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Osteopontin (OPN) is a multifunctional matricellular protein produced by a broad range
of cells including osteoclasts, macrophages, T cells, endothelial cells, and vascular
smooth muscle cells. OPN modulates various physiological and pathological events
such as inflammation, wound healing, and bone formation and remodeling. Dengue virus
(DENV) infection causes an increase in plasma OPN levels, which is correlated with the
severity of symptoms and coagulation abnormalities. DENV infection also induces OPN
gene expression in human macrophages. This study investigated the inhibitory effects
of brefelamide and its methyl ether derivative on DENV-3 by measuring changes in OPN
levels in human THP-1 and 293T cell lines infected at different multiplicities of infection
and post-infection time points. OPN mRNA expression and viral RNA were detected by
reverse transcriptase quantitative real-time PCR, whereas protein level was determined
by enzyme-linked immunosorbent assay. We found that viral copy number was higher
in 293T than in THP-1 cells. However, THP-1 constitutively expressed higher levels
of OPN mRNA and protein, which were enhanced by DENV-3 infection. Brefelamide
and its derivative suppressed OPN production in DENV-3 infected THP-1 cells; the
effective doses of these compounds had no effect on uninfected cells, indicating low
cytotoxicity. These results suggest that brefelamide and its methyl ether derivative have
therapeutic effects in preventing inflammation, coagulopathy, and fibrinolysis caused by
OPN upregulation induced by DENV-3 infection.

Keywords: dengue virus-3, THP-1 cell, 293T cell, osteopontin, brefelamide

INTRODUCTION

Dengue is mosquito-borne, acute, febrile disease prevalent in tropical and subtropical areas. The
number of reported dengue cases has been increasing annually; 3.97 billion people in 128 countries
where dengue is endemic are at high risk (Brady et al., 2012; Bhatt et al., 2013). Each year, there are
an estimated 390 million dengue cases worldwide and 250,000 fatal cases of dengue hemorrhagic
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fever and dengue shock syndrome (DHF/DSS). Dengue is caused
by dengue virus (DENV), a single-stranded, positive-polarity
enveloped RNA flavivirus (Henchal and Putnak, 1990). The
disease itself is transmitted through the bite of the blood-
feeding mosquito Aedes aegypti. There are four serotypes of
DENV that cause illness (DENV-1 to -4), which presents a
wide spectrum of clinical symptoms although the majority of
cases are asymptomatic. Dengue fever is a flu-like syndrome,
but severe DHF is characterized by coagulopathy and increased
vascular fragility and permeability. The highest risk is associated
with DHF that progresses to DSS, whereby hypovolemic
shock can lead to death (Abel et al., 2012). Although the
molecular mechanisms underlying the progression of dengue
illness are not fully understood, they are presumed to be
associated with increased coagulation and fibrinolytic activity
during DENV infection (Avila-Aguero et al., 2004; Huerta-
Zepeda et al., 2008) resulting from elevated levels of thrombin-
antithrombin complex, D-dimer (fibrin degradation product),
tissue plasminogen activator, and prothrombin fragment (Suharti
et al., 2002; Wills et al., 2002).

Osteopontin (OPN) is a calcium-binding glycophospho-
protein that was originally isolated from bone and mediates
bone remodeling and tissue debridement (Giachelli and Steitz,
2000). OPN has been implicated in pathological and physiological
processes such as cell proliferation and endothelial cell migration
(Senger et al., 1996; Chagan-Yasutan et al., 2011); in addition,
it is expressed by macrophages and plays an important role in
immunity, inflammation, tumor progression, and cell viability
(Mazzali et al., 2002; El-Tanani et al., 2006) as well as cell
adhesion, proliferation, invasion, and apoptosis in tissue fibrosis
(Kato et al., 2014). We previously reported the upregulation of
OPN in the plasma in DENV-infected patients, implying a role
for OPN in disease progression (Chagan-Yasutan et al., 2014).
OPN was also found to be overexpressed in DENV-infected
human macrophages (Moreno-Altamirano et al., 2004). Full-
length OPN is secreted into the extracellular matrix, where it
modulates cell function by interacting with receptors, proteases,
and hormones and matrix proteins such as collagen; it is also
linked to activation of the coagulation pathway and fibrinolysis
(Shinohara et al., 2008).

Phorbol 12-myristate 13-acetate (PMA) induces OPN gene
expression in smooth muscle cells (Panda et al., 1997) and
is frequently used as a control in inhibitor studies related to
OPN expression. PMA induces hyperacetylation of histones
H3 and H4 in the proximal region of the OPN promoter,
which causes the binding of activator protein (AP)-1. PMA
was also reported to enhance the recruitment of RNA pol II
and TFIIB to the AP-1-binding region of the OPN promoter,
resulting in upregulation of OPN expression (Sharma et al.,
2010). 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase inhibitors (also known as statins) inhibit OPN protein
synthesis in ovarian clear cell carcinoma cells in vitro and
in vivo (Takemoto et al., 2001; Minoretti et al., 2006; Matsuura
et al., 2010). Statins act as competitive inhibitors of endogenous
HMG-CoA that deplete circulating isoprenoid levels, which can
affect the expression of glycoproteins such as OPN (Matsuura
et al., 2011). Statins also inhibit the small GTP-binding proteins

Rho, Ras, and Rac whose membrane localization and function
depend on isoprenylation (Liao, 2002). It has been suggested that
statins bind to the OPN promoter and suppress gene expression
(Matsuura et al., 2011).

Brefelamide and its methyl ether derivative have been reported
to inhibit OPN expression (Zhang et al., 2016b) in DENV-
infected cells. This was further investigated in the present study
using two different human cell lines. We hypothesized that
downregulation of OPN in DENV-infected cells would reduce
cell invasiveness, coagulopathy, inflammation, and fibrinolysis,
thereby preventing exacerbation of the illness.

MATERIALS AND METHODS

Cell Lines and Culture
Human embryonic kidney 293T cells (DuBridge et al., 1987) and
THP-1 monocytic cells derived from acute monocyte leukemia
patients (Tsuchiya et al., 1980) were obtained from the American
lType Culture Collection (Manassas, VA, USA). The former was
maintained in high-glucose Dulbecco’s Modified Eagle’s medium
containing L-glutamine and Phenol Red (Wako Pure Chemical
Industries, Osaka, Japan) and the latter in Roswell Park Memorial
Institute 1640 medium (Wako Pure Chemical Industries). Both
media were supplemented with 10% of heat-inactivated fetal
bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA,
USA). Cells were cultured at 37◦C in a humidified atmosphere
of 5% CO2.

DENV Infection
Dengue virus-3 was isolated from a patient with dengue fever at
San Lazaro Hospital in Manila, Philippines as previously reported
(Chagan-Yasutan et al., 2013). Viral titer was measured with
the plaque assay using Vero cell lines. Viral concentration was
determined as plaque-forming units per ml and was used to
calculate the multiplicity of infection (MOI). Adherent 293T cells
were seeded in a 12-well cell culture plate coated with BioCoat
poly-D-lysine (Corning, Tokyo, Japan) at 2 × 105 cells/well in
1 ml of growth medium supplemented with FBS, and cultured
overnight at 37◦C in a humidified atmosphere of 5% CO2.
The following day, 0.5 ml of medium was removed from each
well and DENV-3-containing medium was added for infection.
DENV MOIs were adjusted to 0.01, 0.03, and 0.1. PMA (Wako
Pure Chemical Industries, Osaka, Japan) with concentration
of 100 ng/ml was used as a positive control to induce OPN
expression. Cells were cultured at 37◦C/5% CO2 for 1.5 h with
rocking every 30 min to ensure infection. After 1.5 h, the viral
suspension was removed and wells were washed twice with
culture medium (Diamond et al., 2000). A 1-ml volume of new
culture medium was added and cells were cultured until they were
harvested on days 1, 2, and 3 post-infection.

THP-1 cells were seeded in a Nunc cell culture tube (Thermo
Fisher Scientific) at 2× 105 cells/tube in 1 ml of growth medium
supplemented with FBS. The next day, the tubes were centrifuged
at 1200 rpm for 5 min and the spent medium was decanted;
0.1 ml of DENV-3 diluted in culture medium was added to each
tube at final MOIs of 0.01, 0.03, and 0.1. PMA was used as
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a positive control to induce OPN expression. The tubes were
incubated for 1.5 h with rocking every 30 min; the cells were
washed twice with medium (Kurane et al., 1990) and cultured in
1 ml of fresh medium before they were harvested on days 1, 2,
and 3 post-infection.

Collection of DENV-Infected Cells and
RNA Extraction
The supernatant from cell cultures was transferred to 1.5-ml
tubes (Eppendorf, Hamburg, Germany) and stored at −80◦C.
The 293T cells were trypsinized using 0.25% trypsin-EDTA
(Thermo Fisher Scientific), transferred to 1.5-ml tubes, and
washed with phosphate-buffered saline. Meanwhile, THP-1 cells
were collected by centrifugation. Cell viability was determined
based on exclusion of Trypan Blue (Bio-Rad, Hercules, CA,
USA). The cells were centrifuged at 1200 rpm for 5 min and
RNA was extracted by adding 200 µl of homogenization solution
from the Maxwell 16 LEV simplyRNA Cells kit and Tissue kit
(#AS1270 and #AS1280, respectively; Promega, Madison, WI,
USA). Samples were stored at−80◦C.

Determination of DENV Copy Number by
Real-Time Quantitative (RT-q)PCR
Viral copy number in culture supernatants and cell lysates
was measured by RT-qPCR as previously described (Chagan-
Yasutan et al., 2013) using the RNA UltraSense One-Step
Quantitative RT-PCR System (Invitrogen, Carlsbad, CA, USA)
and Thermal Cycler Dice Real Time System (Takara Bio, Otsu,
Japan) according to the manufacturers’ protocols. Primers and
hydrolysis probes specific to the 3′ untranslated region of each
of the four DENV genotypes have been previously published
(Chagan-Yasutan et al., 2013). The forward and reverse
primers were as follows 5′-AAGGACTAGAGGTTAGAGG
AGACCC-3′ and 5′-CGTTCTGTGCCTGGAATGATG-3′
(Warrilow et al., 2002). The TaqMan probe was labeled
at the 5′ and 3′ ends with a 6-carboxyfluorescein (FAM)
reporter and Black Hole quencher (BHQ)-1 (i.e., 5′[FAM]–
TGGGARAGACCAGAGATCCTGCTGTCT–[BHQ1]3′). The
copy numbers obtained by DENV RT-qPCR were linearly
associated with plaque numbers (data not shown).

Quantification of OPN mRNA Expression
by RT-qPCR
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used
as reference gene for normalization of expression levels and
was amplified with the following forward and reverse
primers: GAPDH-F, 5′-GCACCGTCAAGGCTGAGAAC-3′ and
GAPDH-R, 5′-TGGTGAAGACGCCAGTGGA-3′. The Taqman
probe was as follows: 5′[FAM]–TCCACGACGTACTCAGCGCC
AGCAT–[BHQ1]3′. A forward and reverse primer set (SPP1-F,
5′-GATGAATCTGATGAACTGGTCACTG-3′ and SPP1-
R, 5′-GGTGATGTCCTCGTCTGTAGCA-3′) and a probe
(SPP1-P, 5′-[FAM]–CCACGGACCTGCCAGCAACC GAAGT–
[BHQ1]3′) (Takara Bio) were used to quantify OPN mRNA (Qin
et al., 2015). The mean fold change in OPN mRNA level was
calculated as fold difference= 2−11Ct.

Determination of OPN Concentration by
Enzyme-Linked Immunosorbent Assay
(ELISA)
Osteopontin levels in the cell culture supernatant were quantified
using an ELISA kit (R&D Systems, Minneapolis, MN, USA)
according to the manufacturer’s instructions and as previously
reported (Chagan-Yasutan et al., 2014). The supernatant was
diluted eightfold for THP-1 cells and two–fourfold for 293T cells,
and the final value was calculated as initial value×dilution factor

Cell number (106 cells)
and

was expressed as pg/ml/106 cells.

Cytotoxic Effects of Compounds A and B
Brefelamide, henceforth referred to as compound A (Kikuchi
et al., 2005), is an aromatic amide isolated from methanol
extracts of Dictyostelium brefeldianum and D. giganteum slime
mold fruiting bodies; its derivative, henceforth referred to
as compound B (Kikuchi et al., 2005; Zhang et al., 2016b),
contains a methyl ether group (−OCH3). Both compounds were
dissolved in dimethyl sulfoxide (DMSO) at a concentration of
50 mM and stored at −20◦C. Aliquots of the stock solutions
were further diluted with appropriate growth medium to the
desired concentrations before use. The cytotoxic effect of the
compounds is expressed as the 50% inhibitory concentration
(IC50), which was determined with the CellTiter 96 Aqueous
Non-Radioactive Cell Proliferation System (Promega). THP-1
and 293T cells were seeded in 96-well tissue culture plates
at a density of 1.8 × 104/well in 90 µl of the appropriate
growth medium and incubated for 24 h at 37◦C in a humidified
5% CO2 atmosphere. The following day, 10 µl of compounds
A and B at concentrations ranging from 0.0001 to 10 mM
were added to each well. After incubation for 24 h, 20 µl
per well of 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium salt/phenazine methosulfate
solution was added to each well, followed by incubation for 4 h.
The absorbance at 490 nm was recorded with an ELISA plate
reader and the IC50 value was determined by identifying the
X-axis value corresponding to one-half of the difference between
the maximum and minimum absorbance values using GraphPad
Prism v.6 software (GraphPad Inc., San Diego, CA, USA).

Changes in OPN Level in Response to
Compounds A and B in Uninfected Cells
Changes in OPN expression in uninfected THP-1 and 293T cell
lines in response to treatment with compounds A and B were
assessed. Each well in a 12-well tissue culture plate was seeded
with 1.8 × 105 cells. After overnight incubation, the compounds
were added at final concentrations of 3–100 µM. Cells were
harvested 3 days later. OPN mRNA and protein levels were
quantified by RT-qPCR and ELISA, respectively, to determine the
optimal concentration.

Effects of Compounds A and B on
DENV-Infected Cells
THP-1 and 293T cells were seeded in a Nunc cell culture tube
and a 12-well cell culture plate, respectively, at 1.8 × 105/well.
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After overnight incubation, cells were washed and incubated
with fresh medium containing DENV-3 at an MOI of 0.1 or
incubated without virus for 1.5 h. The inoculum was then
removed and cells were washed twice with fresh medium, and
compounds A and B were added at final concentrations of 3,
10, and 30 µM. As negative and positive controls, 0.2% DMSO
and 0.3–1 µM statin (simvastatin, cat. no. S6196; Sigma-Aldrich,
St. Louis, MO, USA), respectively, were added to the cells. On
day 3 post-infection, culture supernatants and cell lysates were
collected. Cell viability was evaluated by Trypan Blue exclusion
and DENV copy number was determined by RT-qPCR. OPN
mRNA and protein levels were quantified by RT-qPCR and
ELISA, respectively.

Statistical Analysis
A two-tailed t-test was used to compare group means, and
P < 0.05 was considered statistically significant. All statistical
analyses were performed using GraphPad Prism software.

RESULTS

DENV Infection Induces OPN mRNA
Expression
OPN mRNA expression increased in DENV-infected THP-1 cells
(Figure 1A) in a MOI-dependent manner, as determined by RT-
qPCR. Cells infected at MOI of 0.1 resulted 12.59-fold higher
OPN levels after 3 days than those infected at MOI = 0.01
(P < 0.005). These results indicate that DENV infection induces
OPN synthesis in THP-1 cells. A similar trend was observed
in 293T cells, although the difference in OPN expression level
between cells infected at an MOI of 0.1 and uninfected cells was
smaller (1.8-fold; P < 0.005) (Figure 1B). Thus, an MOI of 0.1 for
3 days was used for subsequent experiments in both THP-1 and
293T cells.

DENV Infection Induces OPN Synthesis
We investigated changes in OPN expression in response to
DENV infection at different MOIs and infection times using
THP-1 and 293T cell lines. OPN level in the THP-1 cell culture
supernatant increased upon DENV infection (Figure 2A). The
results at day 3 using MOI at 0.03 and 0.1 are significantly higher
than other cultures (3.9-fold at MOI 0.03 and 3.83-fold at MOI
0.1; P < 0.001 compared to no virus group). The significant
difference was also observed at day 1 at MOI 0.1. In DENV-
infected 293T cells (Figure 2B), cultures with higher MOIs
have higher OPN levels when compared to controls on day 1
post-infection (2.8-fold at MOI 0.1; P < 0.001). However, in
contrast to THP-1 cells, OPN levels in the supernatant of 293T
cells decreased gradually as the incubation time post-infection
increased.

In addition, we determined the viral copy number of DENV
RNA in supernatants and cell lysates by RT-qPCR. For THP-1
cells, fewer copies of DENV RNA were detected in the cell lysate
(Figure 3A) than in the supernatant (Figure 3B). The rate of
viral replication was high on day 1 at an MOI of 0.1, and we

FIGURE 1 | Multiplicity of infection (MOI)- and time-dependent change
in OPN mRNA expression upon dengue virus (DENV) infection.
(A) THP-1 and (B) 293T cells were infected with DENV-3 at various MOIs
(range: 0.01–0.1). Phorbol 12-myristate 13-acetate (PMA) was used as a
positive control. Cells were harvested daily (1–3 days). Total RNA was
prepared from cell lysates and OPN levels were determined by RT-qPCR.
GAPDH was used as reference gene to normalize the expression level. The
table summarizes statistical analysis, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
vs. control (uninfected cells; unpaired two-tailed t-test). Data represent
mean ± SEM. § and §§ represent MOI- and time-dependent variables,
respectively.

did not detect any changes in copy number over time. However,
in both lysates and supernatant samples, DENV replication
(MOI = 0.1, day 3) was increased relative to lysates and the
culture supernatant of uninfected cells. On the other hand, there
were more copies of DENV RNA in 293T cell lysates (Figure 3C)
than in the culture supernatant (Figure 3D), especially at an
MOI of 0.1 on day 3. Both cell lysates and culture supernatants
showed MOI-dependent increases in DENV RNA copy number
by RT-qPCR.
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FIGURE 2 | Multiplicity of infection- and time-dependent change in
OPN protein expression upon DENV infection. (A) THP-1 and (B) 293T
cells were infected with DENV-3 at various MOIs (range: 0.01–0.1). PMA was
used as a positive control. Cells were harvested daily (1–3 days) and OPN
protein levels in the supernatant were measured by ELISA. Viability was
simultaneously evaluated to normalize the results. Normalized OPN levels in
each sample are expressed as pg/ml/106 cells. The table summarizes
statistical analysis, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 vs. control
(uninfected cells; unpaired two-tailed t-test). Data represent mean ± SEM.
§ and §§ represent MOI- and time-dependent variables, respectively.

Compounds A and B Are Less Cytotoxic
to THP-1 and 293T Cells than Statins
The cytotoxicity of compounds A and B relative to a statin
(simvastatin) was determined based on their IC50 values. The
IC50 of compound A was 102.1 µM in THP-1 cells and 32.2 µM
in 293T cells; for compound B, the values were 27.8 and 9.9 µM,
respectively; and for simvastatin the values were 14.1 and 9.8 µM,
respectively. These results indicate that compounds A and B are
less cytotoxic to these cell lines than a clinically available statin.

Compounds A and B Inhibit OPN mRNA
Expression
Compound A inhibited OPN mRNA expression in a dose-
dependent manner in DENV-infected THP-1 cells but had no
effect on uninfected control cells. Similar results were obtained
for compound B (P < 0.05) (Figure 4A). In contrast, both
compounds reduced OPN mRNA levels in uninfected but not
in DENV-infected 293T cells (Figure 4B). The addition of the
solvent DMSO also stimulated OPN mRNA expression in both
cell lines, which was especially evident in 293T cells; however, this
effect was abrogated in the presence of compounds A and B.

Compounds A and B Inhibit OPN
Production in Uninfected and
DENV-Infected 293T and THP-1 Cells
We evaluated OPN levels in the supernatant of uninfected
and DENV-infected THP-1 and 293T cell cultures treated for
3 days with various concentrations of compounds A and B and
simvastatin by ELISA. Treatment with compound A had no effect
on OPN levels in uninfected THP-1 cells but it induced a dose-
dependent reduction in cells infected with DENV (Figure 5A);
10 µM compound A reduced OPN levels to a value comparable
to those observed in cultures of uninfected DMSO-treated cells
(from 67848.9 to 12247.9 pg/ml/106 cells; P < 0.0005). Similarly,
OPN levels in uninfected cells were unaffected by compound
B but were markedly downregulated in DENV-infected cells
(Figure 5A). The greatest decrease in OPN expression (from
67848.9 to 18267.8 pg/ml/106 cells, P < 0.0005) was observed
by treatment with 10 µM compound B. In fact, OPN level
was upregulated in uninfected cells by treatment with 30 µM
compound B, suggesting a cytotoxic effect (i.e., the IC50 of
compound B in THP-1 cells is 9.9 µM). Simvastatin had no effect
on OPN level in DENV-infected THP-1 cells.

Compound A did not inhibit OPN expression in uninfected
or DENV-infected 293T cells; adding 30 µM of compounds
to the uninfected cells stimulated OPN expression, showing
cytotoxicity effect (Figure 5B). In contrast, compound B (3 µM)
reversed the upregulation of OPN expression induced by DENV
infection in 293T cells (from 90.8 to 13.4 pg/ml/106 cells),
although the significance of this decrease was not statistically
proven (Figure 5B). Treatment with simvastatin (0.3 µM) also
suppressed OPN production in DENV-infected 293T cells.

Compound B Inhibits DENV Replication
More copies of DENV RNA were detected in the culture
supernatant as compared to the lysates of THP-1 cells.
Compounds A and B (10 µM) suppressed DENV RNA levels
in the THP-1 cell culture supernatant, but not lysates, by 75%
relative to the control (Figure 6A). Simvastatin had no effect on
virus replication as shown by the high copy number of DENV
RNA in the culture supernatant of THP-1 cells. In contrast,
more copies of DENV RNA were detected in the lysates than
in the culture supernatant of 293T cells; and compound B, but
not compound A, reduced DENV RNA copy number in the
supernatant. Simvastatin (0.3 µM) inhibited viral replication
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FIGURE 3 | Dengue virus RNA copy number in infected cell lines. (A,B) THP-1 and (C,D) 293T cells were left uninfected or infected with DENV-3 at various
MOIs (range: 0.01–0.1). Cells were harvested at various post-infection time points (days 1, 2, and 3). Total RNA was extracted from cell lysates and the culture
supernatant and DENV genome copy number was determined by RT-qPCR. The table summarizes statistical analysis,∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001 vs. control (uninfected cells; unpaired two-tailed t-test). Data represent mean ± SEM. § and §§ represent MOI- and time-dependent variables,
respectively.

in both the culture supernatant and in lysates of 293T cells
(Figure 6B).

DISCUSSION

The results presented here show for the first time that
DENV infection induces OPN production in THP-1 and
293T cells. The two cell lines responded differently to DENV
infection. Infected THP-1 cells increased OPN production.
On the other hand, viral replication was efficient in 293T
cells but resulted in the release of less OPN into the
supernatant. We also demonstrated that upregulation of OPN
expression in response to DENV infection was suppressed
by treatment with compounds A and B at non-cytotoxic
concentrations.

Infection by any of the four DENV serotypes can cause
asymptomatic infection, mild fever, or fatal DHF and DSS.
The severity of infections may depend on soluble immune
response mediators (Moreno-Altamirano et al., 2004).
Chemokines and cytokines and their receptors as well as
adhesion molecules—including interleukin (IL)-8; IL-1β;
C-X-C motif chemokine ligand-1, -2, and -3; and C-C
motif chemokine ligand-1—have been implicated in DENV
pathogenesis and are upregulated upon DENV infection
(Halstead, 1989). Moreover, serum IL-8 levels are correlated
with disease severity (Bethell et al., 1998; Raghupathy et al.,
1998; Juffrie et al., 2000). DENV infection causes damage to
a variety of cell types such as macrophages, endothelial cells,
and fibroblasts (Halstead, 1989; Kurane et al., 1992; Jessie
et al., 2004) that normally produce OPN and can increase the
levels that are released, thereby exacerbating inflammation
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FIGURE 4 | Changes in OPN mRNA expression by treatment with
compounds A and B in DENV-infected cells. Uninfected and
DENV-infected THP-1 (A) or 293T (B) cells were left untreated or treated with
compound A or compound B (range: 3–30 µM), or statin (range: 0.3–1 µM)
for 72 h. Total RNA was extracted from cell lysates and analyzed by RT-qPCR.
GAPDH was used as reference gene to normalize expression levels. Results
show the mean of two independent experiments. ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 vs. control (0.2% DMSO; unpaired two-tailed
t-test). Data represent mean ± SEM.

and activating the coagulation pathway (Huerta-Zepeda et al.,
2008).

OPN expression is associated with hematocrit levels
and platelet counts, and reflects plasma leakage and
thrombocytopenia in the critical phase of DENV infection.
Thus, OPN level is a biomarker for tracking the progression
of inflammation and coagulopathy during infection (Chagan-
Yasutan et al., 2014). In the immune response to tuberculosis
infection, OPN level is negatively correlated with lymphocyte
count and memory T cell activation whose migration to
tuberculosis lesions is induced by OPN-mediated signaling
(Shiratori et al., 2016). Severe forms of DENV infection—
especially secondary infection—are characterized by excessive
inflammation. OPN is involved in inflammation, coagulopathy,
and fibrinolysis (Chagan-Yasutan et al., 2014); preventing

FIGURE 5 | Effect of compounds A and B on OPN protein level in
DENV-infected cells. Uninfected and DENV-infected THP-1 (A) or 293T (B)
cells were left untreated or treated with compound A or compound B (range:
3–30 µM), or statin (range: 0.3–1 µM) for 72 h. Cells were then harvested and
OPN levels in the culture supernatant were determined by ELISA. Viability was
simultaneously measured to normalize the results. Normalized OPN levels in
each sample are expressed as pg/ml/106 cells. Results show the mean of two
independent experiments. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 vs. control
(0.2% DMSO; unpaired two-tailed t-test). Data represent mean ± SEM.

excessive inflammation by inhibiting OPN may thus block the
progression of DENV infection.

THP-1 is a human monocytic cell line derived from an
acute monocytic leukemia patient. These cells resemble and
can differentiate into macrophages, which are the primary
target of DENV (Halstead, 1989) along with endothelial, mast,
and dendritic cells (Avirutnan et al., 1998; Ho et al., 2001;
King et al., 2002). We found here that THP-1 but not 293T
cells constitutively express OPN, which is consistent with the
observation that OPN is produced by macrophages (Oyama
et al., 2000). OPN mRNA is upregulated in monocyte-derived
macrophages from healthy human donors 6 h after DENV-2
infection, and remains elevated until 72 h after infection
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FIGURE 6 | Effect of compounds A and B on DENV RNA copy number
in infected cells. Uninfected and DENV-infected THP-1 (A) or 293T (B) cells
were left untreated or treated with compound A or compound B (range:
3–30 µM), or statin (range: 0.3–1 µM) for 72 h. Total RNA was extracted from
cell lysates and DENV RNA was detected by RT-qPCR. Results show the
mean of two independent experiments. ∗P < 0.05, ∗∗P < 0.01 vs. control
(0.2% DMSO; unpaired two-tailed t-test). Data represent mean ± SEM.

(Moreno-Altamirano et al., 2004). In our study, DENV infection
increased OPN mRNA and protein levels in both THP-1 and
293T cells, although with a more pronounced effect on the
former. In 293T cells, significant changes in the level of OPN
protein were observed at 24 h post-infection then levels started
to decline the day after. The reasons for the decline are not
clear. One possible explanation is that 293T cells normally do
not produce OPN; thus, OPN expression and production may
only be temporary and start to be downregulated thereafter.
Further results showed that in 293T cells, the level of OPN
protein is increased by DENV infection at higher MOIs, although
OPN mRNA level is unchanged. This discrepancy is suggestive
of an enhanced OPN translational efficiency in the absence
of increased OPN promoter activity. Higher MOIs and longer
incubation times resulted in higher OPN expression, specifically
in THP-1 cells, suggesting that OPN is involved in the cellular
response to DENV infection. Indeed, plasma OPN levels are
associated with the severity of inflammation, coagulopathy,

and exacerbation of DENV infection (Chagan-Yasutan et al.,
2014).

293T cells showed higher replication of DENV in the cell
lysate and culture supernatant than THP-1 cells, which may be
explained by the large T antigen used for cell transformation.
The 293T cell line derived from human embryonic kidney is
highly transfectable (DuBridge et al., 1987). While kidney cells
are not considered as primary target of DENV infection, the
illness is associated with several kidney disorders such as renal
failure, proteinuria, and hematuria (Lizarraga and Nayer, 2014).
Thus, studying DENV infection using both THP-1 and 293T
cells can provide insight into different aspects of the illness. The
capability of THP-1 and 293T (including its parental HEK293)
cells to be used for DENV infection experiments had been well
described (Diamond et al., 2000; Bosch et al., 2002). Antibody-
dependent enhancement (ADE) experiments in THP-1 can be
conducted in the future to facilitate virus entry into host cells and
increase the infectivity of the virus toward the cell by stimulating
Fc receptors (Halstead, 1989). Very recently, non-ADE DENV
infection of THP-1 cells was found to dysregulate extracellular
matrix (Afroz et al., 2016). ADE is mediated by Fc receptors
and the stimulation of the receptor alone may stimulate OPN
synthesis; OPN production in DENV infection with and without
antibody could be compared at higher MOIs.

Inhibiting OPN expression has been suggested as a promising
therapeutic strategy against malignancies (Zhang et al., 2016b).
Transcriptional regulation of OPN is complex and involves
many factors, including AP-1, Ets, Myc, and v-Src (Hijiya et al.,
1994; Wang et al., 2000). OPN is also downregulated upon
activation of transforming growth factor (TGF)-β signaling,
which is linked to cytostatic mechanisms (Zhang et al., 2016a).
We found here that compounds A and B markedly reduced
OPN mRNA and protein levels in THP-1 cells, although
viral replication was not significantly affected at non-cytotoxic
concentrations of compound A. Nonetheless, our results suggest
that these compounds can be used to target OPN and
suppress inflammation following DENV infection to prevent its
progression to DHF and DSS.

Aberrant OPN expression has been linked to activation of the
extracellular signal-regulated kinase (ERK) pathway, indicating
that OPN is a downstream target of ERK/AP-1 signaling (Kim
et al., 2003). Cellular stress has also been shown to induce the
upregulation of OPN via ERK activation (Kato et al., 2014).
Compound A suppressed the proliferation of astrocytoma cells
by inhibiting ERK phosphorylation and epidermal growth factor-
dependent activation of ERK signaling (Kikuchi et al., 2005;
Honma et al., 2009). Similarly, compounds A and B may suppress
OPN expression by inhibiting ERK phosphorylation, which could
then block proliferation of DENV-infected cells.

To address the concern of potential side effects, we
investigated the cytotoxicity of compounds A and B. High
concentrations of both compounds (>30 µM) were toxic to
DENV-infected THP-1 and 293T cells (>30 µM), an effect
that was dose-dependent, reflecting their original purpose as an
anticancer drug that induces cell growth arrest (Zhang et al.,
2016b). Between the two compounds, A showed greater potential
than B since the concentration at which it was most effective
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was much lower than its IC50 value. Independent pre-clinical
investigations are required to further assess the toxicology of
compounds A and B. It should be noted that both compounds
showed modest suppressive effects on viral replication in THP-1
cells, while only compound B exerted this effect in 293T cells. In
both cells, the compounds showed suppressive effect resulting in
decreased viral copies in the supernatant, although viral copies
in cell lysate were unchanged. The reasons were not clear but
the compounds may inhibit the release of viral progeny by the
infected cells. However, the relationship between viral replication
and OPN suppression requires more detailed analysis in future
studies. In addition, the anti-inflammatory, immunomodulatory,
and antiviral properties of compounds A and B must be evaluated
before they can be used in pre-clinical trials.

In summary, this study demonstrated that DENV infection
induced OPN production in THP-1 and 293T cells. Treatment
with compounds A and B abrogated this effect at non-cytotoxic
concentrations. Further investigation is warranted to determine
whether controlling OPN levels in patients with DENV infection
by treatment with these compounds can prevent exacerbation of
the illness to DHF and DSS.
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