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ABSTRACT

We describe the conformational ensemble of the single-stranded r(UCAAUC) oligonucleotide obtained using extensive
molecular dynamics (MD) simulations and Rosetta’s FARFAR2 algorithm. The conformations observed in MD consist of
A-form-like structures and variations thereof. These structures are not present in the pool generated using FARFAR2.
By comparing with available nuclear magnetic resonance (NMR) measurements, we show that the presence of both A-
form-like and other extended conformations is necessary to quantitatively explain experimental data. To further validate
our results, we measure solution X-ray scattering (SAXS) data on the RNA hexamer and find that simulations result in more
compact structures than observed from these experiments. The integration of simulations with NMR via a maximum entro-
py approach shows that small modifications to the MD ensemble lead to an improved description of the conformational
ensemble. Nevertheless, we identify persisting discrepancies in matching experimental SAXS data.
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INTRODUCTION

An important step forward in understanding RNA structure
is the consideration of ensembles as the best descriptors of
flexible systems (Plumridge et al. 2019; Liu et al. 2021).
Folding behavior and intermolecular interactions of sin-
gle-strand RNAmolecules have implications in biopharma-
ceutical drug development, including rational design and
predicting delivery properties (Costales et al. 2020), as sin-
gle stranded antisense oligonucleotides (ASOs) have been
approved as drug products starting in 1998 (de Smet et al.
1999). To predict pharmacokinetic properties of native ver-
sus modified single stranded RNAs, advanced potential
functions and molecular dynamics can be used in conjunc-
tion with a variety of biophysical characterization methods.
To this end, solution state nuclear magnetic resonance

(NMR) spectroscopy provides an important tool to monitor
the dynamics experienced by single-stranded RNAs. A key
step in the interpretation of the NMR data is the site-spe-
cific resonance assignment, forming the basis of structural

analysis. However, the determination of the single-strand-
ed RNA structure, as well as its NMR spectral assignment
utilizing nuclear Overhauser effect (NOE) connectivities,
is complicated by the fact that oligonucleotides can adopt
a variety of conformations which can be difficult to decou-
ple into independent structure contributions to an ensem-
ble (Tubbs et al. 2013; Condon et al. 2015).
Molecular dynamics has been used to aid the interpreta-

tion of experimental NMR data into structures and
ensembles. Given an adequate amount of experimental
data, or a more structured helical system, structure predic-
tion yields good agreement with experimental observ-
ables (Bergonzo and Grishaev 2019). Though known to
have limited accuracy in predicting complete Boltzmann
weighted ensembles of structures (Sponer et al. 2018),
MD simulations can be used to effectively explore confor-
mational space and generate accurate structural predic-
tions for well-described free energy minima (Roe et al.
2014).
The accuracy of MD ensembles can be improved by in-

cluding experimental data in simulations, either a
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posteriori, as in reweighting or selection schemes, or dur-
ing simulations (Ward et al. 2013; Hummer and Köfinger
2015; Bonomi et al. 2017). For flexible systems, it is crucial
to consider experimental measurements as averages over
multiple conformational states, and this should hold true in
simulations as well.

Previous studies have shown how to obtain conforma-
tional ensembles of dynamic RNA by integrating solution
NMR data with extensive MD simulations using maximum
entropy approaches (Borkar et al. 2017; Reißer et al. 2020).
Furthermore, through the use of this reweighting tech-
nique, it has been possible to identify inaccuracies both
in the force field and in the experimental data (Bottaro
et al. 2018). Force field improvements can be achieved
by investigating systems that are large enough to display
a high degree of structural complexity, yet simple enough
to be amenable to extensive, converged simulations
(Bottaro and Lindorff-Larsen 2018). To expand the reper-
toire of such systems, here we provide an atomic-level de-
tailed structural description of the UCAAUC RNA hexamer
oligonucleotide using extensive MD simulations in combi-
nation with available NMR (Zhao et al. 2020) and newly
measured solution X-ray scattering (SAXS) experimental
data. First, we find that two recent MD force fields, namely
AMBER FFLJbb (Bergonzo and Cheatham 2015) with OPC
water (Izadi et al. 2014) and ROC-RNA (Aytenfisu et al.
2017) with TIP3P water, both produce ensembles contain-
ing single-stranded, A-form-like structures but with differ-
ent conformational preferences. Both ensembles share
almost no overlap with the structures generated using
Rosetta’s FARFAR2 algorithm (Watkins et al. 2020).
Second, we compare the computational results with
solution experiments, including chemical shifts, 3J scalar
couplings, NOE, and SAXS data. We examine the comple-
mentary roles played by these experimental data types
and show that MD force fields provide a more accurate de-
scription of the structure ensemble compared to
FARFAR2. Finally, we integrate NMR data into simulations
a posteriori using Bayesianmaximumentropy reweighting,
and describe a conformational ensemble that agrees with
all available experimental data.

RESULTS

FFLJbb, ROC-RNA, and FARFAR2 produce different
conformational ensembles

We compare three conformational ensembles of the
UCAAUC RNA hexanucleotide obtained by extensive
MD simulations using the FFLJbb (Bergonzo and
Cheatham 2015) and ROC-RNA (Aytenfisu et al. 2017)
force fields (see Materials and Methods), and using
Rosetta’s FARFAR2 (Watkins et al. 2020) algorithm. MD
simulations of r(UCAAUC) with the widely used FFOL3
force field (Zgarbová et al. 2011) and TIP3P water have

been shown to be less accurate compared to ROC-RNA
(Zhao et al. 2020) and are thus not included in this study.
MD ensembles were generated using multidimensional
replica exchange MD, where temperature and biased
dihedral force constant scaling were combined
(Bergonzo et al. 2014). Two simulations were initiated
from either A-form or extended linear structures, and
throughout the manuscript we show results from each in-
dependent simulation. Convergence was analyzed by
comparing the top five principal components as well as
the results of cluster analysis and indicate that the indepen-
dent simulations are sampling highly similar conformation-
al populations (Supplemental Information 1 and 2).

FFLJbb populates conformations very close to the ca-
nonical A-form, as well as distant ones as judged by the
histogram in Figure 1A. The structural dissimilarity is
here evaluated using a nucleic acid-specific distance
called ellipsoidal root-mean-square distance (eRMSD)
that only considers the relative arrangements between
nucleobases in a molecule (Bottaro et al. 2014). For
ROC-RNA, we observe one large peak around eRMSD=
0.75, indicating this ensemble to be less heterogeneous
compared to FFLJbb. In FARFAR2, instead, all structures
are distant from A-form. The distribution of the radii of gy-
ration (Fig. 1B) shows that FFLJbb is more extended com-
pared to ROC-RNA and FARFAR2, and all three
ensembles are on average more compact with respect to
the ideal A-form (dashed line in Fig. 1B). To evaluate the
degree of overlap between the ensembles, we show in
Figure 1C a uMAP projection (McInnes et al. 2018) ob-
tained by aggregating all samples. While FFLJbb and
ROC-RNA partially overlap, FARFAR2 samples are located
in a different region of this plane. By cluster analysis and vi-
sual inspection, we identified in the MD samples A-form-
like structures (Aform), C6-inverted (C6-I) (Zhao et al.
2020), C6-bulged (C6-B), U5-bulged (U5-B), C2-bulged
(C2-B), and U1-bulged (U1-B) conformations. These struc-
tures represent altogether ≈50% of the FFLJbb ensemble,
with the remainder being intermediate or other lowly pop-
ulated conformations. C6 inverted conformations are high-
ly populated (75%) in ROC-RNA ensembles (Fig. 1D); A-
form and C6 bulged structures are observed as well, but
with lower populations. FARFAR2 ensemble, instead, is
composed by a diverse set of compact structures
with several intra-molecular interactions, none of them
being similar to A-form-like structures (Supplemental
Information 3).

MD simulations better agree with NMR and SAXS
measurements compared to FARFAR2

The conformational ensemble from MD simulations is in
qualitative agreement with NMR data that suggest a dom-
inant A-form state in equilibrium with C6-inverted, C6
bulged, and C2-bulged conformations (Zhao et al. 2020).
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These structures are observed in the FFLJbb ensemble
(Fig. 1C,D), and to a lesser extent in ROC-RNA as well. To
quantify this agreement, we compare experimental data
with ensemble averages calculated for different data sets:
chemical shifts (CS), NOE, 3J scalar couplings, unobserved
NOE (uNOE), ambiguous NOE (ambNOE) (Zhao et al.
2020), and SAXS. For each data type, we report theX2 cal-
culated for two independent simulations in Figure 2 (see
Materials and Methods section). Since X2 is defined as
the average squared difference between calculated and
experimental measurements normalized by the experi-
mental errors (see Equation 3 in Materials and Methods),
values below one are typically considered acceptable
(Gull andDaniell 1978). Scatter plots showingexperimental
versus calculated averages for NMR data are shown in

Supplemental Information 4–8. We find that FFLJbb is in
better agreement with NOEs, scalar couplings, and SAXS
data compared to ROC-RNA and FARFAR2, and that
ROC-RNA better agrees with ambiguous and unobserved
NOEs. Note also that the sensitivity, positive predictive val-
ues, and accuracy calculated from NMR data also suggest
FFLJbb to be more accurate compared to ROC-RNA and
FARFAR2, as shown in Table 1 (Zhao et al. 2020).
Note that a single, ideal A-form structure is in poor

agreement with experimental data, except for unobserved
NOEs. These results show that (i) a single A-form structure
could not explain the NMR data, as previously described
(Zhao et al. 2020) and (ii) at least a fraction of conformations
in the computational ensembles do violate unobserved
NOEs, indicating the presence of structures not compati-
ble with experimental evidence.
FARFAR2 is awidely used RNA structureprediction algo-

rithm that has been recently used to perform ensemble re-
finement of flexible regions with improved results
compared toMD (Shi et al. 2020).While the agreement be-
tween FARFAR2 and experiments is poorer compared to
FFLJbb and ROC-RNA,X2 do not significantly exceed uni-
ty for all NMRmeasurements. This is to someextent surpris-
ing, as A-form structures are completely absent from
the FARFAR2 ensemble (Fig. 1A,C,D; Supplemental
Information 3). We observe even larger deviations for

FIGURE 2. Agreement between NOE, 3J scalar couplings, unob-
served NOE (uNOE), chemical shifts (CS), ambiguous NOE
(ambNOE), and SAXS data, as labeled. As a reference, the X2 relative
to the ideal A-form structure are 6.13 (NOE), 0.02 (uNOE), and 4.82
(ambNOE), while the values for CS, J3, and SAXS are shown as dashed
lines. The two bars show the statistics calculated on two independent
runs.

A

C

D

B

FIGURE 1. Structural analysis of r(UCAAUC) simulations. (A) eRMSD
from ideal A-form histograms. For each ensemble, the distributions
calculated for two replicates are shown in shade. (B) Radii of gyration
distributions of the three ensembles, as labeled. Averages are shown
as dots, and the horizontal dashed line indicates the radius of gyration
of an ideal A-form structure. (C ) MD simulations and FARFAR2 sam-
ples projected onto a uMAP 1/uMAP2 plane. The color scheme fol-
lows panels A and B: FFLJbb in blue, ROC-RNA in orange, and
FARFAR2 in green. The structures discussed in the main text are
labeled on the plane: A-form-like structures (Aform), C6-inverted
(C6-I), C6-bulged (C6-B), U5-bulged (U5-B), C2-bulged (C2-B), and
U1-bulged (U1-B) structures. (D) Population of different clusters, as la-
beled. The populations in FARFAR2 ensembles are zero for all
clusters.
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SAXS data in the FARFAR2 ensemble, in agreement with
the high degree of compaction of FARFAR2 structures
(Fig. 1B). Note that here we are using FARFAR2 outside
its original scope, as it has been designed to predict the
structure of largemolecules, and not to sample the equilib-
rium distribution of a flexible single-stranded RNA. None-
theless, common applications of FARFAR2 include
regions of possible conformational heterogeneity such as
loops and bulges, which strongly affect the long-range
RNA structure. Our observation of overcompactness,
consistent with exaggerated formation of intra-RNA inter-
actions, suggests the need for better validation of confor-
mations generated via this approach.

Figure 3 shows the experimental and calculated SAXS
intensities for the three ensembles. We find persistent dis-
crepancies between the ensemble-predicted and mea-
sured data, particularly at the lowest scattering angles,
suggesting the structures sampled in simulations to be
overly compact. This result is consistent with previous com-
putational studies (Tan et al. 2018).

Ensemble-averaged SAXS profiles calculated via FoXS
(Schneidman-Duhovny et al. 2010), one of the most popu-
lar data modeling methods, exhibit differences with the
measured data throughout the entire experimental resolu-
tion range, but particularly pro-
nounced at lowest q values. Indeed,
the calculated radius of gyration
(0.79 nm) is smaller than the experi-
mental one (0.88 nm). SAXS-reported
radii of gyration are affected by both
the RNA coordinates and the structure
of the surface solvent layer. With FoXS
placing surface solvent directly on top
of the surface-facing atoms rather than
offset from them, its use could lead to
underestimation of the predicted radii
of gyration. To investigate this issue,
we repeated SAXS data prediction
via two additional techniques, both
of which position surface solvent layer
outside the volume occupied by the
RNA—Crysol (Svergun et al. 1995)
and AXES (Grishaev et al. 2010). Cry-

sol uses a layer of uniform electron density to represent
the surface solvent implicitly, while AXES uses all-atommo-
lecular representation via frames from an MD simulation of
a water-filled volume, with solvent represented explicitly.
We find the agreement between themeasured andensem-
ble-predicteddata improving fromFoXS toCrysol toAXES,
with X2 values decreasing by factors of 2.2, and 1.9, re-
spectively. Since AXES leads to the best agreement be-
tween the measured and model-predicted data, we use it
throughout the manuscript. The impact of the effects
such as the distribution of the surface counter ions on the
low-angle scattering data is minor as the differences be-
tween the SAXS-extracted radii of gyration for the buffers
containing 150 mmol/L and 75 mmol/L NaCl do not ex-
ceed 0.01 nm.

Conformational ensemble of r(UCAAUC) by
integrating MD and NMR

The agreement with experimental data can be further im-
proved by using reweighting techniques. In such ap-
proaches, the weight of each sampled set of coordinates
is adjusted so that the resulting ensemble averages more
closely match experimental measurements compared to
the original ensemble. In previous studies, we have used
the BME approach (Bottaro et al. 2020a) to provide an ac-
curate description of structure and conformational hetero-
geneity of RNA tetranucleotides and tetraloops (Bottaro
et al. 2018, 2020b). We use a similar approach here and in-
tegrate experimental data with simulations. In BME, as in
many optimization procedures, the user needs to set the
value of a regularization parameter (θ). Small values of θ
correspond to a better fit (small X2), whereas in the limit
of large θ one approaches the X2 obtained using the orig-
inal ensemble. At the same time, it is possible to monitor
the X2 relative to data that were not used for reweighting

FIGURE 3. (Top panels) Experimental SAXS curve (gray) and average intensities calculated
from the ensembles, as labeled. The normalized difference between the two is shown in the
bottom panels.

TABLE 1. Sensitivity, positive predictive value (PPV), and
accuracy for different ensembles as defined in Zhao et al. (2020)

Sensitivity PPV Accuracy

A-FORM 0.61 0.61 0.61

FFLJbb 0.77/0.76 0.73/0.70 0.75/0.73

ROC-RNA 0.67/0.67 0.66/0.66 0.66/0.66
FARFAR2 0.64/0.63 0.61/0.60 0.63/0.62

Values from two independent simulations are reported.
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(i.e., a validation set): by doing so it is usually possible to
identify a range of θ values that provide a trade-off be-
tween overfitting and underfitting.
What we observe here is that when we reweight using

NMR data, the X2 relative to SAXS (not used for reweight-
ing) is marginally affected (Supplemental Information 9).
This observation holds across a wide range of θ values
and for all ensembles, indicating that SAXS data are sensi-
tive to the detailed structural information contained in
NMR measurements to a small extent.
Conversely, fitting to SAXSdata results in a sharp increase

of X2 relative to NMR data for small values of θ. By inspect-
ing the structural properties of SAXS-reweighted MD en-
sembles, we observe that large weights are associated
with extended non-A-form structures. Taken together,

these results indicate that at least a
fraction of the samples in MD simula-
tions are correct on a local scale, but
they all possess a degree of compac-
tion that is not fully compatible with
SAXS measurements.

This inherent limitation of all compu-
tational ensembles makes it difficult to
combine both NMR and SAXS data at
the same time. Therefore, we proceed
by describing the conformational en-
semble obtained by reweighting the
ensemble that best agrees with all
available data (FFLJbb) using only
NMR data (Fig. 4).

By construction, the agreement
with chemical shifts, NOE, and scalar
couplings improve in the reweighted
ensemble. The most significant im-
provement is observed for uNOE,
and the X2 goes to zero, meaning
that no uNOE violations are present
in the reweighted ensemble. Ideally,
we would expect the X2 for SAXS
data (not used for reweighting) to be-
come smaller. Instead, it increases by
a small amount, likely consistent with
the previously noted complementari-
ty between the global long-range
SAXS data and local short-range
NMR restraints such as NOEs, scalar
couplings and chemical shifts.

The weights obtained from inte-
grating FFLJbb and NMR can be
used to calculate any observable of
choice. As an example, in Figure 4B
we report the population of the most
variable torsion angles. Residues U1
to U5 are compatible with A-form-
like conformations, where pucker an-

gles are predominantly in C3′-endo conformation and α/
ζ in gauche−. C6 shows a higher degree of flexibility,
both around the phosphate group as well as in the sugar.
From the FFLJbb+NMR ensemble, we estimate a popula-
tion of C2′-endo in C6 of 32%. Note that this percentage is
compatible with the estimate obtained from 3J scalar cou-
plings alone (31%±5%) (Zhao et al. 2020). We note the
presence of structures with X angles in high-anti-confor-
mations (>270°) that have been described in previous sim-
ulation studies as possible force field artifacts (Mlynsky
et al. 2010; Chen and García 2013; Bergonzo et al.
2015). The presence of high-anti-rotameric states in
FFLJbb is below 5% for pyrimidines and in the range
10%–15% for A3 and A4. Since their population is margin-
ally smaller in the reweighted ensembles, we conclude

A

C

B

FIGURE 4. FFLJbb MD ensemble reweighted using NMR data. (A) Agreement with experi-
mental data measured as X2 before (blue bars) and after reweighting (gray bars). (B)
Population of rotameric states for each residue: α gauche−, δ in C2′-endo, and ζ in gauche−

conformation, as indicated. (C ) Cluster populations before and after NMR reweighting. The
two bars in all panels indicate averages calculated over two independent simulations.
Representative three-dimensional structures are shown next to each bar. Nucleotides that
deviate from the canonical A-form conformations are shown in red.
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that these high-anti-states might be force-field artifacts,
but their presence could not be ruled out completely given
the available experimental and simulation data.

We report in Figure 4CNMR-adjusted cluster populations
(seealsoFig. 1D). The inclusion ofNMRdatabrings thepop-
ulation of A-form structures between 27.8% and 32.4%
(≈+11% with respect to the original FFLJbb ensemble).
The population of C6 inverted conformations is 3.4%–6%,
in agreement with the NOE-based estimate of 6% (Zhao
et al. 2020),while thepopulationsofother clusters arebelow
5% and are essentially unchanged upon NMR reweighting.

The weighted average radius of gyration is 0.78 nm, un-
changed or marginally smaller compared to the original
FFLJbb ensemble. Note that this value is smaller than
the experimental value of 0.89 nm ±0.01 nm obtained
by SAXS measurements, and that both ROC-RNA and
FARFAR2 provide more compact structures (Fig. 1B).

DISCUSSION

We started this work as an exercise in calculating the struc-
ture ensemble for an RNA hexamer that was reported to
have a more complicated composition than a single A-
form conformation (Zhao et al. 2020). Through calculating
a highly converged ensemble using enhanced sampling,
we hypothesized that any errors with respect to the exper-
imental NMR data could be used to quantify errors by the
force field. Due to the diversity of the available experimen-
tal data including NOEs, chemical shifts, 3J coupling con-
stants, we expected to correlate deviations from forward
predictions based on the complete structure ensemble
to specific force field terms, i.e., matching 3J coupling con-
stants to limitations in specific torsions, or chemical shifts
to balance electrostatic interactions between RNA and wa-
ter. What we found was that the current FFLJbb force field,
used with theOPCwatermodel, reproduced experimental
observables from NMR to a high degree—in fact,
reweighting only minimally changed the ensemble. By
running better converged simulations of the ROC-RNA
force field, we were able to confirm the overstabilization
of C6 bulged and inverted structures, resulting in a much
more homogenous ensemble compared to FFLJbb.

A key result here, that has been recorded elsewhere as
well (Zhao et al. 2020), is that a single conformer descrip-
tion of these short and seemingly simple oligonucleotides
is insufficient. It is incorrect to describe even these short
RNAs as “a structure,” when they are an ensemble that
contributes to a whole. A single ideal A-form structure de-
viated from the experimental NOEs including ambiguous
as well as chemical shifts, lacking the structure diversity
to fit these observables.

We tried to generate other ensembles to test whether or
not having an accurate force fieldmade adifference, versus
a non-MD-based functional in Rosetta, FARFAR2, which
has been used recently to predict nucleotide bulge confor-

mations via a sample-and-select scheme (Shi et al. 2020). In
summary, the results tell us that simply using any ensemble
is insufficient—ensembles better matching experimental
data are generated using FFLJbb. While the FARFAR2 en-
semble tends to fit theNOEs relatively well, there are slight
deviations from experiment for 3J coupling constants and
more so for the chemical shifts and SAXS data.

This result suggests that multiple, independent experi-
mental observables are important to assess the accuracy
of heterogeneous structural ensembles. Furthermore, it is
essential to sample the “correct” structures in order for
reweighting to be accurate (Rangan et al. 2018).

We find that residual discrepancies with respect to the
SAXS data cannot be accounted for by systematic errors
of SAXS curve prediction from the RNA coordinates, which
may be reflecting a degree of imbalance between the in-
tra-RNA and RNA-solvent interactions carried by the force
fields tested here (Salsbury and Lemkul 2021). More work
needs to be done to correct for these effects before
SAXS data can be used to reweight conformationally het-
erogeneous ensembles in combination with the NMR
data (Plumridge et al. 2017; Bernetti et al. 2021).

MATERIALS AND METHODS

MD simulation setup

An initial RNA structure was built linearly from the sequence (U5 C
A A U C3) using tLEaP in Amber18. The A-form RNA was built us-
ing the NAB functionality in Amber18 (Case et al. 2018), specify-
ing an A-RNA helix and deleting the complementary strand. The
force field used, abbreviated FFLJbb (Bergonzo and Cheatham
2015), combines modified phosphate oxygen van der Waals pa-
rameters (Steinbrecher et al. 2012) with previous revisions to
FF99 (Wang et al. 2000; Pérez et al. 2007; Zgarbová et al. 2011).
The RNAbuilt with FFLJbbwas solvatedwith 3000OPCwatermol-
ecules (Izadi et al. 2014). The RNA built with ROC-RNAwas solvat-
ed with 3000 TIP3P water (Jorgensen et al. 1983). A truncated
octahedron box with 1.2 nm buffer from the nucleic acid atoms
was used, and five Na+ ions were added to neutralize the RNA hex-
amer’s charge, with the addition of six Na+ ions and Cl− ions to
yield a concentration of 80 mmol/L, where Joung–Cheatham
(Joung and Cheatham 2008) monovalent ion parameters were
used. A canonical ensemble was implemented with a Langevin
thermostat to regulate temperature, with a collision frequency of
5 psec−1 (Loncharich et al. 1992). Exchange between neighboring
replicas was attempted every 1 psec. Cutoff for calculating direct
space electrostatic interactions was 0.9 nm. SHAKE was used to
constrain bonds to hydrogens (Ryckaert et al. 1977), and hydrogen
mass repartitioning was implemented, increasing the mass of each
solute hydrogen to 3.02 Da and decreasing the mass of the heavy
atom to which each solute hydrogen atom is bonded by the same
amount, allowing a 4 fsec time step (Hopkins et al. 2015). Two 1mi-
crosecond multidimensional replica exchange MD (M-REMD)
(Bergonzo et al. 2014) simulations were performed, starting from
each of the initial configurations described above. The tempera-
ture range used was as follows, in Kelvin: 277, 279.98, 282.98,
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286.01, 289.07, 292.15, 295.26, 298.39, 301.55, 304.77, 307.99,
311.23, 314.5, 317.8, 321.13, 324.48, 327.86, 331.28, 334.72,
338.19, 341.69, 345.21, 348.77, 352.36. The range was calculated
using an online generator (Patriksson and van der Spoel 2008). The
dihedral force constant bias (Bergonzo et al. 2015) was used over
the following range: 1.000 0.971 0.942 0.912 0.883 0.854 0.825
0.796 0.766 0.737 0.708 0.679 0.650 0.620 0.591 0.562 0.533
0.504 0.474 0.445 0.416 0.387 0.358 0.328.

NMR data and forward models

We compare the results of our MD simulations with previously
published NMR data (Zhao et al. 2020). Specifically, we consider
64 NOE measurements, 577 unobserved NOEs, 94 chemical
shifts and 39 3J scalar couplings. NOEs are calculated from
5000 evenly spaced frames from the last half of each simulated
trajectory (total 10,000 frames) as

NOECALC =
∑n

j

wjr−6
j

[ ]− 1
6
. (1)

The index j runs over the n frames/models with associated
weight Wj, and r is the proton–proton distance. The original
data set contains 13 ambiguous NOEs that are calculated by sum-
ming the contribution from both nuclei pairs (Zhao et al. 2020):

ambNOECALC

∑n

j

wj (r1−6
j + r2−6

j )

[ ]− 1
6
. (2)

We use Larmor D (Frank et al. 2014) to calculate hydrogen and
carbon chemical shifts from simulations, while scalar couplings
are computed using Karplus equations as defined in the software
package BaRNAba (Davies 1978; Lankhorst et al. 1984; Ippel et al.
1996; Marino et al. 1999; Condon et al. 2015; Bottaro et al. 2019).

Bayesian/maximum entropy (MaxEnt) ensemble
refinement

The MD simulation ensemble is refined a posteriori by including
experimental information into the simulation’s ensemble. The re-
finement is obtained by assigning a new weight to each MD
frame, in such a way that the averages calculated with these
new weights match more closely a set of input (or “training”) ex-
perimental data within a given error. This is achieved by minimiz-
ing the following function of the weights W=W1 …Wn (Hummer
and Köfinger 2015):

T(w ) = x2(w )− uSREL(w)

T(w) = 1
m

∑m

i

(,F(x).i − FEXP
i )2

s2
i

+ u
∑N

i=1

wi log
wi

w0
i

( )
. (3)

This corresponds to minimizing the deviation from the experi-
mental measurements (X2) with an entropic regularization term
(SREL). The index i runs over m experimental measurements
Fi
EXPwith associated uncertainty σi, while<F(x)>i indicates the cal-

culated measurement averaged over the ensemble. The initial
weights W0

i are set to 1/N ∀ i. In the present work, we perform
the ensemble refinement using the Bayesian/MaxEnt (BME)

code (Bottaro et al. 2020a). The regularization parameter θ was
chosen using a k-fold cross-validation procedure.

SAXS

The r(UCAAUC) hexamer was ordered from Integrated DNA
Technologies and purified using high-performance liquid chro-
matography. It was dialyzed into buffers containing 50 mmol/L
tris(hydroxymetyl) aminomethane (TRIS), 0.1 mmol/L ethylenedi-
aminetetraacetic acid (EDTA), and either 75 mmol/L NaCl or
150 mmol/L NaCl at pH 6.2 to a final concentration of 2.4 mg/
mL. Data were collected at 283K and 298K for RNA con-
centrations of 0.6 mg/mL, 1.2 mg/mL, and 2.4 mg/mL using
MOLMEXGanesha instrument at IBBRwith the sample to a detec-
tor distance of 355 mm. As data collected at two lowest concen-
trations were completely consistent, buffer-subtracted scattering
intensity profiles at 1.2 mg/mL RNAwere used for further analysis.
Theoretical SAXS profiles were predicted from the coordinates of
the MD trajectories using FoXS (Schneidman-Duhovny et al.
2010), Crysol (Svergun et al. 1995), and AXES (Grishaev et al.
2010). Ensemble averages were fitted by linear regression to
the experimental profile. The fitting parameters were used to
scale and shift the calculated average to the experimental profile
before calculating the X2 as defined in Equation 3 (Gull and
Daniell 1978).

FARFAR2

The FARFAR2 program in Rosetta was used to generate the
“FARFAR2” ensemble. 10,000 structures were generated based
on the six-residue sequence, and later refined with the high-reso-
lution Rosetta potential (Watkins et al. 2020).

Cluster analysis

Cluster analysis was performed based on similarity, using the
heavy atom root mean square deviation (RMSD) of all residues.
The last half (500 nsec) of each M-REMD simulation was used.
K-means clustering was used to generate eleven clusters, after
optimization of theDavies–Bouldin index and pseudo F clustering
metrics (see Supplemental Information). The initial set of points
chosen was randomized.

uMAP

The low-dimensional uMAP projection (McInnes et al. 2018) was
performed using the uMAP Python package version 0.5.1 with
nneighbors=60 and using the collection of G-vectors (Bottaro
et al. 2014) as input features. Cluster members were defined as
all structures with eRMSD<0.6 from one of the reference struc-
tures described in Figures 1 and 4.

DATA DEPOSITION

MD and FARFAR2 structure ensembles and experimental data in
tabular format are hosted on github (https://github.com/sbottaro/
UCAAUC).
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What are themajor results described in your paper and how do
they impact this branch of the field?

Multiple, independent experimental observables are necessary to
assess the accuracy of heterogeneous RNA, which is best de-
scribed as an ensemble instead of a single structure. The impact

of these results to the field details how to generate and assess
these ensembles, telling us that molecular dynamics (MD) simula-
tions yield more descriptive ensembles versus non-MD-based
functionals.

What led you to study RNA or this aspect of RNA science?

RNA is more interesting than just what’s going on in its helical/or-
dered regions. The questions of how to represent something in-
herently flexible, so we can understand it better, has always
interested me. MD simulations make a great tool for investigating
the dynamics of RNA.

During the course of these experiments, were there any
surprising results or particular difficulties that altered your
thinking and subsequent focus?

The surprising results were from the Rosetta FARFAR2 predicted
ensemble. While the ensemble “fits” the NOE data, that is really
because the NOE data tells us less about different conformations
than it does about intra-residue distances, which are all pretty
fixed. It helped reinforce that we should be comparing to multiple
experiments, and a robust MD force field will do a good job ap-
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