
ond, the approach simultaneously incorporates variable
selection on the (potentially large number of) exposures
in a way that controls for multiple testing [14]; this

enables a parsimonious representation of the exposure-
response function. Third, we developed a hierarchical
variable selection approach that addresses the issue of
multicollinearity by first classifying highly correlated ex-
posures into groups, and then simultaneously conduct-
ing variable selection on the groups of correlated
exposures as well as on the individual exposures within
each group. In our prior methodological work describing
BKMR [13, 15], we conducted a comprehensive evalu-
ation of the performance of this approach. Through
simulation studies based on real-world datasets, we found
that (i) BKMR could well estimate exposure-response
functions that included both nonlinear and non-additive
effects, (ii) BKMR could identify important mixture com-
ponents through variable selection, and (iii) the hierarch-
ical variable selection approach could detect important
groups of highly correlated exposures even in situations
where individual components could not be identified.
Additionally, BKMR has been applied previously in both
toxicological and epidemiological studies leading to scien-
tific insights that were not uncovered using standard re-
gression approaches [15, 16].
Several important gaps limit the applicability of

statistical methods for estimating the health effects of
multi-pollutant mixtures in environmental health studies.
These include a lack of software applying new method-
ology, data-generating scenarios with complex features
(e.g., clustered outcome data), and the need for computa-
tionally efficient algorithms that yield correct results in a
fraction of the time. A particular challenge of studies esti-
mating the health effects of mixtures is the need to
visualize the high-dimensional exposure-response func-
tion and to conduct inference in the presence of possible
nonlinear and interactive associations of the exposures
with the health outcome.
Here we provide several contributions addressing

these gaps. First, we introduce an open-source software
package (bkmr) [17] that implements the new BKMR ap-
proach for studying mixtures within the R statistical pro-
gram [18]. This software provides a general, user-
friendly implementation of BKMR, along with a suite of
functions for processing model output to enable investiga-
tors to address the multifold objectives of a multi-exposure
heath effect analysis. Second, we demonstrate methods for
characterizing high-dimensional exposure-response func-
tions, including visualizing the exposure-response relation-
ship, and estimating scientifically relevant summaries, such
as overall, single-exposure, and interactive health effects.
Third, we present extensions to BKMR to enable model fit-
ting to a broader class of applications, including a probit re-
gression implementation for binary outcomes, and the
ability to include a random intercept to account for corre-
lated outcome data. Finally, we illustrate how a fast version
of BKMR that utilizes a Gaussian predictive process
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approach can substantially speed up the model fitting. All
of the examples used to illustrate these methods are fully
reproducible with the provided R code.

Methods
Overview of BKMR
We first provide a brief overview of BKMR. The kernel
machine regression (KMR) model for a continuous out-
come is given by

Y i ¼ h zi1;…; ziMð Þ þ xi
0βþ ϵi;

where Yi denotes the response for individual i (i = 1,…, n),
zim is the mth exposure variable, h denotes the unknown
exposure-response function to be estimated, β represents
the effect of the covariates (note that xi is a vector), and
the residuals ϵi~N(0, σ

2) are assumed to be independent
and identically (iid) normally distributed with a common
variance. As described below, the effect of the exposures
of interest modeled through the h function is allowed to
be nonlinear and non-additive; the effect of the covariates
could be modeled either linearly or more flexibly (e.g., by
specifying a spline basis with a fixed number of degrees of
freedom [DF] for one or more covariates). Additionally, if
any covariates are hypothesized to interact with compo-
nents of the mixture, then those covariates may be also be
included in h.
For studies of multi-pollutant mixtures, the function h

may include a large number of exposures of interest, and
the relationship between these exposures and the health
outcome can be complex, including nonlinear associa-
tions of one or more exposures, as well as possible inter-
actions. Even with just a few exposures in the mixture,
the combination of nonlinear and non-additive associa-
tions can lead to a high-dimension exposure-response
relationship. As an illustration, if one were to model
each exposure in the mixture using a spline basis with
three DF to allow for nonlinearity and also include all of
the interaction terms, this would result in a model with
255 parameters in the case of 4 exposures, 1023 parame-
ters in the case of 5 exposures, and more generally, (1 +
DF)M − 1 parameters in the case of M exposures. In this
setting of a high-dimensional exposure-response func-
tion, it can be challenging to specify a set of basis func-
tions (e.g., polynomial or spline terms), and fitting a
model including all basis functions and their interac-
tions, as illustrated above, can lead to problems with
over-fitting. BKMR addresses this by using a kernel ma-
chine representation for h, which regularizes the
high-dimensional exposure-response function (details
are in [13]). Under the kernel machine representation,
rather than directly model the association of the expo-
sures with the health outcome, one instead specifies a
kernel function K(zi, zj) that induces correlation of

health outcomes among individuals with similar expos-
ure profiles z = (z1,…, zM). In particular, the KMR model
assumes that two individuals with similar values of z (i.e.
zi close to zj) will have similar health risks (i.e., hi = h(zi)
will be close to hj = h(zj)).
Operationally, by using the kernel machine representa-

tion, the KMR model may be expressed as a mixed-effect
model [19], and within a Bayesian context, prior distri-
butions are placed on all of the unknown parameters.
The model is fit using Markov chain Monte Carlo
(MCMC). Full details of the hybrid Gibbs/Metropolis-
Hastings MCMC algorithm is described in Bobb et al.
(2015) [13] and the supplemental material thereof.

Incorporating variable selection
To incorporate variable selection, the kernel function
may be augmented with auxiliary variables (rm, for m =
1, …, M), such that when the auxiliary parameter is
equal to zero, then the corresponding exposure variable
is no longer included in the model (i.e., if rm is equal to
zero then exposure zm is not selected). Fitting BKMR
with component-wise variable selection yields estimates
of the posterior inclusion probabilities, which provide
measures of variable importance for each exposure.
Alternatively, one can apply a hierarchical variable selec-
tion approach, in which groups of exposures are speci-
fied. In this latter scenario, BKMR estimates the
posterior inclusion probability for each pollutant group,
as well as posterior inclusion probabilities among pollut-
ants within each group, given that the group was se-
lected into the model. An example of when the
hierarchical variable selection approach is useful is to
address the issue of multicollinearity by placing highly
correlated pollutants into the same group. This approach
is evaluated and compared to the component-wise vari-
able selection approach by Bobb et al. (2015) [13].

Extension to clustered outcome data
In the setting of correlated outcome data, through re-
peated measures within the same person, or through in-
dividuals clustered within families or communities, the
BKMR model can be extended as Yij = h(zij1,…, zijM) + bi
+ xij

′β + ϵij, where Yij is the response for observation j
within cluster (e.g., person) i, bi � Nð0; τ2bÞ is a random
intercept and ϵij~N(0, σ

2) are the residual error terms.

Methods for characterizing the exposure-response function
From fitting the BKMR model, one obtains an estimate
of the exposure-response function h, which may include
nonlinear and non-additive associations. Unless there
are very few mixture components, it is not possible to
visualize the entire exposure-response function all at once.
Therefore, tools are needed to visualize cross-sections of
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h. One example of a cross-section of interest is to visualize
how a single exposure is related to the outcome when all
of the other exposures are fixed to specific level (e.g., me-
dian value). Similarly, one could visualize the bivariate re-
lationship of two exposures with the health outcome,
while fixing all of the other exposures to a specific level.
These cross sections and others can be visualized using
the bkmr software package and are illustrated below.
In addition to visualizing the exposure-response rela-

tionship, inference may be conducted on scientifically
relevant summaries of interest. Here we define three
such summaries, which quantify overall, single-exposure,
and interactive health effects. In particular, we define the
overall effect as the change in the mean outcome when
all of the exposures (z1, …, zM) are fixed at their 75th
percentile as compared to when all of the exposures are
fixed to their 25th percentile, with all of the covariates x
held constant. With notation, this is given by Δtotð25; 75Þ
¼ hðz751 ;…; z75MÞ−hðz251 ;…; z25MÞ , where zpm denotes the pth
percentile of the mth exposure variable. A second
quantity of interest is a single-exposure effect, which
we define as the change in the mean outcome when
a single exposure is fixed at its 75th percentile as
compared to when it is fixed at its 25th percentile,
when all of the other exposures are fixed at their me-
dian value and all of the covariates x are held con-
stant. For example, for exposure z1, this is given by
Δ1ð25; 75 j50Þ ¼ hðz751 ; z502 ;…; z50MÞ−hðz251 ; z502 ;…; z50MÞ , and
for other exposures the quantity Δm(25, 75 |50) is defined
analogously. Quantifying potential interaction is often an-
other major goal of a mixtures health effect analysis. To
facilitate this, we define an interactive effect as the differ-
ence in the single-exposure health effect when all of the
other exposures are fixed at their 75th percentile, as com-
pared to when all of the other exposures are fixed at their
25th percentile, given by Δm(25, 75 |75) − Δm(25, 75 |25).
We note that the choice here of using the 25th and 75th
percentiles is illustrative; these values may be modi-
fied as desired, and the above summaries can be
calculated using any choice of threshold. Within a
Bayesian framework, inference on the parameters
above is conducted by calculating posterior mean esti-
mates and 95% credible intervals for any of the nu-
merical summaries of interest. Inference on other
functionals of h that set exposures to fixed values may be
conducted analogously.

Probit BKMR for binary outcomes
BKMR can be extended to binary outcomes via gener-
alized linear modeling. For reasons of computational
efficiency for Bayesian inference, we use probit, rather
than logistic, regression. The probit BKMR model is
given by

Φ−1 μið Þ ¼ h zi1;…; ziMð Þ þ xi
0β;

where Φ is the cumulative distribution function (CDF)
for the standard normal distribution (Φ−1 is the probit
link function) and μi = P(Yi = 1) is the probability of an
event (Yi is a binary [0/1] variable).
It is well known that the probit model can be

expressed using a latent normal random variable formu-
lation. In particular, the probit model above can be
expressed as Y �

i ¼ hðzi1;…; ziMÞ þ xi0βþ ei , where ei is
standard normal and Y i ¼ IðY �

i > 0Þ is equal to 1 if Y �
i

> 0 and is equal to zero otherwise. Under this formula-
tion, extension of the BKMR model from Gaussian out-
comes to binary outcomes is relatively straightforward.
One can simply apply the MCMC algorithm derived for
normally distributed outcomes with an additional step of
sampling from the posterior distribution of the latent Y �

i

variables using a truncated normal distribution.
Although probit regression tends to be less common

than logistic regression in many environmental health
applications, it yields interpretable quantities both on
the scale of the latent continuous outcome and on the
scale of the outcome probability. In particular, by con-
sidering the latent normal formulation above, h may be
interpreted as the relationship between the exposures
and some underlying, continuous latent variable (Y∗).
For example, if Y is an indicator variable for whether an
individual has a particular health outcome, Y∗ could be
interpreted as a latent marker of health status. Addition-
ally, probit model coefficients can be converted into
more familiar odds ratios using well-known formulae
[20]. In particular, we have logit(μ) ≈ 1.6 ·Φ−1(μ) so that
βlogit ≈ 1.6 · βprobit. This approximation works well pro-
vided the probability of the outcome event given the in-
cluded predictors is not too close to 0 or 1.

Gaussian predictive process
A major computational burden in fitting BKMR is the
need to invert an n-by-n matrix (multiple times) at each
iteration of the algorithm, where n is equal to the num-
ber of observations in the data. One way to reduce the
computation time is to employ a Gaussian predictive
process [21], an approach originally developed for large
spatial datasets and which has been used previously in
models with Gaussian process priors [22]. In this ap-
proach one specifies a set of points (referred to as
‘knots’) that covers the exposure space and then com-
putes the projection of each vector of exposures onto
the lower dimensional space spanned by the set of
knots. Under this approximate approach, rather than
needing to invert an n-by-n matrix, the algorithm only
needs to invert a square matrix with dimension equal
to the number of knots.
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Software implementation
The bkmr software is implemented as an R (R Develop-
ment Core Team 2017) package. It has dependencies to
the following packages: dplyr, magrittr, nlme, fields,
truncnorm, tidyr, MASS, and tmvtnorm. The R software
and these required packages can be obtained from the
CRAN website at [https://cran.r-project.org/]. Further-
more, daily builds of package bkmr are provided on the
CRAN website [https://cran.r-project.org/web/packages/
bkmr/index.html]. It has been published under GPL ver-
sion 2. Source code is available on GitHub at [https://
github.com/jenfb/bkmr].
The package provides a complete framework for apply-

ing BKMR to conduct an analysis of the health effects of
multiple exposures. The main function (kmbayes) imple-
ments a MCMC sampler to fit a BKMR model and in-
cludes the following features:

� the outcome may be either continuous or binary
(specified using the family argument)

� option to include a random intercept to account for
clustered or repeated measures outcome data (id
argument)

� option to fit the model with or without variable
selection (varsel)

� option to apply hierarchical variable selection
(groups)

� implements a Gaussian predictive process approach
to speed up model fitting for large sample sizes
(knots)

� option to change default settings for the MCMC
algorithm (control.params argument)

After fitting the BKMR model, a suite of post-processing
functions are available, including functions to:

� provide a parsimonious summary of model output
(print and summary methods)

� extract estimates of the posterior inclusion
probabilities, which provide measures of variable
importance for each exposure (ExtractPIPs
function)

� extract summaries of posterior distributions of model
parameters, including posterior mean, standard
deviation, and quantiles (ExtractEsts function)

� obtain scientifically relevant summaries of the
multivariable exposure-response function (these
functions are illustrated in detail through the
continuous outcome example below).

Example code illustrating the main kmbayes function
is shown in Fig. 1. Additional details on the BKMR im-
plementation are available in the package overview guide
[https://jenfb.github.io/bkmr/overview.html].

Practical considerations
Inference based on BKMR is contingent upon conver-
gence of the MCMC algorithm. Several approaches can
be used to monitor convergence, including visually
inspecting the trace plots of model parameters, or more
formal methods such as the Gelman-Rubin diagnostic
[23]. The package overview guide [https://jenfb.github.
io/bkmr/overview.html] provides details on how to mod-
ify the tuning parameters for running the MCMC algo-
rithm in order to speed up convergence.
Additionally, it is good practice to evaluate the sensi-

tivity of results to the choice of prior distribution specifi-
cation. This can be done in the R package by changing
the default settings. Of note, we have found that when
conducting BKMR with variable selection, the magni-
tudes of the posterior inclusion probabilities can be sen-
sitive to the choice of the prior distribution on the rm
parameters (though in our experience the relative order-
ing of the posterior inclusion probabilities has tended to
remain stable) [15]. We therefore recommend varying
the specifications of the prior distributions for these rm
parameters; additional guidance is given in the overview
guide [https://jenfb.github.io/bkmr/overview.html], in-
cluding an approach for incorporating prior knowledge
on the degree of smoothness of the exposure-response
function.

Results
We illustrated the above approaches using two example
datasets. For the first example, we applied BKMR to a
simulated dataset that was generated as part of the 2015
workshop hosted by the National Institute for Environ-
mental Health Sciences (NIEHS), titled “Statistical Ap-
proaches for Assessing Health Effects of Environmental
Chemical Mixtures in Epidemiology Studies.” The goal
of the workshop was to compare statistical methods by
applying them to common datasets developed by epide-
miologists and toxicologists based on real-world data ap-
plications [24]. A key feature of the workshop was that it
used simulated datasets generated by scientists who did
not develop the statistical methods being compared,
which provides an objective benchmark for evaluating
the methods’ performance. Applying BKMR in this
setting illustrates the performance of the method in
the context of a highly nonlinear, biologically-based
dose-response function. For the second example, we
considered a simulated dataset with a larger number
of exposures and a dichotomous outcome, in order to
illustrate probit BKMR.

Continuous outcome example
For the continuous outcome setting, we used the first
simulated data set (Data Set #1) from the NIEHS work-
shop [25], which included 7 exposure variables (z1,…, z7)
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and a single covariate x in 500 individuals. We applied
BKMR to fit the model E[Yi] = h(zi1,…, zi7) + βxi, where
Yi denotes the response for individual i, h denotes the
unknown exposure-response function to be estimated,
and β represents the effect of the covariate. Reprodu-
cible code along with complete results from the analysis
is available at [https://jenfb.github.io/bkmr/SimData1.html];
here we describe select results.
As mentioned above, several functions are provided

for processing the model output. Variable selection
yields posterior inclusion probabilities (PIPs), whose
values range from 0 to 1 and whose magnitude indicates
relative variable importance. In the simulated example,
the estimated PIPs were close to 0 for exposures z3 and
z6 and were 1 for the remaining exposures. To illustrate
the methods for visualizing the multivariable exposure-
response function, we explored different cross-sections
(Fig. 2). For example, Fig. 2a shows the (covariate-ad-
justed) association of z7 with the outcome, which indi-
cates a nonlinear relationship with a steeper slope at
lower levels of exposure that appears to plateau at higher
exposure levels. Figure 2b shows the joint association of
z1 and z7 with the response at different percentiles of a
third exposure (z5), which is useful for visualizing poten-
tial three-way interactions, though in this example the
similar pattern in association across levels of z5 suggests
a lack of evidence of three-way interaction.
We additionally calculated statistics summarizing the

scientifically-relevant features of the exposure-response
function described above (Fig. 3). Estimates of the over-
all effect of the mixture (3a) revealed that increasing
levels of joint exposure were associated with higher
levels of the outcome. To characterize the contribution
of individual exposures to the overall effect, single-ex-
posure effect estimates (3b) suggested that increases in

exposure to z7, z1, and z2 were associated with higher
levels of the outcome and that increases in exposure to
z5 and z4 were associated with lower levels of the out-
come. The single-exposure estimate for z5 was larger in
magnitude when all of the remaining exposures were
fixed at their 75th percentile as compared to when they
were fixed at their 25th percentile, indicating possible
interaction of z5 with one (or more) of the other expos-
ure variables. To further explore this possibility, we cal-
culated interactive effects (3c), which suggested that this
interaction is statistically significant.
Comparisons of our results to the true exposure-re-

sponse function used to generate the simulated dataset
[26] demonstrate that BKMR was correctly able to iden-
tify which exposures were truly associated with the out-
come and the direction of these associations. In addition,
we were able to identify the nonlinear exposure-response
relationship of the individual predictors, and to well-ap-
proximate the full exposure-response function that in-
cluded both nonlinear and non-additive associations (See
[https://jenfb.github.io/bkmr/SimData1.html]). Using the
approximate, Gaussian predictive process method led to a
reduction in the runtime of 49% when 100 knots were
used (from 0.137 to 0.070 s per MCMC iteration) and a
reduction in the runtime of 74% when 50 knots were used
(to 0.036 s per iteration), without any substantial decrease
in accuracy in estimating the exposure-response function
in this example. Computations were performed using a
1.7 GHz processor with 8 GB of memory.

Binary outcome example
To illustrate probit BKMR, we simulated a dataset that
included 30 exposure variables for a sample size of n =
200. The binary outcome depended on quadratic terms
of four of the exposures and on a linear interaction term

Fig. 1 Usage example showing R code to fit BKMR with a continuous outcome. Here ‘y’ denotes the response vector of length n (where n is the
number of observations); ‘Z’ is the n-by-M exposure matrix, where M is the number of exposure variables included in the exposure-response function
h; and ‘X’ is the n-by-P covariate matrix, where P is the number of covariates
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between two of these. Reproducible code and detailed
results for this example are available at [https://jenfb.
github.io/bkmr/ProbitEx.html]; select results are shown
in Fig. 4. Posterior inclusion probabilities indicate that
BKMR was correctly able to identify the variables in-
cluded in the exposure-response function (4a) and to
identify the quadratic exposure-response function with-
out assuming this relation a priori (4b). As discussed
above, the probit BKMR model yields interpretable
quantities on the scale of the latent continuous outcome
and on the scale of the outcome probability. Here, the
u-shaped relationship of z1 suggests that both higher
and lower levels of exposure may be associated with
higher levels of the latent continuous outcome as com-
pared to moderate levels of exposure.
We also illustrate how one can use the predicted prob-

abilities from probit BKMR to compute quantities of
interest, such as the risk difference (4c). For example,
the point estimate (95% posterior credible interval) for
the risk difference comparing the probability of the bin-
ary outcome when exposure 2 is at its 75th percentile
versus its 50th percentile, for all of the remaining expo-
sures fixed at their median value, was 0.42 (0.02, 0.73)

when the single confounder x is fixed at its 25th per-
centile and was 0.32 (0.01, 0.72) when the confounder x
is fixed at its 75th percentile. (The true risk difference
was 0.32 and 0.28, respectively.) This indicates evidence
of a statistically significant association between increas-
ing levels of exposure 2 from moderate to high with an
increased absolute risk of the outcome that persists
across levels of confounder x.

Discussion
The bkmr software package provides a general, open-
source implementation of BKMR, a new and flexible ap-
proach for estimating the joint health effects of simul-
taneous exposure to multiple concurrent risk factors.
The model specification can accommodate a broad
range of data application scenarios common in environ-
mental health, including continuous or binary outcomes,
repeated-measures or clustered outcome data, and
highly correlated exposures. A suite of functions is pro-
vided to process model output, addressing scientific
questions of interest on features of the multivariate
exposure-response relationship.

a

b

−10

−5

0

5

−1 0 1 2 3 4

z7

h(
z7

)

Fig. 2 Cross-sections of the exposure-response function h(z1,…, z7), estimated using Bayesian kernel machine regression. a Univariate exposure-response
function of z7 (95% credible intervals [CI]), where the remaining exposures are fixed at their median values. b Bivariate exposure-response function of z7
and z1 for z5 fixed at either its 10th, 50th, or 90th percentile, and for the remaining exposures fixed at their median values
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A key feature of BKMR is the estimation of the multi-
variable exposure-response function, which may often be
high-dimensional in studies of the health effects of en-
vironmental mixtures. However, it can be challenging to
conduct inference in this setting. Accordingly, we
proposed several numerical summaries of the exposure-
response function to allow investigators to estimate
overall effects of the mixture, single-exposure health ef-
fects, and interactive effects. Rather than require quan-
tities to correspond to specific parameters of a regression
model (e.g., coefficients on main effect or interaction
terms), as is often done in statistical modeling, the numer-
ical summaries we proposed can be estimated regardless
of the specific form of the regression model. Thus, they
are broadly applicable to exposure-response relationships
estimated from other (i.e., non-BKMR) statistical models.
As with any dimension reduction technique, care is war-
ranted when interpreting summary measures since they
could mask potentially complex features of the data. For
example, a single-exposure summary that compares health
outcomes at high versus low exposure could appear null if
there is a u-shaped relationship; likewise, an apparent
null overall association may be observed if half of the
exposures are positively associated and half are nega-
tively associated with a similar magnitude. It is therefore

recommended to explore a range of summary measures
and to visualize different cross-sections of the exposure-
response surface, together with the PIP, or variable im-
portance, scores.
The MCMC algorithm we implemented for fitting

BKMR employs several tricks to speed up the computa-
tion. First, rather than update the subject-specific effects
of the mixture hi within the main function used to fit
BKMR, we marginalize the posterior distribution over
these parameters [13]. These subject-specific effects are
typically not themselves of scientific interest; rather, in-
vestigators often desire estimates of the general form of
the exposure-response function, which can be visualized
and summarized via the post-processing functions de-
scribed above. Second, the implementation for binary
outcomes utilizes the latent normal specification of pro-
bit regression, which has computational advantages for
Bayesian inference. Third, the software allows for apply-
ing a Gaussian predictive process approach [21], origin-
ally developed for large spatial datasets, which projects
the exposure space onto a smaller number of points
(‘knots’), leading to efficient computation of health risk
estimates.
Several additional functionalities could be added.

Allowing for count outcome data via Poisson BKMR

C
ca

b

Fig. 3 Numerical summaries of the exposure-response function h(z1,…, z7), estimated using Bayesian kernel machine regression. a Overall effect
of the mixture (95% CI), defined as the difference in the response when all of the exposures are fixed at a specific quantile (ranging from 0.25 to
0.75), as compared to when all of the exposures are fixed at their median value. b Single-exposure health effects (95% CI), defined as the change
in the response associated with a change in a particular exposure from its 25th to its 75th percentile, where all of the other exposures are fixed
at a specific quantile (0.25, 0.50, or 0.75). c Interactive effects, defined as the change in the single-exposure health effects when all of the remaining
exposures are fixed at their 25th percentile as compared to when they are fixed at their 75th percentile (i.e., red points from Panel b subtracted from
the corresponding blue points)
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would enable the model to be applied to time series
studies that estimate the joint health effects of day-
to-day changes in multiple community-level risk factors
(e.g., temperature and air pollution) on daily outcomes
(e.g., hospitalization rates) [27]. However, implementa-
tion of the MCMC algorithm in this setting requires
additional complexity because the computational tricks
described above are not applicable. Additionally, the im-
plementation focuses on a particular choice of kernel
function for specifying the BKMR model, namely the
Gaussian kernel. Our previous simulation studies
showed that this specification is relatively flexible, accur-
ately capturing a wide range of underlying forms of the
true exposure-response function. However, the ability to
specify other kernel functions could be added in the fu-
ture. Along these same lines, our focus has been on esti-
mating the joint health effects of continuous exposure
variables; allowing for exposure-response surfaces that
are functions of both categorical and continuous expo-
sures may also be of interest. Finally, beyond estimating

specific interactive-effect summary measures, one may
be more broadly interested in detecting whether two
groups of exposure variables interact [28–30]. This could
be done within the BKMR framework by applying kernel
decomposition methods to evaluate whether the kernel
function h(z1, z2) could be expressed as h(z1) + h(z2) for
two groups of exposures (z1 and z2).

Conclusions
In summary, this newly developed software provides an inte-
grated set of tools for conducting a mixtures health effect
analysis. The software and expanded toolbox make BKMR
accessible for use across a broad range of epidemiological ap-
plications in which a large number of exposures have com-
plex, potentially nonlinear and interactive effects on health.

Abbreviations
BKMR: Bayesian kernel machine regression; CI: Credible interval; DF: Degrees
of freedom; KMR: Kernel machine regression; MCMC: Markov chain Monte
Carlo; NIEHS: National Institute for Environmental Health Sciences; PIP: Posterior
inclusion probability

a

cb

Fig. 4 Example output from fitting probit Bayesian kernel machine regression to simulated data. a Posterior inclusion probabilities (PIPs) provide
a measure of variable importance ranging from 0 to 1. Exposures 1–4 were included in h in the true data-generating model. b Univariate exposure-
response function of z1 estimated from BKMR, in comparison to a probit generalized linear model (GLM) assuming linear terms of each of the
exposure variables (“linear”), a probit GLM that uses the correct model form (“oracle”), and the true exposure-response function (“truth”).
Under probit regression, h may be interpreted as the relationship between the exposure variables and an underlying, continuous latent
outcome (e.g., a continuous marker of underlying health status for a binary health outcome). c Posterior distribution of the risk difference
comparing the probability of the binary outcome when exposure 2 is at its 75th percentile versus its 50th percentile, for all of the exposures fixed
at their median value, and for the single confounder x fixed at its 25th or 75th percentile (left and right panels, respectively), along with the posterior
mean estimate (“est”) and the true risk difference (“truth”)
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