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INTRODUCTION

Tenascin-X (TNX) is a large extracellular matrix protein discovered because its TNXB gene overlaps
the CYP21A2 gene encoding steroid 21-hydroxylase (P450c21), whose mutations cause congenital
adrenal hyperplasia (CAH). In the 1980s, several laboratories worked to clone the “CAH gene”. We
sought a P450c21 clone in a cDNA library prepared from a CAH adrenal and identified a transcript
larger than P450c21 cDNA; sequencing indicated it was encoded by an unknown (”X“) gene
overlapping CYP21A2 on the opposite DNA strand. Extensive genomic sequencing revealed the
structure of a tenascin: N-terminal EGF-like repeats, multiple fibronectin-III repeats, and a
C-terminal fibrinogen-like domain; we named this “Tenascin-X” (TNX). To study TNX function,
we postulated a “contiguous gene syndrome”—a single mutation affecting both CYP21A2 and
TNXB, causing CAH plus another disorder that might suggest the role of TNX. A patient with CAH
and Ehlers-Danlos syndrome (EDS) had partial deletions encompassing both genes. With
collaborators, we described patients with recessive TNX-deficient EDS (now termed “classic-like
EDS”), which was clinically distinct from dominant EDS caused by collagen mutations. TNX
haploinsufficiency causes the mild “hypermobility form” of EDS, often associated with CAH,
comprising the unique CAH-X syndrome. The discovery of TNX illustrates scientific serendipity
and the value of pursuing unexpected results.
STUMBLING ONTO “GENE X”—AN UNEXPECTED FINDING IN AN
ENDOCRINE STUDY

The discovery of TNX and its associated deficiency disease (a form of Ehlers-Danlos Syndrome) was
done in studies of human steroidogenesis and its disorders rather than in studies of connective tissues.
In the 1980s, application of then-new molecular biologic techniques revolutionized understanding of
steroidogenesis (1). A driving force behind this early work was steroid 21-hydroxylase deficiency
(21OHD), a form of congenital adrenal hyperplasia (CAH) causing cortisol deficiency, potentially-
lethal aldosterone deficiency, and androgen excess with prenatal virilization of affected females. There
are many forms of CAH, but 21OHD, with an incidence of ~1:15,000 (2) was responsible for >90% of
cases; 21OHD is now well understood, but requires intensive management (3). Adrenal 21-
hydroxylation is catalyzed by P450c21 (CYP21), a microsomal cytochrome P450 enzyme. In 1986,
we reported the bovine Cyp21 gene sequence (4) and others (5, 6) reported the human gene. The gene
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lay in the human leukocyte antigen (HLA) locus (major
histocompatibility locus, MHC) on chromosome 6p21.33,
the most gene-dense and highly recombinogenic region of the
human genome. Duplicated 30-kb units contained the functional
CYP21A2 gene and a non-functional CYP21A1P pseudogene
duplicated in tandem with the C4A and C4B genes encoding the
fourth component of serum complement (7–9) (Figure 1).
CYP21A1P is transcribed (10, 11), but is considered a
pseudogene because its RNAs do not encode protein. Human
CYP21A2 encodes P450c21, in mice the cyp21a1 gene
corresponding to CYP21A1P is active (12, 13), in cattle both
genes function (4, 14), and some other mammals have single
copies of this locus (15); thus the gene duplication post-dates
mammalian speciation (16).

There was great interest in studying CYP21 genes in patients
with 21OHD. We obtained adrenal mRNA from an abortus
with 21OHD, prepared a cDNA library, and screened it with
radiolabeled double-stranded P450c21 cDNA to obtain
the cDNA for the responsible mutant gene (17). Both the
known cDNA sequence and RNA blotting showed that the full-
length cDNA would be 2.0 kb, but several clones were longer than
that, suggesting that the 21OHD might have arisen by an RNA
splicing error. Restriction endonuclease mapping of the longest
(2.7 kb) clone indicated that it contained only the 3’ end of CYP21.
A 2.7 kb clone might have been a cloning artifact, a recombination
between CYP21 and something else (as sometimes happened with
the reagents then available), but because we had screened the
cDNA library with a double-stranded probe, we considered that
the 2.7 kb clone could have arisen from a transcript on the
opposite strand of DNA from the CYP21 genes. DNA
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sequencing showed that the 2.7 kb clone had a 3’ poly(A) tail
with upstream DNA that matched the predicted opposite-strand
sequence of final exon of CYP21. The complete 2.7 kb sequence
showed an open reading frame with repeating units whose
structural significance was not clear (17). Because the CYP21/C4
locus is duplicated, we knew that this new “gene X” must also be
duplicated as “XA” and “XB” genes with the arrangement 5’-C4A-
21A-XA-C4B-21B-XB-3’ (Figure 1). Deletions in the gene causing
21OHD did not appear to extend into the XB gene, but deletions
of the XA region were found in 14% of human chromosomes (18,
19), suggesting that the 2.7-kb cDNA arose from the XB gene (17).
But the nature of the gene encoding the 2.7-kb cDNA was
unknown—the operational name “gene X” thus became the
source of the name “Tenascin-X”.
GENE X BECOMES TENASCIN-X

The publication of the 2.7 kb cDNA led us and others to study its
gene structure. In 1989, Dr. Russell Doolittle (UC-San Diego),
told us that the sequence of our 2.7 kb cDNA resembled chicken
tenascin, and published a paper describing a fibrinogen-like
sequence in an invertebrate, saying “The sea cucumber protein
also corresponds exactly with a segment found as part of the
previously unidentified gene product found in human adrenals”
(20). Our 2.7 kb cDNA sequence had domains for fibrinogen and
fibronectin type III (Fn-III) repeats, thus resembling tenascin
(16). Matsumoto et al. confirmed the identification of fibrinogen
and Fn-III domains, identified tenascin-like EGF-like domains
FIGURE 1 | The C4/CYP21/TNX gene locus. Top: Diagram of the short arm of chromosome 6; the telomere is to the left and the centromere is to the right. The
MHC Class I and Class II regions are indicated with their principal human leukocyte antigen (HLA) genes; the ~1 megabase region between these is the “Class III
region”, which includes the gene for tumor necrosis factor (TNF). Middle: Scale bar in kilobases (kb) and enlarged view of a portion of the Class III region (chrom
6p21.33); the arrows indicate transcriptional orientations. C2, complement factor C2; Bf, properedin factor Bf; RD is now known as NEFLE, negative elongation
factor subunit E; CREB-RP, CREB-related protein. Bottom: The duplicated 30 kb C4/CYP21/TNX units and adjacent regions: STK19, serine/threonine kinase 19;
C4A and C4B, genes for complement component 4; 21A, CYP21A1P pseudogene; 21B CYP21A2 gene; XA, YA, and YB, adrenal transcripts that lack open reading
frames; XB, the TNXB gene; XB-S the short, adrenal-specific form of TNX, arises from the leftward transcription arrow within the XB gene, analogously to XA; ZA and
ZB, adrenal-specific transcripts with open reading frames arising from promoters within the C4 genes; the ZA and ZB promoters are enhancer elements of the
CYP21A1P and CYP21A2 promoters. Most TNX transcription arises from the untranslated exon at the 5’end of TNXB, but some also arises from two sites within
CREB-RP. The vertical dotted lines designate the boundaries of the gene duplication event. © WL Miller.
January 2021 | Volume 11 | Article 612497

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Miller Early History of Tenascin-X
and provided additional information about exonic organization
(21, 22). To determine how this locus was duplicated, we
sequenced genomic DNA at the predicted duplication
boundaries and through the entire 7 kb between 21A and
C4B that had to comprise the XA locus, providing the entire
XA gene sequence and the precise boundaries of the human
gene duplication (16). These boundaries were substantially
different from the corresponding duplication loci in the mouse
genome, as expected for independent duplication events that
post-dated mammalian speciation. Although XA was abundantly
expressed in the adrenal, its gene was truncated at its 5’ end
(compared to XB) by the gene duplication (16), suggesting that it
is a pseudogene and that XB would be the more important locus.

Manual sequencing of overlapping genomic clones revealed
the nearly complete structure of the XB gene: 39 exons spanning
65 kb encoding a protein of >400-kDa (23). Some Fn-III repeats
underwent alternative splicing; current data show 44 exons
spanning 68 kb encoding 4,244 amino acids totaling 458,220
Da (24). The structure contained the five domains expected of a
tenascin. First, the N-terminus comprised a 22AA signal peptide
that directs the protein to the secretory pathway, used by
extracellular matrix proteins. Second is a hydrophobic domain
containing three heptad repeats that encode the tenascin “head
piece”, which permits polymerization of tenascin monomers into
multi-armed “brachion” structures. The three heptad repeats
suggested that TNX should form a “tri-brachion”, similar to the
hexabrachion structure of chicken (25) and human (26) tenascin.
TNX lacked the additional cysteine residues in this domain of
tenascin and restrictin, which permit two tri-brachions to pair
into a hexabrachion. The tri-brachion structure of TNX was
subsequently confirmed (27); with glycosylation, a TNX tri-
brachion is ~1.5 million Da. Third, a single exon encoded a
series of 18.5 EGF-like repeats having 55% similarity to the 13.5
EGF-like repeats of human tenascin/cytotactin. Fourth, a series
of evolutionarily duplicated exons encoded 32 Fn-III repeats,
including the cell-binding domain identified in chicken tenascin
(25). Finally, the last five exons encode the carboxy-terminal
fibrinogen-like domain and the 3’-untranslated region, including
the domains that overlap CYP21A2 (17). The carboxy-terminal
fibrinogen-like domain was widely conserved in evolution (20,
28), and the sequence and intron/exon arrangement of the 3’ end
of XB were very similar to the b- and g- chains offibrinogen (29).
Thus, the product of the XB gene was a member of the family of
tenascins. We said “We suggest that this category of proteins be
termed ‘brachions’ or ‘tenascins’. We favor the latter. Tenascin,
the first-described member, which is also widely termed
‘cytotactin’, would be termed tenascin-C or TN-C to designate
tenascin-cytotactin; restrictin would be termed tenascin-R or
TN-R; and the product of the XB gene described in this paper
would be tenascin-X or TN-X. This system would emphasize the
relatedness among the monomeric units of these proteins and
would, to the extent possible, incorporate terminologies and
letterings favored by various groups. It seems unlikely that the
number of tenascins will exceed the confines of the alphabet.”
(23). Thus, the currently used nomenclature for the tenascins,
TNC, TNR, and TNX, was established, soon to be followed by
TNW (30, 31).
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ADDITIONAL STUDIES AND GENES IN
THE TNX GENE LOCUS

The structure of TNX is conserved in mice, with subunits of ~500
kD expressed in a pattern distinct from TNC (32). Expression of
TNXB is tissue-specific and developmentally regulated (33, 34).
In fetal adrenal, fetal muscle, and skin HT1080 cells, TNXB
transcription begins with an untranslated exon ~10 kb upstream
from the first coding exon (35). The CREB-RP gene encoding the
transcription factor CREB-related protein lies immediately
upstream from TNXB (36). TNXB transcripts arise from
multiple Sp1/Sp3 sites near to and within CREB-BP (35, 37);
thus, both ends of TNXB overlap other genes (Figure 1). Because
XA is transcribed despite lacking promoter sequences
comparable to those of TNXB, we characterized the 128 bp XA
promoter lying between XA and C4B (38). This sequence is
identical in TNXB and drives the adrenal-specific expression of a
truncated 74 kDa form of TNX, called XB-Short (XB-S), which is
identical to the carboxy-terminal 673 amino acids of TNX (38)
(Figure 1). Expression of XB-S is induced by hypoxia (39), and
XB-S associates with mitotic motor kinesin Eg5 (40), but its
precise function remains unclear. Additional transcripts termed
YA and YB arise from the CYP21A1P and CYP21A2 promoters,
but do not encode protein (10), and transcripts termed ZA and
ZB arise from a promoter element within intron 35 of the C4
genes, but it is not clear whether these open reading frames
encode protein (41). The ZB promoter is an upstream adrenal
enhancer element for CYP21A2 (42). The location of this
essential CYP21A2 element within C4B (also seen in the
mouse) (43), explains why the C4, CYP21, and TNX genes
remain intimately linked in mammalian genomes.
TENASCIN-X DEFICIENCY CAUSES AN
AUTOSOMAL RECESSIVE FORM OF
EHLERS-DANLOS SYNDROME

Developmental expression of TNXB showed a recurring pattern,
appearing first in connective tissue surrounding muscle and then
in a subset of intramuscular cells, suggesting roles in muscle
morphogenesis (33). To find a biological role for TNX, we
hypothesized that an HLA-linked deficiency disease for TNX
might exist, but no clinical candidates emerged. Another
approach was to postulate existence of a “contiguous gene
syndrome” comprising a partial deletion of both the CYP21A2
and TNXB genes, so we sought a patient with 21OHD “and
something else”. Serendipitously, Dr. Cynthia Curry (Fresno
CA), asked us about a patient with 21OHD and a connective
tissue disorder that resembled Ehlers-Danlos Syndrome (EDS).
EDS was then known as an autosomal dominant disorder of
collagen deposition, with rare recessive forms in collagen-
modifying enzymes, (lysyl hydroxylase or pro-collagen
N-proteinase) (44), hence TNX was not an obvious candidate.
The patient’s skin had ultrastructural findings atypical for known
forms of EDS. An antiserum that recognized multiple TNX
epitopes detected TNX in cultured dermal fibroblasts from
January 2021 | Volume 11 | Article 612497
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controls and from the obligately-heterozygous parents, but not in
the patient’s fibroblasts; similarly, control, but not patient
fibroblasts contained TNX mRNA, confirming TNX-deficiency.
Because the protein-coding regions of CYP21A2 and TNXB do
not overlap, we sought gene deletions rather than point
mutations. Genomic PCR and Southern blotting identified a
deletion extending from XA through CYP21A2 to the
corresponding point in TNXB, demonstrating that TNX
deficiency causes EDS (45). In collaboration with Prof. Joost
Schalkwijk (U. Nijmegen, Netherlands), we found an
immunoassayable TNX fragment in the sera of 146 of 151
patients with EDS; the five patients lacking serum TNX had
TNXB mutations, none of which encompassed CYP21A2 (46).
Subsequent work has confirmed that TNX deficiency causes a
clinically distinct, severe form of EDS (47, 48). Similarly, Tnxb-
knockout mice had skin hyperextensibility, reduced skin tensile
strength and reduced skin collagen content (49); whereas mouse
knockouts of TNC and TNR lacked abnormal phenotypes (50–
52). TNX appears to associate with and stabilize newly produced
collagen fibrils (27, 53, 54), thus all recessive forms of EDS
concern post-translational modification of collagens.
CONGENITAL ADRENAL HYPERPLASIA
AND TENASCIN-X—THE CAH-X
SYNDROME

TNX has functions beyond EDS (55); it promotes epithelial-
mysenchymal transitions in development (56), and may be
associated with tumor invasion (57–59). TNX-deficiency has
been associated with primary myopathy (60, 61), recurrent
gastrointestinal perforation (62), and vesicoureteral reflux (63,
64). TNX is expressed in leptomeninges and choroid plexus (34,
65), suggesting neurologic roles: TNXB single nucleotide
Frontiers in Immunology | www.frontiersin.org 4
polymorphisms are associated with schizophrenia (66, 67), and
Tnxb-knockout mice have increased anxiety, improved memory,
and higher sensorimotor coordination than controls (68).

While TNX-deficient EDS is autosomal recessive,
heterozygous TNXB mutations cause TNX haploinsufficiency,
with joint hypermobility, recurring joint dislocations and joint
pain—the “hypermobility type EDS”. Among 20 obligate
heterozygotes for a severely defective TNXB allele, 9 of 14
females but no males had hypermobility EDS (69). Dr. Deborah
Merke (NIH, BethesdaMD) found that 7% of patients with 21OHD
had symptomatic TNX haploinsufficiency (70, 71), and a recent
study reported 14% (72); this association is now regarded as a sub-
type of 21OHD termed CAH-X (73). Thus, studies of 21OHD and
TNX, like their genes, have been linked from the beginning and
continue together.
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