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Background: As human transportation, recreation, and production methods change,

the impact of motion sickness (MS) on humans is becoming more prominent. The

susceptibility of people to MS can be accurately assessed, which will allow ordinary

people to choose comfortable transportation and entertainment and prevent people

susceptible to MS from entering provocative environments. This is valuable for

maintaining public health and the safety of tasks.

Objective: To develop an objective multi-dimensional MS susceptibility assessment

model based on physiological indicators that objectively reflect the severity of MS and

provide a reference for improving the existing MS susceptibility assessment methods.

Methods: MSwas induced in 51 participants using the Coriolis acceleration stimulation.

Some portable equipment were used to digitize the typical clinical manifestations of MS

and explore the correlations between them and Graybiel’s diagnostic criteria. Based

on significant objective parameters and selected machine learning (ML) algorithms,

several MS susceptibility assessment models were developed, and their performances

were compared.

Results: Gastric electrical activity, facial skin color, skin temperature, and nystagmus

are related to the severity of MS. Among the ML assessment models based on these

variables, the support vector machine classifier had the best performance with an

accuracy of 88.24%, sensitivity of 91.43%, and specificity of 81.25%.

Conclusion: The severity of symptoms and signs of MS can be objectively quantified

using some indicators. Multi-dimensional and objective assessment models for MS

susceptibility based on ML can be successfully established.
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INTRODUCTION

Motion sickness (MS), as a response to exposure to a provocative
environment, cannot essentially be called a disease. However,
with the extension of activities from land and sea to the sky
and outer space, the transformation of information sources from
paper-based text and pictures to digital multimedia resources,
and the increasing replacement of work by intelligent machines,
MS has a greater effect on humans. MS has also evolved
into several types, such as carsickness, seasickness, airsickness,
space motion sickness, and visually induced motion sickness
(VIMS), and there are not a few people who have experienced
it (1–3). MS usually manifests as nausea, vomiting, pallor, cold
sweat, drowsiness, headache, dizziness, and nystagmus; “Sopite
syndrome” (4) and “Mal de debarquement syndrome (MdDS)”
(5) are its special manifestations. At present, the pathogenesis
of MS has not been fully elucidated, but the “sensory conflict
theory,” which revolves around the vestibular nervous system, is
the most widely accepted (6). Research and exploration of the
central mechanism proposed by this theory are ongoing (7).

Some scholars are keen to study why MS occurs, while others
are more concerned with who is susceptible to MS and unable
to work normally in provocative environments. Preventing the
entry of people susceptible to MS into navigation, aviation,
and aerospace occupations is important for maintaining the
safety of tasks and the health of personnel. The assessment
methods for the susceptibility to MS include tests in the
actual environment, provocative tests, medical history surveys,
psychological tendency tests, physiological tendency tests, and
adaptation observations. Among them, provocative tests with
a relatively high economy, safety, and accuracy are frequently
used. Subjective rating scales for the severity of symptoms and
signs of MS in participants have often been used in previous
provocative tests; they include Graybiel’s rating scales (8),Wiker’s
rating scales (9), and simulator sickness questionnaire (SSQ)
for VIMS (10). These subjective evaluation methods are easy
and convenient, but their accuracy is easily influenced by the
motivation of the participant and the experience of the tester.

Hence, several scholars have begun research into various
objective evaluation methods and indicators to assess the
susceptibility of people to MS. Temperature (TEMP) (11),
skin conductance level (SCL) (12), electrogastrography (EGG)
(13), and heart rate variability (14) obtained solely from body
surface recordings have a long history as objective indicators
for assessing MS susceptibility, and Gavgani et al. found that
SCL in the forehead was the best physiological correlate of
VIMS-induced nausea symptoms (15). Objective assessments of
MS susceptibility based on the results of vestibular function
tests, such as the vestibulo-ocular reflex for different vestibular
receptors (16–18), vestibular evoked myogenic potentials (19–
21), and computerized dynamic posturography (22), are
gradually becoming the focus of research, among them, the gain
asymmetry of the video head impulse test, the nystagmus slow-
phase velocity evoked by the caloric test and the amplitude
of the cervical vestibular evoked myogenic potential vary in
groups of participants with different susceptibility to MS.
Functional brain assessments, such as electroencephalogram

(23, 24), functional magnetic resonance imaging (25, 26) and
functional near-infrared spectroscopy (27, 28), have facilitated
the objective assessment of MS susceptibility at the level of higher
nerve centers, meanwhile, the correlation between the intensity
of activity in certain brain regions during MS exposure and
the degree of MS discomfort have been confirmed by several
studies. In addition, the levels of arginine vasopressin, ghrelin
and immunoglobulins in blood after MS exposure have been
found to correlate with the severity of MS (29, 30), while the
discovery of single-nucleotide polymorphism and chromosomes
associated with MS susceptibility provides new alternatives for
the assessment of MS susceptibility (31, 32). However, some of
the methods and indicators mentioned above are not suitable for
screening large populations, either because the equipment is not
portable, or the testing environments are demanding, or invasive
manipulations are required to obtain samples.

Thus, the aim of this study was to induce MS using a
simple provocative stimulus and objectively quantify its typical
manifestations of nausea, vomiting, pallor, cold sweat, dizziness,
and nystagmus using portable instruments to explore the
correlations between them and MS severity. Using significant
objective parameters and several machine learning (ML)
algorithms, multi-dimensional and objective MS susceptibility
assessment models were developed, and their performances were
compared to provide a reference for improving the existing MS
susceptibility assessment methods.

MATERIALS AND METHODS

Participants
In order to obtain objective indicators related to the severity
of MS, sample size estimation for Pearson correlation analyses
were performed using PASS 15 (NCSS Statistical Software, USA),
with a threshold of p = 0.05, a power of 0.9, and a predicted
correlation coefficient between 0.4 and 0.6, yielding a sample size
N between 24 and 61. The trial recruited 51 male participants
(mean age, 24.54 ± 3.19 years; mean height 175.25 ± 5.80 cm;
mean weight, 71.54± 2.89 kg), and none of them had a history of
epilepsy, increased intracranial pressure, vertigo, cerebrovascular
accident, severe mental illness, and drug abuse. None of the
participants took any medications or alcoholic beverages within
48 h, and they participated in the experiment 1 h after eating.
Physical examination of each participant showed no signs of
external otitis, tympanic membrane perforation, or spontaneous
nystagmus. Their naked or corrected visual acuity were 1.0 at
least and color vision were normal. The study was approved by
the Ethics Committee of the First AffiliatedHospital of the Fourth
Military Medical University (number: KY-20202054-F-2). Each
participant signed an informed consent form and volunteered
to participate.

Equipment and Materials
An electric rotating chair (VTS-0, Peace, China) and Coriolis
acceleration stimulation were used to induce MS. The
videonystagmography (VNG) equipment (YD-III, Isen, China)
fixed on the back of the electric rotating chair was used to record
the nystagmus of each participant after the electric rotating chair
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stopped suddenly. The wireless physiological signal acquisition
and analysis system (PhysioLab, Ergoneers, Germany) has
multiple sensor channels, such as those for TEMP, SCL, and
EGG, and can display and record data in real-time on a computer
via Bluetooth. A portable colorimeter (TS7600, 3 nh, China) can
be held by one hand to collect skin color parameters, and the skin
color can be digitized through the CIE-L∗a∗b∗ color system (33).
A posturography equipment (Balance-A, Nuocheng, China)
was located next to the electric rotating chair and can be used
to quickly assess the equilibrium of the participant. Graybiel’s
rating scale was used to assess the severity of MS in participants.

Procedure
All tests were carried out in a laboratory with no airflow
but automatic light adjustment, and the room temperature
was between 20 and 26◦C. After reaching the laboratory,
each participant took a 30-min break to acclimatize to the
test environment. During this period, the participants were
shown the movements that produced the Coriolis acceleration
stimulation and were requested to truthfully describe their
subjective feelings during the test. Considering the late-onset
effect of the vestibulo-autonomic response, the entire test was
divided into three phases: 10min for Pre-exposure (pre-E), 90 s of
exposure (E), and 30min for Post-exposure (post-E) to Coriolis
acceleration stimulation (Figure 1). The MS of the participants
was induced by sitting on a rotating chair at an angular speed of
180◦/s for 90 s, during which their heads were swung from a 30◦

leftward tilt to a 30◦ rightward tilt (from a 30◦ rightward tilt to a
30◦ leftward tilt) once every 2 s.

Data Acquisition and Processing
Experimental data were obtained by various instruments through
continuous recording or acquisition at specific time points, and
the data acquisition methods are presented in Figure 1. Skin
temperature (TEMPS), SCL, and EGG signals were recorded
continuously at a sampling frequency of 1 kHz throughout the
experiment. VNG data were collected at a sampling frequency
of 30Hz after the emergency stopping of the rotating chair
and with the eyes of the participant open. CIE-L∗a∗b∗ data
were obtained by measuring the skin color of the left and right
cheeks of the participant, and five measurements were taken
during the pre- and post-E periods (Figure 1). The equilibrium
data were collected with the eyes of the participant closed
10min before and 10min after exposure to Coriolis acceleration
stimulation. Graybiel’s rating scales were used four times during
the post-E period (Figure 1), and the severity of MS was assessed
for seven components, including nausea syndrome, skin color,
cold sweat, salivation, drowsiness, pain, and central nervous
system abnormalities.

TEMPs and SCL were obtained from PhysioLab 2021
(Ergoneers, Germany) for exact values. The EGG of nausea
and vomiting in MS is mainly characterized by 4–10 cycles
per min (cpm) of stomach electrical activity increase (34),
and this irregular activity was defined as tachyarrhythmia.
Therefore, for the EGG signal, we applied a high-pass filter
with a cut-off frequency of 0.067Hz and a low-pass filter
with a cut-off frequency of 0.167Hz using EDF browser 1.56

(open-source software) and performed a frequency domain
analysis of the 0.067–0.167Hz band to obtain the amplitude
(AMPEGG0.067−0.167) and power (POWEGG0.067−0.167) of the EGG
signal in this band. We used the ISEN-VNG 2.1 (ISEN, China)
to select three maximal slow-phase velocities (MSPVs) for each
VNG, and their average value (MSPVL−R) was used for analysis.
In the CIE-L∗a∗b∗ color system, the CIE-L∗ value indicates
that the color changes from black to white, the CIE-a∗ value
indicates that the color changes from green to red, and the CIE-
b∗ value indicates that the color changes from blue to yellow
(33). Hence, CIE-L∗ and CIE-a∗ values were chosen to assess the
pallor at the onset of MS and were analyzed using the average of
the left and right cheek measurements (CIE-L∗L−R, CIE-a

∗
L−R).

The equilibrium of the participants was assessed primarily by
measuring their total traveled way (TTW) and envelope area
(EA) of the center of pressure. Graybiel’s rating scales were
applied by the same senior otolaryngologist, and the sum of the
maximum values of the seven dimensions of these rating scales at
each specific time point was obtained as Graybiel’s scoremax.

Statistical Analysis
The statistical analyses of the data in this study had the following
three steps. (1) First, objective indicators that showed significant
changes before and after exposure to MS were determined. The
AMPEGG0.067−0.167 and POWEGG0.067−0.167 data were taken as
the baseline for 10min of the pre-E period and as control for
the first 10min of the post-E period. The TEMPs, SCL, CIE-
L∗L−R, and CIE-a∗L−R were compared using the extreme values
measured before and after the Coriolis acceleration stimulation.
The TTW and EA were compared before and after the Coriolis
acceleration stimulation. A paired t-test was used to analyze
the differences in each objective indicator. (2) Second, objective
indicators that changed significantly before and after exposure
to MS and whose variations correlated with the severity of MS
were screened. Two-tailed Pearson’s correlation analyses were
carried out for the change in the objective indicators selected in
step 1 and the Graybiel’s scoremax. MSPVL−R was also analyzed
for Pearson’s correlation with the Graybiel’s scoremax. (3) Several
assessment models of MS susceptibility based on ML were
established. We used the variations of the objective indicators
selected in step 2 as input variables; “Graybiel’s scoremax ≥ 5”
as the output indicating “susceptible to MS” and “Graybiel’s
scoremax < 5” as the output indicating “not susceptible to MS”
(35), to develop MS susceptibility assessment models by using
different ML algorithms. We also compared the performances
of the models. Statistical analyses and charting were performed
using SPSS 22.0 (IBM Corporation, USA), GraphPad Prism
8.0 (GraphPad Software, USA), and Origin 2018 (OriginLab
Corporation, USA). Statistical significance was set at p < 0.05.

ML Algorithms and Tools
In this study, four widely applied ML algorithms, including
support vector machine (SVM), random forest (RF), K-nearest
neighbor (KNN), and multilayer perceptron (MLP), were used to
build the assessment models of MS susceptibility. SVM separates
different types of data points by drawing a virtual hyperplane and
is widely used for small sample data (36). RF is an integrated
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FIGURE 1 | The experimental procedure and data acquisition methods. pre-E, the period before exposure to Coriolis acceleration stimulation; E, the period of

exposure to Coriolis acceleration stimulation; post-E, the period after exposure to Coriolis acceleration stimulation.

classifier consisting of several randomly generated decision tree
classifiers, which has a better classification performance than
traditional decision tree algorithms (37). KNN finds the k-nearest
training samples to the test samples based on a distance measure
and uses the information of these k “neighbors” to classify the test
samples (38). As a feedforward artificial neural network,MLP can
be used to construct effective classifier algorithms to distinguish
Non-linear separable data (39).

We used the Scikit-learn ML algorithm package based on
Python 3.7 to build the above four classifiers (40), and the
performances of these models were compared. On the one
hand, we selected 70% of the 51 samples as the training set
and 30% as the test set for dichotomous classification of MS
susceptibility, and we performed a stratified random sampling
according to the proportion of participants “susceptible to
MS” and “not susceptible to MS” when selecting data for
the training and test sets. The receiver operator characteristic
curve (ROC) and area under the ROC (AUC) of each classifier
were obtained. The above processes were repeated 100 times
to obtain the respective average AUCs of the four models. In
contrast, a 10-fold cross-validation was performed on the 51
samples to compare the accuracy, sensitivity, specificity, positive
predictive value (precision), and negative predictive value of the
four models.

RESULTS

All 51 participants successfully completed the experiment
following the procedure and honestly reported various physical
discomforts at different time points after exposure to MS. After

processing and statistical analyses of all experimental data, the
following results were obtained.

Effects of the Coriolis Acceleration
Stimulation on Objective Indicators
As shown in Figure 2, compared to the baseline before exposure,
most of the objective indicators we focused on changed visually
after exposure to Coriolis acceleration stimulation. Paired t-tests
showed that AMPEGG0.067−0.167, POWEGG0.067−0.167, SCL, CIE-
L∗L−R, and EA increased significantly (t = 12.27, p < 0.0001
for AMPEGG0.067−0.167, Figure 2A; t = 7.151, p < 0.0001 for
POWEGG0.067−0.167, Figure 2B; t = 17.77, p < 0.0001 for SCL,
Figure 2D; t = 12.05, p < 0.0001 for CIE-L∗L−R, Figure 2E;
t = 2.451, p = 0.0178 for EA, Figure 2H), while TEMPs and
CIE-a∗L−R decreased significantly (t = 17.02, p < 0.0001 for
TEMPs, Figure 2C; t = 14.03, p < 0.0001 for CIE-a∗L−R,
Figure 2F), but TTWdid not change remarkably (t= 0.6095, p=
0.5449, Figure 2G). The trend of changes in the above objective
indicators was consistent with the typical signs and symptoms
of MS.

Objective Indicators That Can Reflect the
Severity of MS
Because TTW did not change significantly before and after
Coriolis acceleration stimulation, it was not included in
the correlation analyses with Graybiel’s scoremax, which
represents the severity of MS. Given the exponential increase
in the EGG-related indicators, we obtained the logarithmic
values of multiples of change in AMPEGG 0.067−0.167

and POWEGG0.067−0.167 (LOG1AMPEGG0.067−0.167 and
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FIGURE 2 | Changes in objective indicators before and after exposure to MS (n = 51). The mean and standard error of measured values for each objective indicator

during the pre-E and post-E periods are also labeled in the pictures. (A) AMPEGG0.067−0.167; (B) POWEGG0.067−0.167; (C) TEMPs; (D) SCL; (E) CIE-L*L−R; (F) CIE-a
*
L−R;

(G) TTW; (H) EA. * p < 0.05; ****p < 0.0001; ns, no significance.

LOG1POWEGG0.067−0.167), with the change in the values
of other meaningful objective indicators and MSPVL−R, for
Pearson’s correlation analyses with Graybiel’s scoremax. For
LOG1AMPEGG0.067−0.167 (Figure 3A), the correlation with
Graybiel’s scoremax was significant (r = 0.3656, p = 0.0083).
Also significantly correlated with Graybiel’s scoremax were
LOG1POWEGG0.067−0.167 (r = 0.4920, p = 0.0002, Figure 3B),
1TEMPs (r = 0.5473, p < 0.0001, Figure 3C), MSPVL−R

(r = 0.3817, p = 0.0058, Figure 3D), 1CIE-L∗L−R (r = 0.4900,
p= 0.0003, Figure 3E), and1CIE-a∗L−R (r= 0.5493, p< 0.0001,
Figure 3F). As a result, the above 6 variables could objectively
represent the severity of MS in some degree. However, no
significant correlation was found between 1SCL and Graybiel’s
scoremax (r = 0.2009, p = 0.1574), as well as 1EA (r = −0.1392,
p= 0.3302).

ML Classifiers and Their Performance
Comparison
The SVM, RF, KNN, and MLP classifiers for MS susceptibility
were based on the above 6 variables related to the severity of MS.
The means and standard deviations of the AUC values of the four
models were obtained by training and testing with 100 stratified
random samples (Table 1), and the difference between the AUC
values of the groups was confirmed by the Kruskal-Wallis test and
Dunn’s multiple comparisons test (Figure 4). Among the four
models, the SVM classifier had the best performance, with the

highest average AUC value (0.8795 ± 0.0815) for 100 times of
classification training and testing.

We also presented the classification results of the 10-fold
cross-validation of the four models for 51 samples using a
confusion matrix (Figure 5) and compared the performances
of the ML classifiers (Table 2 and Figure 6). As can be seen,
also, SVM classifier performed well with an accuracy of 88.24%,
sensitivity of 91.43%, specificity of 81.25% and AUC value
of 0.8634 for predicting MS susceptibility. In general, the
classification results of SVM classifier were the most satisfactory.

DISCUSSION

For the general public, an objective and accurate understanding
of their susceptibility to MS can help them choose more
comfortable means of transportation and recreation and actively
prevent the adverse effects ofMS. However, for people working in
special environments, such as drivers, astronauts, pilots, sailors,
divers, extreme sports personnel, and operators of unmanned
equipment or simulators, exposure to provocative motion
environments is usually inevitable. Therefore, it is worthwhile to
reduce the influence of human subjective factors and implement
an objective and accurate assessment of the susceptibility to MS
in those who are ready to join the above-mentioned special jobs.

Our study induced MS with the normative Coriolis
acceleration stimulus and objectively quantified the typical
manifestations of MS, such as nausea, vomiting, pallor, cold
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FIGURE 3 | Correlations of the variations of objective indicators with the severity of MS (n = 51). The r and p values of the objective variables significantly correlated

with Graybiel’s scoremax are labeled in each graph. The colored line represents the line of best fit for each linear regression, while the shaded area indicates the 95%

confidence interval. (A) LOG1AMPEGG0.067−0.167; (B) LOG1POWEGG0.067−0.167; (C) 1TEMPs; (D) MSPVL−R; (E) 1CIE-L*L−R; (F) 1CIE-a*L−R.

sweat, dizziness, and nystagmus, using a reproducible approach.
We successfully sieved out several parameters related to gastric
electrical activity, facial skin color, skin temperature, and
nystagmus that could objectively assess the severity of MS, and
these findings are similar to the results of previous studies.

Chinese scholars also used Coriolis acceleration stimulation to
induce MS and found that the tachyarrhythmia of EGG was
significantly enhanced in participants with severe MS (41),
but they only compared EEG differences between groups with
different levels of MS; Gruden et al. used a vehicle simulator
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TABLE 1 | Means and standard deviations of AUC for 100 tests of the ML

classifier.

Classifier Mean Standard deviation

SVM 0.8795 0.0815

RF 0.8703 0.0716

KNN 0.8007 0.0925

MLP 0.7904 0.1113

The bold values indicate that the SVM classifier had the best performance among the four

models.

FIGURE 4 | Distribution of the ranks of AUC values of different ML classifiers

for 100 tests. The mean ranks of the AUC values for each model are also

labeled in the picture. ****p < 0.0001; ns, no significance.

to induce VIMS and found that the magnitude and duration
of elevated EGG signals in participants correlated with their
subjective level of nausea (42), but they used the SSQ scales,
which aremore suitable for VIMS, as the reference for correlation
analyses. It has been reported that the magnitude of reduction
in TEMP correlates with the degree of subjective discomfort
induced by different levels of MS (43), a study on the treatment
of MS consistently showed the efficacy of “promethazine +

dextroamphetamine” in reducing MS symptoms and preventing
a core temperature drop (44), but these studies also only
compared the magnitude of TEMP decrease between groups
with different levels of MS or with different anti-MS drugs. Both
the MSPV of vestibulo-ocular reflex induced by the caloric test
and the rotating chair test have been proven to be associated
with susceptibility to MS (18, 45), however, neither of the
related studies was grouped by severity of MS after the Coriolis
acceleration stimulation. By contrast, our selected objective
indicators better achieved a linear quantitative assessment of
the severity of MS. In particular, to the best of our knowledge,
our study is the first to assess the severity of MS by objectively
measuring skin color.

Meanwhile, we did not find a significant correlation between
the severity of MS and the changes in SCL, TTW, and EA,

which is not consistent with the reports of previous studies.
When Gavgani et al. studied VIMS, they found that SCL of the
fingers was significantly correlated with the degree of nausea,
but they only classified nausea as one symptom of MS into
four levels to analyze the data (15), unlike in the current
study that correlated the changes in skin SCL with the exact
scores of Graybiel’s rating scales, and the difference between the
two results was acceptable. Moreover, various physiological and
psychological changes such as excitement, anger, fear, agitation,
and fatigue can cause fluctuations in skin SCL, which is also
sensitive to variations in external elements such as temperature,
humidity, air flow, and clothing; therefore, it is challenging
to objectively and accurately assess the severity of MS using
SCL as the only indicator. In addition, the possible reasons for
the insignificant correlations between the changes in TTW and
EA and the severity of MS in this study are as follows. (1)
First, to prevent the effect of body movement on the accuracy
of other physiological parameters collected, we performed the
second equilibrium test 10min after the Coriolis acceleration
stimulation; the long period for recovery may have mildened the
symptoms of dizziness and instability in MS susceptible persons.
(2) Since the participants were not familiarized with the method
for equilibrium measurement before the test, the training effect
may have also affected the test results. Further studies are needed
to verify whether optimizing the experimental design will result
in new findings.

Previous studies have focused on the screening of
physiological markers that can objectively evaluate MS and
VIMS, and ML modeling for MS susceptibility assessment has
mostly targeted VIMS (25, 46, 47). In this study, we induced MS
with real vestibular stimuli, as well as pioneered the collection
of objective physiological parameters from multiple dimensions
simultaneously, and the use of various ML methods to establish
the optimal model for MS susceptibility assessment. According
to the experimental results, the assessment model based on the
SVM was optimal because of its relatively high sensitivity and
specificity, which facilitates not only the identification of people
susceptible toMS but also, andmore importantly, the selection of
people who are not susceptible to MS for special jobs where they
are frequently exposed to provocative motion environments.

The pathogenesis of MS has not yet been fully elucidated.
However, according to the classical “sensory conflict theory” of
MS, all types of sensory conflicts that cause MS do not lack the
information input from the vestibular system (6). The vestibular
nuclei, as a repeater of vestibular information input and efferent,
have extensive fiber connections with vision, proprioception,
and other brain nuclei (48), and the susceptibility to MS is
reduced in those with vestibular loss or hypofunction (49).
Thus, it is reasonable to believe that the functional state of
the vestibular system plays a crucial role in the onset and
development of MS, and many clinical manifestations of MS
are exported through different vestibular pathways. Based on
this, we selected objective indicators that can be easily quantified
in the vestibular pathway for the experiment, such as EGG,
TEMPs, SCL, CIE-L∗, and CIE-a∗ in the vestibulo-autonomic
pathway, MSPV in the vestibulo-ocular pathway, and TTW and
EA in the vestibulo-spinal pathway. We were pleased to find that
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FIGURE 5 | Confusion matrix for the classification results of different classifiers.

TABLE 2 | Evaluation of the performances of different ML classifiers.

Classifier Accuracy Sensitivity Specificity Positive predictive value (precision) Negative predictive value

SVM 0.8824 0.9143 0.8125 0.9143 0.8125

RF 0.8236 0.9143 0.6250 0.8421 0.7692

KNN 0.8039 0.8286 0.7500 0.8789 0.6667

MLP 0.7647 0.8286 0.6250 0.8286 0.6250

The bold values indicate that the SVM classifier had the best performance among the four models.

participants with a mild MS response to the same intensity of
provocative vestibular stimulus showed relatively small changes
in the magnitude of the objective indicators, and the subjective
severity of MS correlated well with the objective output based
on the vestibular pathways. However, people with mild MS are
able to maintain body balance and perform spatial orientation
normally, just as their vestibular system is stable and does not
overreact to external provocative stimuli. This is comparable
to the normal immune system, which can resist pathogens
and maintain health without overly reacting to antigens and
causing allergic reactions or autoimmune diseases. From this
perspective, the assessment of MS susceptibility is similar to
performing a skin (or intradermal) sensitivity test, but the skin
(or intradermal) sensitivity test has its own standard operating

procedure and objective method for judging the result, which is
what we want to do with the assessment of MS susceptibility.
Furthermore, with the deepening of basic research on MS, as
well as the upgrading of smart wear and artificial intelligence,
we hope that our study will provide a reference for the accurate
assessment of MS susceptibility, the real-time monitoring of MS,
and the development of integrated equipment for “examination-
training-assessment” of vestibular function stability to facilitate
the prevention and optimal treatment of MS.

LIMITATIONS

Our study has limitations, such as the timing of the acquisition
of equilibrium parameters and training effects mentioned in the
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FIGURE 6 | Comparison of the ROC curves of different ML classifiers. The

SVM classifier performs best.

previous discussion section. It is difficult to precisely regulate
temperature and humidity in the laboratory, as well as shield
against noise, which may have led to errors in the experimental
data. Finally, the sample of our study was not large enough, which
may have limited the performance of various ML algorithms for
the model and impacted the stability of the evaluation model.

CONCLUSION

This study induced MS using a uniform Coriolis acceleration
stimulus and obtained some indicators related to gastric electrical
activity, facial skin color, skin temperature, and nystagmus,
which could be used to objectively and quantitatively assess

the severity of MS. Based on these, several assessment models

based on different ML algorithms were developed and compared,
among which, the SVM model with the best performance could
be suitable for a multi-dimensional objective assessment of
MS susceptibility.
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