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ABSTRACT: Utilizing the replica exchange transition interface
sampling (RETIS) technique, we simulated the dynamics of sodium
chloride dissociation in water. Subsequently, the resulting trajectories
were analyzed using predictive power analysis (PPA), enabling the
identification and quantification of collective variables (CVs) capable
of forecasting the reaction occurrence. We improved the robustness of
the PPA method by incorporating the Savitzky-Golay (SG) filter on
integrated histograms, effectively avoiding the limitations associated
with binning. Applying this adapted PPA method, the previously
designed solvent parameters and distances from the index invariant
distance matrix were assessed. This revealed that the sixth closest
oxygen to sodium serves as an equally effective predictor as the best
complex solvent parameter. The latter, however, required more knowledge and human intuition as an input for its design, while the
former provided such intuition purely as an output. Through a comparable analysis, the chloride solvation shell appears to contain
less predictive information. Employing a linear combination of several CVs can further enhance predictability, albeit at the expense
of a reduced human interpretability.

1. INTRODUCTION
With the rapid advancement of computers, molecular dynamics
(MD) simulations have facilitated the study of increasingly
relevant processes on the atomic scale. Still, the accessible time
and length scales of plain MD are generally not large enough for
studying chemical and (bio)physical processes that typically
evolve within an aqueous solution. These processes often
involve water molecules actively participating in the reaction or
require significant reorganization of the hydrogen bond
network, adding to their complexity. This means that even if
the relevant computational data can be generated, identifying
and interpreting these types of relevant solvent motions remains
challenging. Auxiliary simulation methods have, therefore, been
developed for both sampling and analysis, which can be utilized
in conjunction with MD.

Rare event simulation techniques address processes that occur
infrequently per wall-time for standard MD.1 The time required
to observe a single transition event in MD obviously varies
depending on the system, the available computer hardware, and
the level of theory, with ab initio MD being significantly slower
than classical MD. Regardless of these parameters, simulation
times for processes such as nucleation, chemical reactions,
protein folding, and phase transitions can literally take centuries.

Sampling acceleration methods can be broadly categorized
into two groups: those centered on free energy principles and
those rooted in dynamics. The former, exemplified by umbrella
sampling (US),2 metadynamics,3 and adaptive biasing force

(ABF) methods,4 alters the energy landscape to facilitate
exploration across reaction barriers, enabling derivation of
thermodynamic properties. However, these approaches lack
direct capture of the natural dynamics of rare events due to their
artificial nature. In contrast, methods in the second category,
such as transition path sampling (TPS),5 transition interface
sampling (TIS),6 and replica exchange TIS (RETIS),7 generate
trajectories that faithfully follow the true equations of motion
and utilize Monte Carlo (MC) techniques to enhance barrier-
crossings. These approaches not only yield insights into
thermodynamics but also provide direct information about the
actual dynamics of rare events.

In terms of analysis, the free energy methods naturally hinge
on interpreting the free energy surfaces, which offer insights into
(meta)stable states and barriers. However, the utility of this
information is heavily contingent on the selection of collective
variables (CVs). When the chosen CVs fail to capture
dynamically relevant mechanisms, free energy barriers converge
poorly, and even if they converge, the CV-dependent barriers are
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too low compared with the dynamically relevant reaction
barriers. Consequently, the transition state theory (TST) often
significantly overestimates reaction rates, while corrections like
the reactive flux method8 face challenges due to very low
transmission coefficients. Yet, if CVs are well chosen and capture
the dynamics of the transition, the dimensionality of the CV
space can, in principle, be reduced to a single optimal reaction
coordinate (RC). In this scenario, the free energy projected onto
this optimal RC yields the actual reaction barrier, with its
maximum corresponding to the transition state dividing surface.
Transitioning across this surface, toward either the product or
reactant state, is assumed to proceed directly to those states
without recrossing, rendering TST exact. The pursuit of this
surface, such as through variational TST,9 is a central objective
in these methods.

On the other hand, path sampling methods are often
combined with committor analysis. Here, each phase point
corresponds to a specific committor value, indicating the
likelihood of the system entering the product state without
passing through the reactant state. While committor proba-
bilities are binary for deterministic dynamics, they range from 0
to 1 for stochastic dynamics. Points with the same committor
value form isocommittor surfaces. While the true committor is
defined in the phase space, it is common to compute the
configuration space committor through velocity averaging,
based on the assumption that the relevant dynamics behave
effectively Brownian. The transition state dividing surface, if it
exists, corresponds to the configuration-space isocommittor 1/2
surface. The latter, however, even exists when recrossings are
unavoidable. Unfortunately, computing committor surfaces is
computationally expensive. Approaches based on Bayesian
statistics have been developed to accelerate this process,10 but
they still require extensive additional simulations, even after a
full rate evaluation via RETIS has been completed.

A related method utilized in this study is the predictive power
analysis (PPA) method.11,12 PPA serves as a pure postsimulation
analysis method, relying on the output of a RETIS simulation.
The method assesses the distributions of the first crossing points
with interfaces defined by specific values of the one-dimensional
RC used in the RETIS approach. These crossing points are then
characterized in terms of other CVs. Depending on the
progression after the crossing, they are categorized as either
“reactive” (r) or “unreactive” (u). By histogramming the two sets
of points in the CV space, two distributions can be obtained, and
the most predictive CVs are those that minimize the overlap
between these distributions. This analysis can be performed for
several interfaces and, in principle, can even be used to
determine isocommittor surfaces without doing additional
simulations.11 Note that the RC used here does not necessarily
represent an optimal coordinate, and throughout this article we
use the terms reaction coordinate and order parameter
interchangeably.

In this article, we utilized RETIS simulations and
subsequently applied PPA to probe the dissociation reaction
of sodium chloride in water. While this transition is not
exceptionally rare and could in principle be explored through
brute force MD, albeit with reduced precision, it serves as a
fundamental example where the solvent rearrangement
profoundly influences the transition process.13 Consequently,
understanding the mechanism of aqueous NaCl dissociation has
been a focal point in numerous experimental14 and computa-
tional15−18 studies. Despite this, the dissociation mechanism
remains not fully understood. Here, we leverage the NaCl model

system not only to gain deeper insights into the mechanism but
also to refine the PPA method for enhanced robustness,
employing smoothed density approximations through Sa-
vitzky−Golay (SG) filtering to replace bin-based histograms.
Additionally, we explore approaches for identifying CVs with
significant predictive capacity that are intuitive and obtainable
without a prior knowledge of the mechanism.

2. METHODOLOGY
2.1. Replica Exchange Transition Interface Sampling.

Instead of generating a single lengthy dynamical trajectory from
initial conditions as in plain MD, path sampling utilizes MD
integration to advance both forward and backward in time from
shooting points,19 resulting in numerous short trajectories.
Within each temporal direction, trajectories are halted upon
entering or exiting stable states, and each trajectory is
subsequently accepted or rejected based on a Metropolis−
Hastings MC scheme.20,21 Trial paths not fulfilling the
ensemble’s criteria are always rejected. A randomly selected
phase point of the last accepted trajectory is perturbed and
served as a new shooting point. The MC detailed-balance
scheme ensures that the same path distributions are generated as
if they were extracted from an exceedingly long plain MD
simulation. However, in path sampling, significantly more
computational time is allocated to the barrier region, resulting
in an exponential speedup relative to conventional MD.

The RETIS ensembles are based on both initial and final
conditions, alongside a minimum progress requirement,
evaluated via a series of nonintersecting interfaces. These
interfaces correspond to hypersurfaces in the configuration or
phase space, each linked to a fixed RC value λ0, λ1, ..., λn. The
initial and final interfaces, λ0 = λA and λn = λB, delineate the
boundaries of the reactant state A and product state B,
respectively. This description marks one of the key advantages
of the (RE)TIS method, as the RC can be arbitrarily simple if it
can discriminate between state A and state B and is capturing the
progress in between. The intermediate interfaces are strategi-
cally placed to optimize the computational efficiency. The path
ensemble [i+] encompasses all trajectories starting by crossing λA
toward the barrier region and concluding by re-entering A or
entering B, while also mandating the crossing of λi. The [0−]
path ensemble explores the interior of state A. RETIS enhances
TIS’s sampling efficiency by integrating replica exchange moves
between these ensembles.7

Note that the use of replica exchange in RETIS differs
fundamentally from conventional replica exchange techniques
such as parallel tempering22 and Hamiltonian replica
exchange.23 These methods rely on energy-based acceptance
probabilities, which decay exponentially with the system size due
to the extensive nature of energy, thereby requiring an
increasingly large number of replicas for effective sampling. In
contrast, RETIS performs exchanges between path ensembles
defined solely by interface-crossing conditions without altering
the temperature or the potential energy surface. As a result,
RETIS achieves system-size-independent acceptance rates with
the number of required interfaces determined only by the height
of the reaction barrier.

After generating a significant number of paths in ensembles
[0−], [0+], ..., [(n − 1)+], rates can be determined using the
formula: k f P ( )AB A i

n
A i i0

1
1= |= + . Here, fA represents the

frequency for the system to transition out of state A, and
PA(λ′|λ″) denotes the conditional history-dependent probability
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for the system to reach λ′, given that it reached λ″ from state A.
The flux fA is calculated from the average path lengths in [0−]
and [0+],7 while PA(λi+1|λi) is estimated from the fraction of
sampled paths in the [i+] ensemble that cross the next interface
λi+1. The product of these probabilities yields the total crossing
probability PA(λB|λA), representing the very slight chance that
after exiting state A, the system manages to reach λB without
revisiting state A. This estimation can be further enhanced
through path reweighting techniques,11,24 incorporating
PA(λi+j|λi) with j > 1 into the estimation for the overall crossing
probability based on the weighted histogram analysis method
(WHAM).25

2.2. Predictive Power Analysis. RETIS ensembles include
trajectories that exhibit different levels of progress along the RC,
which can be studied to understand why some trajectories
advance further, potentially reaching state B, while others do
not. One approach is to visually inspect molecular simulation
movies to identify the molecular patterns and behaviors.
However, a more systematic data-driven analysis can be
performed using the PPA method.11 The method provides a
quantitative measure for assessing how well a CV or set of CVs,
distinct from the RC, can predict whether trajectories that reach
a specified crossing interface λc will also reach a defined reaction
interface λr. These interfaces can, but do not have to, correspond
to any of the RETIS interfaces and can be positioned: λA ≤ λc ≤
λr ≤ λB.

Let Ψ = (CV1, CV2, ..., CVm) represent the vector in the CV
space, when m CVs are selected as additional descriptors for the
reaction. From all the trajectories generated by the RETIS
simulation, the trajectories that cross λc are considered and
weighted11 such that the distribution of paths corresponds to the
statistical distribution that would result from cutting out the
segments of an infinitely long MD simulation. Subsequently, Ψ
values for the points of first crossing with λc are considered for
those paths, resulting in a distribution t(Ψ) at λc. This
distribution is further split into two distributions: the points
lying on paths that also cross λr and those on paths that do not.
These two distributions are denoted r(Ψ) and u(Ψ) with r(Ψ) +
u(Ψ) = t(Ψ).

Based on these distributions, the predictive capacity A
,r c

[ ]
provides a measure of how effectively the information about Ψ
predicts whether the transition to λr occurs after crossing λc. On
average, the probability of this transition equals ( )A

r c| .
However, if the chosen CVs are well correlated with the success
of the transition specific regions in the CV space should have a
significantly higher probability, i.e., r t( )/ ( ) ( )A

r c> | .
Nevertheless, regions at the λc interface with a high transition
probability should not be overly emphasized if only a small
fraction of the actual transitions pass through them. Therefore,
the predictive capacity is based on a weighted average of r(Ψ)/
t(Ψ), weighted by the fraction of reactive trajectories that pass
through Ψ: r( )/ ( )A

r c| . As shown in ref 11, this leads to the
following expression

r u
t

1 with

1
( )

( ) ( )
( )

d

A A

A
A

, ,

,
r c

r c r c

r c

[ ] = [ ]

[ ] =
| (1)

where A
,r c

is the overlap integral. One can show that
( ) 1A A

r c ,r c
| , where the lower and upper limits are

obtained for least and most predictive CVs, respectively.

2.3. Savitzky−Golay Fitting of Integrated Histograms.
While eq 1 provides a conceptual measure of predictive power
that is broadly applicable to any hypothesis set of CVs, its
practical implementation can be tricky and, if done incorrectly,
can lead to erroneous conclusions. Typically, estimating
distributions requires some form of histogramming, where
data is partitioned into intervals along each CV known as bins.
Each bin corresponds to a hypercube in the CV space with a
specific range, and the number of data points falling within each
bin is tallied. The selection of the bin size is critical, as it
influences the appearance of the histogram and the fidelity of the
distribution representation. Bins that are too wide may obscure
important details, while overly narrow bins can produce noisy
histograms. This presents challenges for the PPA approach, as
the binning method transforms the overlap integral into the
following summation

V r u

r u( )A
A q

q q

q q

, bin
r c

r c
=

| + (2)

with q being the bin-index and Vbin the bin-volume. With too few
large bins, the resolution may fail to capture the distinctiveness
between the shapes of the r and u distributions, resulting in an
underestimation of the predictive capacity. Conversely, if the
bins are too small, each bin may contain either zero or one data
point of type r or u, leading to a zero overlap and falsely
suggesting that 1A

,r c
= . In this article, we introduce an

approach to alleviate this problem for the m = 1 case, i.e., for a
one-dimensional Ψ, based on fitting integrated distributions
using the SG filter.

Let R and U denote the integrated distributions for r and u,
respectively, defined as R(Ψ) = ∫ −∞

Ψ r(Ψ′) dΨ′ and similarly for
U. Consider the CV values of the simulated data points {CV(1),
CV(2), ...}, ordered in increasing order, each point either
belonging to the r or u category. Due to the WHAM procedure,
these data points are not equally weighted. For each data point i,
part of r, we can estimate R(CV(i)) as R(CV(i)) = ∑j∈r

i wj/W,
where wj is the weight of data point j and W is the sum of all
(both r and u) weights. The integrated distributions can hence
be determined for all values on the CV axis represented in the
data set. Via a simple linear interpolation between these points,
the R and U curves are initially fitted on a regular grid using an
abundant number of grid points between the CV extrema.
Subsequently, we applied an SG fit using a second-order
polynomial with a window length lw covering approximately 1/
16 of the CV range, rounded to the nearest odd integer, as
required by the method. To eliminate boundary effects in the SG
fitting, the integrated curves are extended on both sides with
horizontal plateaus: on the left, at height zero and, on the right,
at the final value, each spanning one-quarter of the range of the
CV. From this, the derivatives�and consequently the r and u
curves�were derived, sidestepping the binning approach.

The relative window length of 1/16 was based on preliminary
analysis, as it provides sufficient detail while avoiding overfitting
the noise (Figure 1). Still, the overlap does not drop to zero
despite more spiky distributions when the window size is taken
too small. Using a polynomial order within the SG fit larger than
2 could lead to distributions with negative amplitudes, which
was, therefore, disregarded.
2.4. Collective Variables. The PPA method, in principle,

solely provides a measure of how valuable a CV or set of CVs is
for predicting the transition to λr when λc is crossed for the first
time since exiting state A. It does not provide a direct strategy to
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identify the relevant CVs themselves. In a previous study,12 a
small set of potentially relevant CVs was explored to study the
mechanism of water autoionization using decision trees based
on a large input set of CVs. The most prominent CVs were then
combined into an Ψ vector containing up to four CVs and tested
for their predictive capacity. The set of CVs with the highest
predictive capacity can be further analyzed, for example, by
assessing whether the dimensionality of the Ψ vector can be
reduced without significantly decreasing the predictive capacity.
It can be shown that this ultimately provides an approach to
obtain the committor based on the RETIS output alone, without
the need for additional molecular simulations targeted to get the
committor.11

However, the binning problem, where bins have too few data
points, becomes even more severe in a high-dimensional space,
as the number of bins scales exponentially with the dimension of
the Ψ vector. Additionally, our approach to mitigate this issue
(see Section 2.3) is practical only for a one-dimensional CV
vector. Therefore, we opted for a different machine learning
(ML) strategy in which linear combinations of a few CVs
directly provide a one-dimensional Ψ vector, whose predictive
capacity can be measured using the SG approach. Both the

combination of CVs and their coefficients are optimized with
respect to the predictive capacity for a particular set of λc and λr

using a simulated annealing (SA) approach.26 The number of
CVs in the linear combination was restricted for increased
interpretability and because we observed that the predictive
capacity only marginally improved by relaxing this constraint.

As inputs, we included a set of CVs that were previously
designed and analyzed for their ability to describe the
configuration-space isocommittor 1/2 surface,15 and addition-
ally incorporated the index-invariant distance matrices
(IIDMs).27 The latter requires only the assignment of an
anchor atom. From a full distance matrix, where the entry Mij at
row i and column j indicates the distance between atom i and j,
the matrix is first sorted by rows, initially by species and then by
distance to the center ion. Subsequently, columns within each
row are sorted in the same manner, first by species and then by
the distance to the corresponding row atom. This allows for
truncating the matrix to a desired dimension, effectively
capturing the local environment’s signature and focusing on
the nearby orientation around the anchor atom and its nearest
neighbors without necessitating a high-dimensional description.
To indicate the IIDM distances, we use the notation XYiZj to
represent the distance between atoms of species Y and Z, where
X is either Na+ or Cl−, indicating the anchor ion. In this notation,
Yi refers to the ith closest atom of type Y to X and Zj represents
the jth closest neighbor atom of type Z to Yi. To denote the
distance between an anchor atom and its ith closest Y atom, we
simply use XYi.

3. COMPUTATIONAL DETAILS
The transition paths between the associated and dissociated ion
pair were sampled using the RETIS method, implemented in
PyRETIS 2.5,28,29 interfaced with GROMACS version 2021.130

for performing the MD steps. The system consisted of 908
TIP4P water molecules31 and one ion pair of NaCl in a cubic box
with periodic boundary conditions. The integration of motion
was carried out with the OPLS-AA force field31 using the
velocity Verlet algorithm32 with a time step of 2 fs. Electrostatic
interactions were computed through the smooth particle mesh
Ewald (PME) of the fourth order with a grid spacing of 0.16
nm.33 A Verlet cutoff scheme and 3D-Ewald geometry are
applied, with the electrostatic and van der Waals cutoff radii set
to 1.4 nm.

To equilibrate the system and determine the box dimensions,
a plain MD simulation was run in the NPT ensemble using a
velocity-scale thermostat34 set at 300 K with time constant for a
coupling τt of 0.1 ps and a Parrinello−Rahman barostat35 at 1 bar
with a τp of 0.2 ps and an isotropic pressure coupling. After an
initial stabilization phase, the size of the cubic simulation box
oscillated around an average of 30 Å, which was then fixed for the
RETIS simulation. The RETIS simulations were run by using
deterministic NVE dynamics with uniform NVT shooting. In
this approach, any time slice of the latest accepted path has an
equal probability of being selected as a shooting point, after
which the velocities are completely regenerated from a
Maxwell−Boltzmann distribution corresponding to the target
temperature. By doing so, the total energy within a trajectory is
conserved but the energies differ between the sampled paths.
This situation mimics a molecular system that is weakly coupled
to a thermostat such that changes in the molecular system’s
energy are observable on a time scale that is substantially larger
than the average path length. The advantage over fully
thermostated dynamics is that the dynamics become more

Figure 1. Analysis of SG fitting procedure. (a) Raw integrated
distributions for NB (the number of bridging waters15), the fitted curves
using different SG-filter settings, and the progression of the resulting
overlap integral A

,r c
(eq 1) as a function of the upper integration

boundary. The number of grid points, ngp, to compute the raw
distributions was set to 10,000. All SG-fitted curves overlap with the raw
curves U and R within the thickness of the lines, except when the
window length exceeds one-sixth of the CV range. However, when
taking the derivatives, details that are invisible in the top panel become
apparent in the lower panels. The inset zooms in on the final value of the
overlap integral, demonstrating that all SG fits yield an A

,r c
value of

approximately 0.91, highlighting the robustness of the approach. (b,c) u
and r distributions obtained by taking the derivatives of the fits.
Notably, even the raw fits based on piecewise linearization without an
SG filter, though very spiky, do not show any zeros in the relevant
range�unlike what would occur with direct histogramming based on
10,000 bins. The SG fit with a polynomial order (polyn) of 3 is not
entirely physical, as the estimated distributions can become negative
(see the insets for a detailed view). The final SG setting was based on a
polynomial of second order with a window length equal to lw = ngp/16,
which provides sufficient details without producing overly spiky
overfitted distributions.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c00054
J. Chem. Theory Comput. 2025, 21, 4604−4614

4607

https://pubs.acs.org/doi/10.1021/acs.jctc.5c00054?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00054?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00054?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00054?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00054?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


physical because thermostats perturb the true Newtonian
equations of motion and also remove some element of
randomness, making the PPA method potentially more
insightful. Moreover, another argument for deterministic
dynamics is that the PPA method measures a time correlation
between the crossing of λc and the subsequent crossing of either
λr or λA. If λc is close to λr or λA, then the time interval between
these events can be shorter than the velocity autocorrelation
time, meaning that any artificial modification of the momenta
could have an impact. However, our preliminary simulations,
which were conducted with thermostated dynamics, showed no
noticeable differences in predictive capacity compared to our
production runs using NVE dynamics.

The RETIS runs were configured with a swapping and
shooting frequency of 0.5. During the shooting moves, the
PyRETIS program interacts with the GROMACS engine at
regular intervals of 5 MD time steps to update the RC λ and
instruct the engine to store the configuration. Consequently, all
analyzed trajectories had an effective time step of 10 fs. For the
RC, we chose the interionic distance between Na+ and Cl− as it is
a simple measure that continuously increases between the
associated state A and the dissociated state B. Based on some
preliminary runs, the RETIS interfaces along λ were set at the
positions: [3.2, 3.4, 3.6, 3.8, 4.1, 7.0] Å, where we aimed for local
crossing probabilities, ( )A i i 1| , to lie between 0.2 and 0.5,
which is considered to be close to optimal.36

The rate constant kAB was calculated based on the full set of
trajectories. For the PPA method, a subset comprising every
10th path in the MC chain was extracted for data efficiency. The
full run included 48,378 unique, accepted paths in the [i+]
ensembles, and 25,453 in the [0−], encompassing 3207 unique
full transitions from λA to λB. The subset used for PPA contained
20,977 unique paths, including 2538 transitions. Average path
lengths for the ensembles ranged from 822 to 10,720 fs. The
total number of MD steps, including rejections, was 1.8 × 108.
This resulted in a total wall time of approximately 8 days using
24 threads on Intel Xeon E5−2687W CPUs, distributed equally
across 6 ensembles.

Using the approach in Section 2.3, the integrated distributions
were mapped to a regular grid with 2000 grid points between the
maximum and minimum sampled values of the considered CV.
We extended the integrated distributions by 500 grid points in
both the maximum and minimum direction. They were then
smoothed using a second-order polynomial SG filter with a
window length of 125, the closest odd number to 2000/16.
Figure 2 compares the r and u distributions obtained using
standard binning and the SG approach for λc = 3.2 Å and λr = 7.0
Å, with the CV defined as NB, the number of bridging water
molecules.15 The SG approach demonstrates a substantially
improved resolution, ultimately enabling a more accurate,

robust, and reproducible calculation of the predictive capacity,
as described by eq 1.

In our effort to find the best, yet interpretable, CV, we
analyzed a set of 21 CVs from Mullen et al.15 This set includes
the number of bridging water molecules (NB), eight different
angles between the solvent and NaCl, and ten water densities
around the ion axis. Additionally, we evaluated two general-
izations of the IIDM,27 using either the sodium (Na+) or
chloride (Cl−) ion as the anchor atom. For both ion centers, we
calculated matrices containing the respective counterion, the 15
closest oxygen atoms, and the 30 closest hydrogen atoms,
resulting in a total of 4636 unique distances. These variables,
along with their linear combinations of up to three terms, Ψ =
αCVi + βCVj + γCVk, constrained by |α| + |β| + |γ| = 1, were
tested as one-dimensional CVs. Note that this constraint does
not limit the possible range of CVs, as an overall scaling of Ψ has
no effect on its predictive capacity. Each CV was made
dimensionless, with distance-based CVs divided by 1 Å and
density-based CVs divided by nm−3. In the process of linear
combinations, the input CVs were picked based on their
individual predictive power and combined with the combi-
nations function of the itertools Python library. The
coefficients were randomly altered, constrained by α,β,γ ∈
[−1,1], using MC moves within the dual_annealing
scheme37 from the SciPy Python library.38 Finding the
optimal combination was a 2-step process of a screening step
and a local search step. The screening was performed with an
initial temperature of 26,150, with the maximum number of
optimization iterations set to 200 when using 2 CVs in the linear
combination, and 1000 iterations when 3 CVs are included. The
most promising candidates identified during the screening phase
were further refined through a local search to minimize the
overlap.

4. RESULTS AND DISCUSSION
4.1. Rates and Crossing Probabilities. Figure 3 illustrates

the crossing probability, ( )A A| , as a function of λ, ranging
between λA = 3.2 and λB = 7 Å, obtained from the RETIS
simulation. The absence of a horizontal plateau at the end
suggests a diffusive ion drift and a moderately low barrier for the
reverse association transition. Consequently, the rate constant
kAB exhibits a weak dependency on the somewhat arbitrary
definition of the product state boundary λB, indicating that this
process lies on the borderline of the rare event category. This

Figure 2. Comparison of the u(NB) and r(NB) distributions obtained
using the SG filter approach versus standard binning.

Figure 3. Crossing probability ( )A
r c| against the order parameter

compared to the Helmholtz free energy F calculated by Ballard and
Dellago.16
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stands in contrast to other processes, such as water
dissociation12 or silicate condensation reactions,39 which
unequivocally fall within this category and display crossing
probabilities ending with a completely flat plateau. Based on the
defined boundaries, we obtained a total crossing probability of

( ) 3.7 10 5.7%A B A
2| = × ± with a flux of fA = 1728 ± 3

ns−1, resulting in a dissociation rate of kAB = 6.5 ± 0.4 ns−1.

4.2. Single Input CVs. Figure 4a presents a 2D visualization
of the crossing probability ( )A

r c| for all possible (λr, λc) pairs,
with a grid spacing of dλ = 1.9 × 10−2 Å. It is worth noting that
this grid spacing in λc and λr can theoretically be arbitrarily small,
as the computations of ( )A

r c| and A
,r c

[ ] are unaffected by
the aforementioned binning problem. The 2D plot in Figure 4a
directly follows from the results of Figure 3 using

( ) ( )/ ( )A A A A A
r c r c| = | | . From this figure, it is evident

that the crossing probability approaches unity when λr is close to
λc or when λc surpasses the dissociation barrier. In this region,
the predictive capability is less valuable, as A

,r c
[ ] is bounded

between ( )A
r c| and 1 for any set of CVs.

Outside this region, the predictive capacity can be
significantly higher than the crossing probability as is clear
from Figure 4b,c where we showed the predictive capacity
relative to the crossing probability, / ( )A A

, r cr c
[ ] | for the

best single input CV from ref 15 and the best distance from the
IIDM analysis.

The number of bridging waters NB and the distance between
the sodium ions and its sixth closest oxygen, Na+O6, show
predictive capacities that are up to a factor of 2.4 larger than the
crossing probability. Here, NB roughly describes the number of
water molecules simultaneously part of the first solvation shells
of both ions.15 It can be a fractional number, as it is based on
summing the values of an indicator function, where the input
argument is the distance between water molecules and ions,
taken over all water molecules. The indicator function smoothly
transitions from one at short distances to half at the solvation
radius and to zero at large distances. Both the solvation radius
and the steepness of this transition require adjustment,
indicating a significantly higher level of human-driven design
compared to Na+O6, which is simply a distance. However, due
to the shuffling of the matrix in the IIDM approach, Na+O6 also
contains some collective information, not just the distance
between two atoms. This is because it represents the distance

from Na+ to the sixth closest oxygen, thereby indicating that five
oxygens are even closer, while all others are further away. Hence,
a low value of Na+O6 can be interpreted as describing a
compression of a solvation shell of six oxygens.

Figure 5a provides an overview of the input CVs with the
highest predictive capacity for the case λc = λA = 3.2 Å and λr = λB
= 7 Å.

The number of bridging waters, NB, exhibits the highest
predictive power, aligning qualitatively with the findings of ref
15, which indicates that this parameter provides the best
description for the committor alongside λ. However, Na+O6
performs only slightly worse. Additionally, the angular
parameters cos β1 and cos α1 from the Mullen set15 perform
reasonably well, surpassing the interionic density ρm3. From the
IIDM, the best parameters in Figure 5a are either species that
can be located in one of the first two solvation shells (Na+O6,
Cl−H7) or that contain information about the interionic
structure. This indicates that those are the areas that contain
the significant mechanistic information. Na+H1Cl− serves as the
second-best input CV, although it is substantially less effective
than Na+O6, yet still better than any distance from the Cl−-
centered matrix. This suggests that the solvent structure around
the positive sodium ion is more crucial for initiation of the
dissociation than the solvent structure around the negative
chloride ion.

This conclusion is further supported by the fact that the best
Cl−-centered IIDM, Cl−O1Na+, also involves the sodium ion. It
is also noteworthy that the IIDM with Na+ as an anchor has
nearly the same predictive capacity for the full λA → λB-transition
as the best complex solvent parameter, NB. Shifting λc to λTS =
3.7 Å, smaller predictive capacities relative to the crossing
probability are anticipated, which are consistent with the
findings in Figure 4b. All three of the best Na+-anchored
parameters refer to species that are important for migration
processes among the respective first and second solvation shells.
Remarkably, the second best parameter Na+O6H4 is a measure
for the compression of hydrogen bonding around the Na+O6
oxygen. The Cl− IIDM is still containing similar types of
distances as the front runners, compared to the results with λc =
λA as a starting point. Ge et al. extensively studied Cl− in aqueous
solution, demonstrating that its first solvation shell, similar to
Na+, consists of 5−6 water molecules.40 However, different size

Figure 4. (a) Crossing probability ( )A
r c| and (b) / ( )A A

, r cr c
|

of the predictive section for bridging water NB and the sixth closest
oxygen Na+O6 on a grid of ngrid = 200 from 3.2 to 7.0 Å along both λc

and λr.

Figure 5. Input CVs from the complex solvent parameters of ref 15 and
the ion-centered IIDMs with the highest predictive capacity A

,r c
with

(a) λc = λA and λr = λB and (b) λc = λA and λr = λTS. The solvent
parameters describe the number of bridging waters NB, the largest
cosines of α = ∠Na−Cl−H and β = ∠Cl−Na−O.
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ratios and water orientations result in a variety of configurations
and a high entropy around Cl−. Our simulations reflect this
behavior, showing a reduced predictive power for elements of
the Cl−-centered IIDM.40

Figure 6 shows the corresponding r- and u-distributions that
lead to the predictive capacities of Figure 5, i.e., for (λc, λr) = (λA,

λB) and also for (λc, λr) = (λTS, λB) with λTS being the transition
state or local maximum of the free energy barrier (see Figure 3).
This approach allows us to compare reactive trajectories with the
most common unreactive ones and to gain insights into the
factors that differentiate fully reactive trajectories from nearly
reactive ones�those that reach the transition state but do not
proceed to the product state.

Many CVs with a high predictive capacity describe the region
around the ion axis. For instance, in Figure 6a, we observe that
reactive trajectories tend to have high values for NB compared
with unreactive trajectories, highlighting the importance of
intervening water molecules in stabilizing the charge separation
between the ions. If we switch the crossing interface to λc = λTS =
3.7 Å, both the r- and u-distributions will change due to
molecular movement and the evaluation occurring later along
the trajectories. Additionally, the u-distribution will also change
because trajectories that do not reach λTS are eliminated from
the analysis. By comparing the λc = λA and λc = λTS cases, we can
conclude that the first effect has little influence on the change in
the NB distribution, as evidenced by the fact that the relative
peaks in the r-distribution at NB = 1 and NB = 2 do not
significantly change. The second effect, however, is clearly
visible, as the u-distribution becomes nearly identical to the r-
distribution. This also indicates that a high NB value is strongly
indicative of reaching the transition state but not necessarily of
reaching the product state once the transition state has been
achieved.

We can draw an aligning conclusion from Figure 6c, where the
probability of a reaction is low, if the closest H to Na+ is not close
to Cl− at λc = λA. In the nearly reactive transition state, the
reactive and unreactive distributions are almost indistinguish-
able. This behavior contrasts sharply with that of Na+O6, as
shown in Figure 6b. At λc = λA, the r-distribution exhibits two
peaks of equal height, whereas the peak at short distances is
nearly absent in the u-distribution. Upon reaching λc = λTS, both

distributions develop double peaks, with the peak at low
distances shifting further downward and becoming dominant in
both distributions. The change in the r-distribution arises solely
from molecular motion along the same reaction paths, while for
the u-distribution, some paths from the λc = λA case are no longer
included in the distribution. The shift in the r-distribution
suggests that to transition from λA to λB, one must either begin
with a contracted solvation shell or possess the ability to quickly
contract the solvation shell. This capability could potentially be
quantified by using an additional CV, suggesting that combining
information from multiple CVs may enhance predictive power.

Furthermore, Figure 6d reveals information regarding the
local surroundings of the Na+O6 oxygen. Here, H4 is the second
closest extra-molecular hydrogen. In both cases, λc = λA and λc =
λTS, the unreactive distribution peaks at shorter distances, in
contrast to the reactive case, which is more likely when the
Na+O6H4 distance is large. Interestingly, we can identify the
oxygen with which the Na+O6H4 hydrogen forms a bond. This
bond is typically formed with either the second or third closest
oxygen to the Na+O6 oxygen. However, neither Na+O6O2 nor
Na+O6O3 exhibits significant predictive power. This suggests
that Na+O6H4 is indicative not of the position but rather of the
orientation of water molecules around the Na+O6 oxygen.

To gain deeper insights into the evolution of the Na+O6
oxygen, we extended our analysis beyond the r-distribution,
which considers only the distance to Na+, by examining the
corresponding 2D spatial distributions around the Na+−Cl−
axis. By overlaying this spatial distribution on top of the
multioxygen distribution of the 15 closest oxygens, we observe
how the sixth closest oxygen to Na+ relates to the other oxygens
surrounding the ion pair. Furthermore, we tracked the
progression of these 2D distributions throughout the reaction
as the ionic separation distance increases.

The underlying multioxygen distribution reveals the presence
of two distinct water shells. Initially, the Na+O6 oxygen
predominantly resides in the outer shell (see Figure 7a). As

Figure 6. (a−d) u- and r-distributions of mechanistically relevant CVs
at the start (3.2 Å) and at the reaction barrier (3.7 Å) with λr = 7 Å. The
distributions are scaled so that their maximum value is set to one.

Figure 7. Spatial probability density distributions of Na+’s 15 closest
oxygens, shown around the Na+−Cl− axis. The probability density to
find an O in the dark areas is 10−45%, 1−10% in the light areas, and
<1% in the white space. (a) Start of the reaction, where the ionic
distance is λA = 3.2 Å; (b) transition state at λTS = 3.7 Å; and (c) state
beyond the transition state, where the ionic distance has increased to
4.2 Å. The multioxygen distributions are shown in blue, while the
distribution of the Na+O6 oxygen is highlighted in red. (d) Exemplar
dissociated state, showcasing a pseudo-octahedral alignment of the six
closest oxygens and the coordinated movement of Cl− and the Na+O6
oxygen over time.
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the reaction progresses, Figure 7b,c reveals a shift of the Na+O6
oxygen toward the inner shell, occurring in specific regions
around Na+, and by the end of the reaction, it is predominantly
located in the inner shell. In the final stage, the distances
between the sodium ion and its six closest oxygen atoms
converge, forming a pseudo-octahedral arrangement around
Na+ (see Figure 7d). Additionally, the Na+O6 oxygen
predominantly enters the inner shell from the side opposite to
the departing Cl− ion, suggesting a coordinated push−pull
interaction between the two.

These findings align with previous computational studies
Belch et al. and recent experimental results of Persson.14,41 Jung
et al. studied the reverse process of the assembly of ion pairs in
water and outlined the importance of the inner-shell water
rearrangement. They report the necessity of water molecules
opening up the space around the cation for the anion.18 This
finding is complementary to our results, as we can take from the
visualization that the sixth closest water will close the space and
that the anion opens by migrating away.
4.3. Linear Combination of Input CVs. Figure 8a

illustrates the potential of using linear combinations of CVs as

inputs to uncover mechanistic links and gain deeper insights into
the reaction mechanism. To achieve this, we employ a machine
learning approach that examines all possible linear combina-
tions, up to three, as discussed in Section 3, with A

,r c
serving as

the loss function to be minimized using simulated annealing.
Figure 8b,c showcases, respectively, the best overall and the

best linear combination derived solely from the IIDM. In both
cases, features of the individual CVs remain discernible, but the
resulting r and u distributions exhibit less similarity to each other
than is seen in Figure 6. Comparing the optimal combinations in
Table 1 provides a more comprehensive understanding of the
mechanism, as it highlights the key information relevant at each
stage of the reaction.

At λc = 3.2 Å, the combination of NB and Na+O6 shows a
significant improvement with respect to the single CVs and
underlines the importance of water in the binding region and the
second to first shell transition around Na+. The highest
predictive power is achieved by adding a CV that describes
the surroundings of Cl−, but only with a minor increase.

Although it remains the best single CV at the transition state,
NB does not appear in the best linear combinations. It is replaced

by the maximum cosine of the angles of all counter species of
water in the first solvation shell around Cl− (cos α1) and Na+(cos
β1). The more maximal the cosine becomes, the closer it is
located to the Na+−Cl− axis. Therefore, in combination with
Na+O6, the position and orientation of the water around the ion
axis is now more discriminating than its quantity in the form of
bridging water. Adding a third CV results in only a slight increase
in predictive capacity compared to the linear combination based
on two CVs. It should still be noted that in agreement with
previous findings, the additional CVs provide more detailed
information on the water arrangement around the Na+−Cl− axis,
particularly in the region between the two ions.

5. CONCLUSION
In this study, we investigated the mechanism and dynamics of
NaCl dissociation using path sampling based on the RETIS
algorithm. The analysis was conducted using the predictive
power analysis (PPA) method, which evaluates the overlap
integral of reactive and unreactive distributions along degrees of
freedom orthogonal to the main order parameter. To enhance
robustness, we refined the PPA methodology by applying a
Savitzky-Golay (SG) filter to integrated distributions, enabling
smooth high-resolution outputs while minimizing noise, which
is characteristic of traditional binning-based methods.

Using this refined PPA method, we analyzed dissociation
dynamics with the parameter set of Mullen et al. and additional
orthogonal CVs derived from the index-invariant distance
matrix (IIDM), with ionic distance λ as the main order
parameter. Our findings revealed that the sixth closest oxygen to
sodium (Na+O6) serves as an almost equally effective predictor
of dissociation as the number of bridging waters (NB) from the
Mullen et al. set. However, the IIDM set is simpler and is devoid
of user biases. Nevertheless, our analysis identified intuitive
parameters, showing that compression around sodium’s six
closest water molecules strongly correlates with dissociation,
while the solvent shell surrounding chloride is less significant.

Extending the analysis, we explored the predictive capacity of
linear combinations of CVs by using the SG-based PPA method.
Among these, the combination of Na+O6 and NB provided the
highest predictive power for two CVs, highlighting their

Figure 8. Illustration of the enhanced predictive power achieved by
using linear combinations of CVs. (a) Two-model CVs and how their
linear combination can reduce the overlap between the r- and u-
distributions. (b,c) u- and r-distributions, respectively, for the optimal
combination of two general CVs and for the best combination based
solely on IIDM elements, at λc = 3.2 Å and λr = 7 Å.

Table 1. Best Predictive Power ( A
,r c
) of Linear

Combinations of CVs for λr = 7.0 and λc = 3.2 Å (top) or λc =
3.7 Å (Bottom)a

A
7.0,3.2 CV ( ) 0.036A

r c| =

0.086 NB

0.079 Na+O6
0.103 Na+O6 −0.56 NB

0.094 NB +0.52 Na+O6H4
0.108 Na+O6 −0.57 NB −0.29 Cl−O1H4
0.107 Na+O6 +0.59 Cl−H7 −0.5 NB

A
7.0,3.7

CV ( ) 0.389A
r c| =

0.427 NB

0.427 Na+O6
0.442 Na+O6 −0.66 cos β1

0.441 Na+O6 −0.72 cos α1

0.446 cos α1 −0.74 Cl−O1Na+ +0.25 Na+O6
0.445 Na+O6 −0.81 cos β1 −0.39 Na+O5Cl−

aEach block presents the best two single CV, as well as the two best
two- and three-CV combinations. The prefactors have been
normalized by the prefactor with the highest absolute value.
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complementary nature and the advantage of considering both
simultaneously. Beyond the transition state, Na+O6 proved to be
more effective than NB for predicting progress toward the
product state. Although adding a third CV yielded marginal
improvements in predictive capacity, the additional complexity
offers diminishing returns. Further analysis revealed that Na+O6
initially resides in the second solvation shell but migrates to the
first shell during the reaction, forming an octahedral alignment
with the other five closest oxygens around the sodium ion. This
structural evolution offers valuable insights into the dissociation
mechanism.

The refined PPA method, when combined with IIDM-derived
CVs and human-selected nonlinear intuitive CVs, provides a
systematic approach to identifying meaningful reaction
coordinates for complex rare events. Compared to other CV
discovery methods, such as likelihood maximization10 ap-
proaches or machine learning-based committor finding
techniques,18,42 PPA has the advantage of interpretability and
direct physical insights. While deep learning methods can
uncover highly nonlinear CVs that correlate with a conceptual
entity like the committor, they often require extensive training
data and may lack transparency regarding the underlying
physical mechanisms. In contrast, the PPA method is purely a
posteriori method based on the analysis of a RETIS simulation
that is used for rate evaluation, providing additional mechanistic
insights in addition to quantitative numbers such as rate
constants.

Moreover, committor-based analysis methods are most
reliable in describing the separatrix or the committor 0.5
surface. However, understanding how the system progresses
from a low committor value toward the separator is arguably
even more important for obtaining mechanistic insights and
identifying catalytic strategies. The PPA method also focuses on
the very early stages of the reaction, where the committor is too
small to be evaluated with standard shooting-type approaches.
PPA provides meaningful and quantitative results via path
reweighting and also by varying the λc and λr parameters,
allowing different stages of the reaction to be targeted for
analysis.

Yet, the above-mentioned approaches could, and probably
should, be combined with PPA to maximize predictive power. As
our results show, the IIDM-derived CVs, complemented by a set
of human intuition-based CVs, leave the predictive capacity
substantially below the theoretical optimum of one. Future
enhancements could include incorporating momenta into the
analysis or leveraging neural networks and symbolic regression43

to move beyond linear combinations, which have been
pioneered in the committor-based analysis.18,42 However,
increased complexity might compromise the interpretability of
the results.

Beyond the current application, PPA has already been
successfully applied to chemical reactions, such as water
dissociation12 and even to learning efficiency based on students’
self-evaluation tests as an input.44 With the refined PPA method
discussed in this paper, it could become a standard approach for
studying complex transitions in systems, such as ionic liquids,
ion channels, protein folding, self-assembly, and permeation.
The PPA method applied to such processes is directly relevant
for developing catalytic strategies and advancing drug discovery,
as it provides detailed mechanistic insights into key processes,
such as transport mechanisms, selectivity, and stability.

The PPA method could also be used to improve the sampling
of driven rare events. Path sampling methods applicable to these

nonequilibrium processes, such as forward flux sampling
(FFS),45 adaptive multiple splitting (AMS),46 and weighted
ensemble dynamics (WE),47 are typically restricted to forward-
in-time propagation, making their efficiency more sensitive to
the choice of RC. As a result, nonequilibrium rare events pose an
even greater challenge than ordinary rare events. However, by
combining PPA with a method like Contour FSS,48 the
interfaces and RC could be optimized iteratively, enabling
more efficient and reliable sampling of such events.

With the advent of faster RETIS algorithms49−51 and rapid
advancements in machine learning techniques, including
explainable AI,52 this methodology has the potential to evolve
into a universal framework for obtaining intuitive insights from
path sampling simulation data, which could ultimately be
applied to guide complex processes in real-world experimental
settings.
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