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ABSTRACT

Antimicrobial resistance (AMR) is a global problem hindering treatment of bacterial infections, rendering many aspects of
modern medicine less effective. AMR genes (ARGs) are frequently located on plasmids, which are self-replicating elements
of DNA. They are often transmissible between bacteria, and some have spread globally. Novel strategies to combat AMR are
needed, and plasmid curing and anti-plasmid approaches could reduce ARG prevalence, and sensitise bacteria to
antibiotics. We discuss the use of curing agents as laboratory tools including chemicals (e.g. detergents and intercalating
agents), drugs used in medicine including ascorbic acid, psychotropic drugs (e.g. chlorpromazine), antibiotics (e.g.
aminocoumarins, quinolones and rifampicin) and plant-derived compounds. Novel strategies are examined; these include
conjugation inhibitors (e.g. TraE inhibitors, linoleic, oleic, 2-hexadecynoic and tanzawaic acids), systems designed around
plasmid incompatibility, phages and CRISPR/Cas-based approaches. Currently, there is a general lack of in vivo curing
options. This review highlights this important shortfall, which if filled could provide a promising mechanism to reduce ARG
prevalence in humans and animals. Plasmid curing mechanisms which are not suitable for in vivo use could still prove
important for reducing the global burden of AMR, as high levels of ARGs exist in the environment.
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INTRODUCTION 13%, respectively (Van Boeckel et al. 2014). Antimicrobials have
many non-human uses including in animals for growth promo-
tion, veterinary treatment and aquaculture (Cabello 2006; Meek,
Vyas and Piddock 2015; Van Boeckel et al. 2015). In 2013, an esti-
mated 131 109 tons of antimicrobials were used globally in food
animals; by 2030 this is expected to increase to 200 235 tons
(Van Boeckel et al. 2017). However, there is a growing trend to
improve antimicrobial stewardship in many countries. For ex-
ample, in Switzerland veterinary antimicrobial sales increased
between 2006 and 2008, but then steadily decreased, reaching
a 26.2% reduction in 2013 (Carmo et al. 2017). In addition to

One of the major threats facing society is the rise in num-
ber of antimicrobial-resistant (AMR) bacteria (O’Neill 2016). An-
timicrobials underpin modern medicine; they are used to treat
infections, to prevent infections (prophylaxis) during medical
procedures (e.g. surgery) and they are crucial for patients with
compromised immune function (Holmes et al. 2016; Laxmi-
narayan et al. 2016). Between 2000 and 2010, global human use of
antibiotics increased by 36%, and the use of two last-resort an-
tibiotics, carbapenems and polymyxins, increased by 45% and
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human and animal use, many cleaning and personal hygiene
products contain biocides, such as triclosan, which can select
for mutants resistant to biocides, and in some cases to antibi-
otics used in medicine (Meek, Vyas and Piddock 2015; Webber
et al. 2015, 2017).

A key factor that has led to the rise and global dissemina-
tion of multidrug-resistant (MDR) bacteria are mobile antimi-
crobial resistance genes (ARGs). These are frequently located on
plasmids, which are pieces of usually circular, self-replicating
DNA which can code for a variety of different functional gene
groups. Aspects of plasmid biology have been extensively re-
viewed elsewhere, but, in brief, plasmids often include par-
titioning systems, toxin-antitoxin (TA) systems and conjuga-
tive/transmission systems (Van Melderen and Saavedra De Bast
2009; Pinto, Pappas and Winans 2012; Carattoli 2013; Baxter and
Funnell 2014; Goessweiner-Mohr et al. 2014; Kado 2014; MacLean
and San Millan 2015; Ruiz-Maso et al. 2015; Cabezon et al. 2015;
Ilangovan, Connery and Waksman 2015; Chan, Espinosa and Yeo
2016; Banuelos-Vazquez, Torres Tejerizo and Brom 2017; Hall
et al. 2017; Hulter et al. 2017). Conjugation is mediated by type IV
secretion coupled with a relaxosome complex to mediate DNA
movement from one cell to another (Illangovan, Connery and
Waksman 2015).

Plasmids are frequently categorised based on incompatibility
groups (Inc), defined as the inability of two related plasmids to
be propagated stably in the same cell and may be due to compe-
tition for the same replication or segregation sites, or caused by
repression of replication initiation (Novick 1987; Carattoli 2009).
Reviews on incompatibility groups and plasmid classification
can be found elsewhere (Novick 1987; Carattoli 2011; Shintani,
Sanchez and Kimbara 2015; Orlek et al. 2017). Plasmids that share
the same mechanisms for replication or partitioning are placed
in the same incompatibility groups. Plasmid incompatibility has
been used to follow the movement and evolution of plasmids
conferring AMR (Carattoli et al. 2005).

ARGs that pose a serious threat to human medicine are typi-
cally found in Gram-negative bacteria. These include genes cod-
ing for extended spectrum B-lactamases (ESBL) (e.g. CTX-M), car-
bapenemases (e.g. KPC, NDM and OXA-58) (Holmes et al. 2016)
and colistin resistance (e.g. MCR-1) (Liu et al. 2016). The issues
surrounding AMR plasmids are derived in part by their substan-
tial complexity. Plasmids often display a high degree of plastic-
ity, with frequent insertions, deletions and rearrangements of
DNA including changes to specific ARGs (Kado 2014). For exam-
ple, the blacrx-m gene is highly variable, and the CTX-M fam-
ily of ESBLs are commonly coded for by multiple different plas-
mids, such as pCT (Fig. 1A) (Cottell et al. 2011, Bevan, Jones and
Hawkey 2017). According to the Beta-Lactamase DataBase, 207
variants of blacrx-m have been identified (accessed on 11 May
2018) (Naas et al. 2017). Another example of a plasmid-mediated
ARG is the mcr-1 gene, first identified on a transmissible plas-
mid, pHNSHP45, in 2016 (Fig. 1b) (Liu et al. 2016). Since then
mcr-1 and variants of this gene have been identified on mul-
tiple plasmid backbones and host strains. Of concern are iso-
lates carrying colistin and carbapenem ARGs, as few treatment
options would remain for infections caused by such bacteria
(Lai et al. 2017; Wang et al. 2017; Zhou et al. 2017). In addition
to these examples, plasmids can carry a variety of other resis-
tance genes, including qnr variants, aac(6’)-Ib-cr and plasmid-
mediated efflux pump genes such as 0gxAB and gepA, which
confer low levels of resistance to quinolone antimicrobials
(Jacoby, Strahilevitz and Hooper 2014). Increasingly, research
should focus on ARGs which are frequently mobilised and trans-
mit between bacteria (Crofts, Gasparrini and Dantas 2017).

In the European Union, resistance to carbapenem antibi-
otics in invasive Klebsiella pneumoniae isolates ranges from 66.9%
(Greece), 33.9% (Italy), 2.1% (Spain) to <5% (Northern Europe)
(ECDC 2016). For invasive E. coli infections, resistance to third-
generation cephalosporins ranges from 5% in Iceland to 50% in
Italy, Slovakia and Bulgaria, while carbapenem resistance in E.
coli is <1% for most of the EU and between 1-5% for Romania
(ECDC 2016). A study of travellers returning to the Netherlands
found 30.5% of participants had ESBLs in their bacterial flora,
while only 8.6% had ESBLs before their trip (Paltansing et al.
2013). A large prospective study of 2001 Dutch travellers found
34.7% with no ESBL producing Enterobacteriaceae prior to interna-
tional travel returned with ESBL producing strains (Arcilla et al.
2017). A similar study of 188 Swedish travellers found 32% re-
turned from regions associated with high levels of ESBL produc-
ing Enterobacteriaceae carrying these antibiotic-resistant bacte-
ria (Vading et al. 2016). One isolate contained both blacrx-m and
mcr-1 (Vading et al. 2016). Indeed, mcr-1 was detected by metage-
nomics in 4.9% of faecal samples from 122 healthy Dutch trav-
ellers upon return from travel to South/East Asia and/or South-
ern Africa undertaken between 2011 and 2012 (von Wintersdorff
et al. 2016). However, in this study little is known about the in-
dex isolate in which the mcr-1 gene originated, including the iso-
late’s susceptibility profiles. Therefore, it is possible that the iso-
lates were susceptible to other antimicrobials. In the majority of
studies travellers who obtained ESBL-producing bacteria even-
tually lost the ESBL genes upon return. Of 15 Swiss volunteers, 3
were colonised by ESBL-resistant Enterobacteriaceae before their
trip, all were colonised upon return and 6 were still colonised
6 months post-travel (Pires et al. 2016). Of the resistant isolates
80% contained IncF family plasmids, and in some of the partic-
ipants who were colonised 6 months after travel, the plasmids
had moved into new host bacteria (Pires et al. 2016). blacrx-m-1s
was the most prevalent ESBL, comprising 92% of the ESBL pro-
ducers immediately after travel (Pires et al. 2016). Together, this
highlights the need to reduce the prevalence of ARGs on a global
scale.

Could plasmid curing be a strategy to reduce AMR?

Plasmid curing is the process by which plasmids are removed
from bacterial populations. This is an attractive strategy to com-
bat AMR as it has the potential to remove ARGs from a popula-
tion while leaving the bacterial community intact. This means,
for example, that the structure of the gastrointestinal micro-
biome of a chicken treated with a plasmid curing agent might
remain largely unchanged, but potentially pathogenic bacteria
which may unfortunately be transmitted into the food chain
would be susceptible to antibiotics. Alternatively, a plasmid cur-
ing agent could be given to a patient prior to surgery, to reduce
the likelihood of a resistant hospital acquired infection. Plasmid
curing agents could also be taken by international travellers to
reduce the global spread of AMR. Unfortunately, at the moment
no such treatment options are in use. In fact, there are very few
curing mechanisms that have been tested in vivo, even in ex-
perimental models. Therefore, research in this area is urgently
needed. Recently, it was shown that 24% of non-antibacterial
drugs impact growth of members of the human microbiome
(Maier et al. 2018). Studies such as this would be important for
determining any impact of anti-plasmid compounds on the mi-
crobiome.

The ‘One Health’ approach to tacking AMR is based around
the notion that AMR does not abide by human, animal or polit-
ical boundaries, and therefore a multisectoral and multifaceted



Buckneretal. | 783

traB repZ
(A) Type IV pilus
(pil locus) impB DNA methylase
e impA family protein
pilv
Shufflon
specific DNA

recombinase

(93,629 bp)

Putative RNA parB
excA polymerase sigma
factor
0

=
“ repA * ,ggs,‘“
mok

stbD/E parA ‘
kikA

(B)

pHNSHP45
64105 bp

30000

Figure 1. Organisation of two antibiotic resistance plasmids. (A) pCTcrx-m (IncK). Brown, pseudogenes; orange, hypothetic proteins; light pink, insertion sequences;
light blue, tra locus; green, pil locus; dark pink, antimicrobial drug resistance gene; yellow, putative sigma factor; red, replication-associated genes. Arrows show the
direction of transcription. Reproduced with permission from Cottell et al. (2011). (B) pHNSHP45 -1 . Light blue, type IV pilus; dark blue, transfer region; yellow, plasmid
stability; dark green, plasmid replication; red, insertion sequence; light green, antimicrobial resistance; purple, other proteins; grey, hypothetical proteins. Reproduced
with permission from Liu et al. (2016).
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approach is required. Likewise, anti-plasmid strategies should
also adopt a One Health strategy, and not be focused on human
medicine alone. Indeed some anti-plasmid strategies are un-
suitable or unviable for human use. Furthermore, anti-plasmid
strategies alone will never ‘solve’ AMR; nonetheless, they could
play an important role in reducing global resistance levels. Re-
moving drug-resistance plasmids is a strategy for all sectors to
reduce the overall burden of AMR. For example, plasmid curing
could be used to remove ARGs from bacteria in sewage before
release into the environment. Human and animal waste is often
recycled and used to fertilise agricultural land; this can contain
high concentrations and varieties of ARGs which can be passed
on to people (Meek, Vyas and Piddock 2015; Rahube et al. 2016).
One study performed in Canada found in the first year vegeta-
bles grown above, on and below the surface of soil treated with
sewage contained significantly more ARGs than non-treated
soil (Rahube et al. 2016). An abundance of ARGs were detected
in plasmid metagenome libraries constructed from the influ-
ent, activated sludge and digested sludge from two wastewater
treatment plants in Hong Kong, demonstrating that these were
important reservoirs of ARGs (Li, Li and Zhang 2015). River sam-
ples taken upstream and downstream of a tertiary waste wa-
ter treatment plant in the UK in 2009 and 2011 were examined
for third-generation cephalosporin-resistant Enterobacteriaceae
(Amos et al. 2014). Significantly higher amounts of blacrx-m-15
were found downstream of the plant, and 10 novel genetic con-
texts were identified (Amos et al. 2014). The plasmids contain-
ing blacrx-m-15s Were conjugative, and were in pathogens such
as the highly successful extraintestinal E. coli ST131 (Stoesser
et al. 2016), and other species never before reported to carry
blacrx-m-15s (Amos et al. 2014). IncP-1e plasmids were detected
in manure and arable soil in Germany, and a correlation was
found between the presence of IncP-1¢ plasmids and antibi-
otic use (Heuer et al. 2012). A waste water treatment plant in
Brazil found 34% of E. coli and 27% of K. pneumoniae were resis-
tant to cephalosporins and/or quinolones, and 5.4% of Klebsiella
species were carbapenem resistant in raw as well as treated wa-
ter (Conte et al. 2016). Analysis of these ARGs showed a high
prevalence of blacrx-m and blasyy (Conte et al. 2016). Recent work
from our group examined wastewater used for irrigation of ur-
ban agriculture plots in Burkina Faso. This wastewater contained
multiple ARGs including ESBLs, 10 different Enterobacteriaceae-
associated plasmid incompatibility groups and 30 Gram-positive
replicons associated with ARGs (Bougnom et al., submitted). To-
gether, these studies demonstrate that a treatment such as plas-
mid curing agents to remove ARGs from manure, sewage and
waste water are needed.

The search for plasmid curing compounds began decades
ago, and gained momentum in the 1970s (Table 1). The number
of publications peaked in the 1980s (based on searches for publi-
cations relating to plasmid curing performed on NCBI PubMed).
However, most compounds were toxic, and would produce ad-
verse or unwanted side effects and thus had little use in human
medicine. This was followed by a decline in interest and publica-
tions. Generally, plasmid curing properties have been evaluated
by culturing strains in the presence of a compound or extract
at subgrowth inhibitory concentrations. Curing effects are then
confirmed by the reversal of plasmid-mediated antibiotic resis-
tance and/or by physical loss of the plasmid(s). Therefore, many
of the older publications only refer to the loss of an AMR pheno-
type.

The rise in AMR, specifically plasmid-mediated resistance,
combined with the dwindling pipeline of new drugs in devel-
opment has resulted in a resurgence of interest in plasmid cur-

ing. Strategies of plasmid curing vary greatly, such as the use of
chemicals, drugs, natural products, phage therapies, other plas-
mids and even CRISPR/Cas. A recent study demonstrated that
inhibiting plasmid conjugation was an effective means to re-
move a plasmid from a bacterial population over time (Lopatkin
et al. 2017). The authors concluded that strategies to prevent
plasmid conjugation should be explored as a means to reduce
AMR plasmid prevalence (Lopatkin et al. 2017). Plasmid curing
of a population can also occur when plasmid replication is pre-
vented or reduced, or if plasmid segregation is disrupted, result-
ing in gradual reduction in plasmid carrying cells. Plasmid cur-
ing can also be achieved by increasing the fitness cost associated
with plasmid carriage. We anticipate over the next decade that
these mechanisms will be studied, streamlined and new practi-
cal ways to reduce global AMR plasmid carriage, and hence pres-
ence of ARGs, will be developed.

PLASMID CURING COMPOUNDS

Many compounds have shown some plasmid curing
activity. These include detergents, biocides, DNA interca-
lating agents, antibiotics (e.g. aminocoumarins, quinolones,
rifampicin), ascorbic acid, psychotropic drugs (e.g. chlor-
promazine) and plant-derived compounds (Table 1). The
effectiveness of these compounds varies greatly and depends
on bacterial strain, plasmid and growth conditions. Plasmid
curing compounds can act through different mechanisms.
In many cases, the compound disrupts plasmid replication
by integrating into the DNA (e.g. intercalating agents and
chlorpromazine), causing breaks in DNA (e.g. ascorbic acid)
or by influencing plasmid supercoiling (e.g. aminocoumarins
and quinolones). Plasmid curing compounds can also act
by preventing conjugation (e.g. unsaturated fatty acids and
TraE inhibitors). Each of these can result in reduced plasmid
prevalence within the population over time. The mechanism of
action of some curing agents remains to be fully elucidated. One
could hypothesise that plasmid curing compounds could also
target plasmid segregation, by preventing equal distribution
among daughter cells, or increase the fitness burden associated
with plasmid carriage.

Detergents

The detergents bile and sodium dodecyl sulphate (SDS) are able
to cure some plasmids from some bacterial strains (Table 1).
Four notable examples include a study where bile salts dose-
dependently caused the loss of the Salmonella enterica serovar
Typhimurium virulence plasmid, pSLT (Garcia-Quintanilla et al.
2006). However, the level of bile required was 10%-15%, which is
significantly higher than that found normally within the small
intestine (0.2%-2%) (Garcia-Quintanilla et al. 2006; Kristoffersen
et al. 2007). The Salmonella virulence plasmid can be transmitted
tonew hosts in the mouse intestine, but transmission is unlikely
to occur in areas with high levels of bile (Garcia-Quintanilla,
Ramos-Morales and Casadests 2008). Bile (>1%) reduced ex-
pression of conjugative pilus genes pilV and pilT, and decreased
conjugation of S. enterica Infantis mega plasmid pESI (280 kb),
encoding resistance to tetracycline, sulfamethoxazole and
trimethoprim as well as virulence traits (Aviv et al. 2014; Aviv,
Rahav and Gal-mor 2016). The relevance of bile-mediated plas-
mid curing during human Salmonella infections remains unclear.
In addition, the levels of bile required for plasmid curing or to re-
duce plasmid transmission may result in diarrhoea, and there-
fore bile is unlikely to be used as a treatment.
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Curing Agent

Species

Plasmid Cured

Key Findings

Reference

Acridine orange

Acriflavine

Ascorbic Acid

Bile

Chlorpromazine

E. coli

V. parahaemolyticus
L. plantarum

S. aureus

B. fragilis
B. thetaiotaomicron

S. enterica

E. coli

Group A Streptococci
L. casei

L. reuteri

S. aureus

B. fragilis

B. thetaiotaomicron

0. oeni

E. faecium
E. faecalis

S. aureus

P. acidilactici

S. enterica Typhimurium

S. enterica Infantis

E. coli

Small plasmids (UTI
isolates)

PBR322

PBR325

pUK657

AMR plasmid
Raffinose & lactose
metabolising plasmid
Staphyloccocin plasmid
PED503

AMR plasmid

AMR plasmid

AMR plasmids

AMR plasmid
Haemolysin producing
plasmids

AMR plasmid
pDR101

pLUL631 (lactose
fermenting)
Staphyloccocin
plasmids

AMR plasmid
AMR plasmid

PRS1, pRS2, pRS3

AMR plasmids
AMR plasmids
Penicillinase plasmid
Aminoglycoside
resistance plasmid
pI55cl

Pediocin producing
plasmid

pSLT

PESI

F’lac plasmid

R-factor

75 pg/mL: 11.76% CF for plasmids
<2.7 mDa

100 pg/mL: 35% CF

100 pg/mL: 15% CF

375 pg/mlL: 14.28% CF

0.2 mg/mL cured 6/13 plasmids
from isolates (1.2-10kb).

0.1 mg/mL cured 10/12 plasmids

15 pg/mL: 12.1% CF
15 pg/mL: 3.4% CF

16 ng/mL cured resistance to Ery
and Clin

16 ng/mL cured resistance to Ery
and Clin

Of plasmids with five resistance
phenotypes, 35% CF of S.
Oranienburg, 5% CF of S. Panama.
Of plasmids with one resistance
phenotype, 98% CF of S. Panama
and S. paratyphi B

Three plasmids cured at 5, 12 and
22% CF

24 h incubation with 10 pg/mL
resulted in low CF

0.2 pg/mL for 18 h: 2.1%-4.3% CF of

three plasmids
10 pg/mL for 48 h: 7.2% CF

2 pg/mL: 1%-10% CF
2 pug/mL: 25% CF

16 png/mL, 18-21 days: loss of Ery,
Clin and Tet resistance plasmid
16 png/mL, 18-21 days: loss of Ery,
Clin and Tet resistance plasmid
2.5-10 pg/Ml, CF of: 18.7% (pRS1),
6.2% (PRS2), 62.5% (pRS3), 31.2%
(pRS2 & pRS3 simultaneously)
Sub-MIC levels resulted in cured
isolates

Sub-MIC levels resulted in cured
isolates

1 mM for 6 h: 12%-35% CF

1 mM for 6 h: 4 of six strains cured,
with 10%-48% CF

1 mM for 6 h: 48% CF

1 mM: 35% CF of 7.8 kb plasmid

15% ox bile: 10-° frequency of
plasmid loss in wild type. In ccdB
mutant frequency was 10~*
1%-4% bile: reduced CF

20-60 pg/mL: 5%—20% CF, most
efficient at pH 7.6

50 ng/mL: plasmid curing was
observed

Zaman, Pasha and Akhter
(2010)

Keyhani et al. (2006)
Keyhani et al. (2006)

Beg and Ahmad (2000)
Letchumanan et al. (2015)

Adeyemo and Onilude
(2015)

Jetten and Vogels (1973)
Ersfeld-Dressen, Sahl and
Brandis (1984)

Rotimi, Duerden and Hafiz
(1981)

Rotimi, Duerden and Hafiz
(1981)

Bouanchaud and Chabbert
(1971)

Bouanchaud and Chabbert
(1971)

Mitchell and Kenworthy
(1977)

Nakae, Inoue and
Mitsuhashi (1975)

Chassy, Gibson and
Guiffrida (1978)

Axelsson et al. (1988)

Jetten and Vogels (1973)

Rotimi, Duerden and Hafiz
(1981)

Rotimi, Duerden and Hafiz
(1981)

Mesas, Rodriguez and
Alegre (2004)

Coleri et al. (2004)
Coleri et al. (2004)

Amabile Cuevas (1988)
Amabile-Cuevas,
Pina-Zentella and
Wah-Laborde (1991)
Amabile-Cuevas,
Pina-Zentella and
Wah-Laborde (1991)
Ramesh, Halami and
Chandrashekar (2000)
Garcia-Quintanilla et al.
(2006)

Aviv, Rahav and Gal-mor
(2016)
Mandi et al. (1975)

Molnar, Mandi and Kiraly
(1976)
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Table 1. Continued

Curing Agent Species Plasmid Cured Key Findings Reference
R114 plasmid Enhanced curing activity with Molnar et al. (1980)
methylene blue
S. aureus QacA encoding plasmid  Successive passaging in 2-20 Costa et al. (2010)
mg/mL resulted in curing
Ethidium bromide S. aureus Penicillinase carrying 8 x 107°M at pH 7.2: CF of 50% Bouanchaud, Scavizzi and

Irgasan (Triclosan)

Lawsone

Plumbagin

E. aerogenes
Salmonella

E. coli

B. cereus

B. fragilis

B. thetaiotaomicron

E. coli

S. aureus

E. coli

plasmids

Staphyloccocin
producing plasmid
PED503

AMR plasmids
PKpQIL-like (blatem-1
and blagpc.-3)

AMR plasmids

F’-lac plasmids

p424

pUK651
Haemolysin producing
plasmids

AMR plasmids

AMR plasmids

UTI plasmids
Hydrocarbon degrading

plasmid
AMR plasmid

AMR plasmid

PMIB4

Van resistance plasmid
R6K

TP181

R162

TP154

RP4

pKT231
pTP181-derivatives

pUK651
R plasmid

(maximum). 6 x 10~°M: CF average
of 20%, ranging from 0.21%-58%
depending on plasmid/strain.
Curing peaked at 10-12 h, became
refractory to additional curing

1.25 pg/mL: 94% CF

3.6 ug/mL: 4.4% CF

32% and 60% CF for Pen and
mercury resistance plasmids
400-600 pg/mL: 85% CF

100-2000 pg/mL for 1-7 days cured
2/17 strains
6-250 x 107°M: 20% CF

0.52 mM cured plasmid, four cured
variants had altered colony
morphology and biochemical
modifications

200 pg/mL: 36.6% CF

50 ug/mL: low frequency of
plasmid loss at 24 h

7.5 x 107 and 1.3 x 10~M: CF of
71% and 32%, respectively

32% curing of resistance to five
antibiotics

125 pug/mL: 17.65% CF

100 pg/mL: cured isolates enabling
testing of plasmid properties

16 png/mL cured Ery and Clin
resistance. Curing of Tet
resistance required 18-21 days
16 png/mL cured Ery and Clin
resistance. Curing of Tet
resistance required 18-21 days
100x below MIC cured plasmid.
Effective in broth and embedded
in silicone hydrogels

200 pg/mL: 20% CF (1/2 MIC)

200 png/mL: 42% CF of 2/6
resistance markers
100 pg/mL: 100% CF

100 pg/mL: 100% CF

100 pg/mL: 45% CF of 3/6
resistance markers

12.5 pg/mL: 32% CF

12.5 pg/mL: 10% CF

25 pg/mL: 11%-47% CFCaused by
interference with plasmid
replication and maintenance
7000 pg/mL: 14% CF (sub-MIC)
1000 pg/mL: 15% CF.

Chabbert (1969); Rubin and
Rosenblum (1971)

Jetten and Vogels (1973)

Ersfeld-Dressen, Sahl and
Brandis (1984)
Bouanchaud and Chabbert
(1971)

Pulcrano et al. (2016)

Poppe and Gyles (1988)

Bouanchaud, Scavizzi and
Chabbert (1969)
Rosas et al. (1983)

Beg and Ahmad (2000)
Mitchell and Kenworthy
(1977)

Bouanchaud, Scavizzi and
Chabbert (1969)
Bouanchaud and Chabbert
(1971)

Zaman, Pasha and Akhter
(2010)

Borah and Yadav (2015)

Rotimi, Duerden and Hafiz
(1981)

Rotimi, Duerden and Hafiz
(1981)

Riber et al. (2016)

Jahagirdar, Patwardhan and
Dhakephalkar (2008)
Lakhmi, Padma and Polasa
(1987)

Lakhmi, Padma and Polasa
(1987)

Lakhmi, Padma and Polasa
(1987)

Lakhmi, Padma and Polasa
(1987)

Bharathi and Polasa (1991)
Bharathi and Polasa (1991)
Lakshmi and Thomas
(1996)

(Beg and Ahmad (2000)
Patwardhan et al. (2015)
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Curing Agent Species Plasmid Cured Key Findings Reference
S. aureus Van resistance plasmid 25 pg/mL: 4% CF, 50 p1g/mL Jahagirdar, Patwardhan and
inhibited growth Dhakephalkar (2008)
P. aeruginosa R plasmid 1000 png/mL: 13% CF Patwardhan et al. (2015)
P. vulgaris R plasmid 500 pg/mL: 32% CF Patwardhan et al. (2015)
K. pneumoniae R plasmid 500 ng/mL: 30% CF Patwardhan et al. (2015)
Promethazine E. coli AMR plasmid Plasmids eliminated Spengler et al. (2003)
F’lac plasmid At 37°C, 80 ng/mL: 79.6% CF At Molnar, Amaral and Molnar
39°C, 80 ug/mL: 88% CF (2003); Spengler et al. (2003)
Multi-species co-cultures reduced
promethazine concentration
required for curing
PBR322 TF-14 (a potential proton pump Wolfart et al. (2006)
inhibitor) increased promethazine
CF
Rifampicin E. coli Haemolysin plasmids 2 ng/mL, 24 h incubation led to Mitchell and Kenworthy
high GF (1977)
F’lac 3-7.5 pg/mL resulted in curing. Bazzicalupo and
Rif/RNA polymerase interaction Tocchini-Valentini (1972)
required for curing
S. aureus Penicillinase plasmid 0.1 pg/mL: 20% CF, 0.05 ug/mL: 5%  Johnston and Richmond
CF (1970); Wood, Carter and
Best (1977)
Sodium dodecyl E. coli R and F factors 24 h of 10% SDS: 5.3%-22% CF,72h  Tomoeda et al. (1968)

sulphate (SDS)

Thioridazine

Trifluoperazine
1’-acetoxychavicol
acetate

8-epidiosbulbin E
acetate

K. pneumoniae

Lactobacillus isolates
(milk)

P. aeruginosa

S. aureus

E. coli
S. flexneri
V. cholera
E. coli
E. coli

S. Typhi

P. aeruginosa
E. faecalis

B. cereus

E. coli

B. subtilis
P. aeruginosa

E. faecalis
S. sonnei

Dp424

pPR4

PKT231
PBR322

UTI plasmids

Large indigenous
plasmid (96 kb)
AMR plasmids

pBC15
Staphyloccocin
producing plasmid
AMR plasmid

AMR plasmid

AMR plasmid

AMR plasmid
PAR1813

RP4
PAR1814
PAR1816
PAR1812
PAR1817
RP4

PARIS13
pUB110
RMS163
RIP64

PARIS12
DPARI815

resulted in 95%-100% CF

10% cured variants had altered
colony morphology and
biochemical modifications

100 pg/mL: 12.5% CF

200 pg/mlL: 7.5% CF

0.25%-1%: 27%-35% CF

10% w/v: 7.4% CF

4% resulted in 1/8 colonies
successfully cured
1% cured 5 of 7 isolates

10% was effective
30 pg/mL: 100% CF

75% MIC eliminated resistance
75% MIC eliminated resistance
75% MIC eliminated resistance
Reviewed in detail by

400 pg/mL: 32% CF

400 pg/mL: 7% CF
800 png/mL: 75% CF
800 pg/mL: 75% CF
400 pg/mL: 66% CF
400 pg/mL: 6% CE
25 pg/mL: 44% CF

25 jg/mL: 44% CF
100 pg/mL: 48% CF
200 pg/mL: 30% CE
100 pg/mL: 64% CF
200 pg/mL: 48% CF
25 pg/mL: 32% CF

Rosas et al. (1983)

Bharathi and Polasa (1991)
Bharathi and Polasa (1991)
Keyhani et al. (2006)
Zaman, Pasha and Akhter
(2010)

El-Mansi et al. (2000)

Lavanya et al. (2011)

Raja and Selvam (2009)
Jetten and Vogels (1973)

Radhakrishnan et al. (1999)
Radhakrishnan et al. (1999)
Radhakrishnan et al. (1999)
Spengler et al. (2003)

Latha et al. (2009)

Latha et al. (2009)
Latha et al. (2009)
Latha et al. (2009)
Latha et al. (2009)
Latha et al. (2009)
Shriram et al. (2008)

Shriram et al
Shriram et al
Shriram et al
Shriram et al
Shriram et al
Shriram et al

e
-
e
-
-
-

N

o

o

(&3]
=T D= =

CF—Curing Frequency: the proportion of colonies which were cured of the plasmid compared to non-cured colonies. Ery—erythromycin, Clin—clindamycin, Tet—
tetracycline, Pen—penicillin, Van—vancomycin, Rif—rifampicin.
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SDS-based plasmid curing methods have been used as a lab-
oratory tool for decades. In 1968, SDS was shown to reduce car-
riage of fertility and resistance factors (F and R factors/plasmids)
(Tomoeda et al. 1968). Over the years, SDS has been used to
cure plasmids from E. coli (Rosas et al. 1983; Bharathi and
Polasa 1991; Keyhani et al. 2006; Zaman, Pasha and Akhter 2010),
K. pneumoniae (El-Mansi et al. 2000), Pseudomonas aeruginosa (Raja
and Selvam 2009), Lactobacillus species (Lavanya et al. 2011) and
Staphylococcus aureus (Jetten and Vogels 1973) (Table 1). SDS also
had other effects on bacteria; these included changes in the pep-
tidoglycan layer, bacterial cell size, septation and loss of outer
membrane components (Rosas et al. 1983).

In summary, detergents are unlikely to be used in humans or
animals to reduce AMR plasmids, mainly due to the high con-
centrations needed, and the associated unwanted gastrointesti-
nal side effects, such as SDS-induced colitis. However, deter-
gents continue to be used in the laboratory setting as a tool to
study plasmid biology.

Biocides

Recently, it was shown that concentrations well below the MIC of
triclosan (also called irgasan) increased the loss of a GFP reporter
plasmid pMIB4 from E. coli (Riber et al. 2016). A key finding of this
paper was that triclosan embedded in interpenetrating polymer
networks of silicone hydrogels was effective at reducing plasmid
carriage. The use of such technology as a drug delivery system
is appealing, especially for items such as indwelling medical de-
vices (e.g. catheters). However, exposure to triclosan can select
for MDR bacterial mutants, largely due to overexpression of bac-
terial efflux pumps (Chuanchuen et al. 2001; Webber et al., 2008,
2015; Hernandez et al. 2011; Fernando et al. 2014; Rensch et al.
2014; Gantzhorn, Olsen and Thomsen 2015). Therefore, caution
should be used implementing such a strategy.

DNA intercalating agents

The DNA intercalating agents acridine orange, ethidium bro-
mide and acriflavine also have plasmid curing properties. Acri-
dine orange cured E. coli (Keyhani et al. 2006; Zaman, Pasha and
Akhter 2010), Vibrio parahaemolyticus (Letchumanan et al. 2015),
Lactobacillus plantarum (Adeyemo and Onilude 2015), S. aureus
(Jetten and Vogels 1973; Ersfeld-Dressen, Sahl and Brandis 1984),
Bacteroides fragilis and B. thetaiotaomicron (Rotimi, Duerden and
Hafiz 1981) (Table 1). In the late 1960s and early 1970s, ethidium
bromide was found to eliminate plasmids from various strains
of S. aureus and Escherichia coli (Table 1) (Bouanchaud, Scavizzi
and Chabbert 1969; Rubin and Rosenblum 1971). More recently,
it has been used to cure other plasmids from E. coli (Rosas et al.
1983), Bacillus cereus (Borah and RNS 2015), clinical Enterobacter
aerogenes isolates of a blargm.1 and blagpcs pKpQIL-like plasmid
(Pulcrano et al. 2016), and cured plasmids from two avian
Salmonella strains (Poppe and Gyles 1988) (Table 1).

Acriflavine cured some resistance plasmids from Salmonella
Oranienburg, S. Panama and E. coli K12 in vitro and in a
murine in vivo model (Bouanchaud and Chabbert 1971). Acri-
flavine also cured E. coli of haemolysin production (Mitchell and
Kenworthy 1977). However, it is more commonly associated with
curing of Gram-positive bacteria. It cured plasmids from Group
A Streptococci (Nakae, Inoue and Mitsuhashi 1975), Lactobacillus
casei (Chassy, Gibson and Guiffrida 1978), L. reuteri (Axelsson
et al. 1988) and Oenococcus oeni (used in wine production) (Mesas,
Rodriguez and Alegre 2004) (Table 1). Acriflavine was effective at

curing resistance from antibiotic-resistant Enterococcus faecium
and E. faecalis (Coleri et al. 2004).

Acriflavine, ethidium bromide and acridine orange caused
loss of a plasmid-encoded staphylococcin production in Staphy-
lococcus species (Jetten and Vogels 1973; Ersfeld-Dressen, Sahl
and Brandis 1984); however, as strains became resistant to
acriflavine they also became resistant to its curing effects
(Jetten and Vogels 1973). Acriflavine, acridine orange and ethid-
ium bromide cured resistance to antimicrobials from both donor
and transconjugants B. fragilis and B. thetaiotaomicron (Rotimi,
Duerden and Hafiz 1981).

The practical applications of DNA intercalating agents are
few, due to their activity as powerful mutagens, associated
with significant toxicity and the carcinogenic nature of these
molecules. The harm of using such compounds vastly outweighs
any potential benefit derived from plasmid curing. In addition,
as many intercalating agents are substrates of bacterial efflux
pumps, the use of such compounds could select for overexpres-
sion of efflux pumps which can lead to MDR (Piddock 2006). How-
ever, these compounds can still be useful in a laboratory setting
to cure strains of plasmids (Coleri et al. 2004; Mesas, Rodriguez
and Alegre 2004; Chin et al. 2005; Raja and Selvam 2009; Zaman,
Pasha and Akhter 2010; Adeyemo and Onilude 2015; Pulcrano
et al. 2016).

Plant-derived compounds

Many well-studied plant extracts come from tradi-
tional  medicine.  Plumbagin  (5-hydroxy-2-methyl-1,4-
naphthoquinone) is a yellow dye derived from the root of
the tropical/subtropical Plumbago species (Patwardhan et al.
2015). Plumbagin is reported to have anticancer, antifungal and
antimicrobial activity (Padhye et al. 2012; Tyagi and Menghani
2014). In E. coli, plumbagin effectively eliminated a conjugative,
MDR plasmid (Lakhmi, Padma and Polasa 1987) and the RP4
plasmid (Bharathi and Polasa 1991). Plumbagin eliminated
plasmids from E. coli, by decreasing plasmid copy number and
reducing the toxic effect of plasmid loss (Lakshmi and Thomas
1996) (Table 1).

Subinhibitory concentrations of Plumbago zeylanica root ex-
tract were tested on MDR clinical isolates of S. Paratyphi, S. au-
reus, E. coli and Shigella dysenteriae, as well as E. coli containing
PpUK651, but the extract only cured 14% of E. coli of pUK651 (Beg
and Ahmad 2000). Subinhibitory concentrations of P. auriculata
root extracts cured drug-resistance plasmids from P. aeruginosa,
E. coli, Proteus vulgaris and K. pneumoniae, which were slightly
higher than pure plumbagin (Patwardhan et al. 2015) (Table 1).

8-epidiosbulbin E acetate is isolated from the bulbs of
Dioscorea bulbifera, a plant known in Ayurvedic alternative
medicine (Shriram et al. 2008). 8-epidiosbulbin E acetate belongs
to the clerodane class of diterpenes. Its antibacterial and curing
activity was evaluated, and it cured reference strains of E. coli, B.
subtilis, P. aeruginosa, and clinical isolates of E. coli, E. faecalis and
S. sonnei with an average efficiency of 34% (Shriram et al. 2008)
(Table 1).

The curing activity of the crude extract of Alpinia galanga
(L.) Swartz, a medicinal plant indigenous to Southeast Asian
countries, was tested (Latha et al. 2009). The bioactive fraction
containing 1’-acetoxychavicol acetate was tested on nine bac-
terial reference strains carrying antibiotic-resistance plasmids.
A subinhibitory concentration of crude extract cured plasmids
from S. Typhi, E. coli and E. faecalis. Purified 1'-acetoxychavicol
acetate cured MDR plasmids from S. Typhi, P. aeruginosa, E. fae-
calis, E. coli and B. cereus (Latha et al. 2009) (Table 1).



Taken together, plant-derived compounds can be effective
at curing plasmids in vitro; however, more research is needed
to confirm spectrum of activity, identify the active components
and to determine any toxicity and in vivo efficacy.

Conjugation inhibiting compounds

Unsaturated fatty acids

Work from de la Cruz and colleagues has focused on performing
high-throughput screens of compounds to search for inhibitors
of conjugation (Fernandez-Lopez et al. 2005; Getino et al. 2015,
2016; Ripoll-Rozada et al. 2016). Their high-throughput screening
method used a lux reporter under the control of the lac promoter,
on a simple conjugative plasmid derived from R388 in E. coli
(Fernandez-Lopez et al. 2005). The donor carried the lacl repres-
sor; thus, luminescence was only produced after conjugation
(Fernandez-Lopez et al. 2005). They tested a library of microbial
extracts, and showed that unsaturated fatty acids, including de-
hydrocrypenynic acid, linoleic acid and oleic acid, inhibited con-
jugation (Fernandez-Lopez et al. 2005). Recently, Lopatkin et al.
(2017) used linoleic acid to determine the impact of reduced con-
jugation on plasmid persistence within a population. Indeed,
3.5 uM linoleic acid was sufficient to destabilise a plasmid with
low conjugation efficiency from a population; however, it was
ineffective for plasmids with higher conjugation efficiencies or
which carried a fitness benefit (Lopatkin et al. 2017).

A study of synthetic fatty acids demonstrated that 2-alynoic
fatty acids inhibited conjugation; of these, 2-hexadecynoic acid
was the most potent, followed by 2-octadecynoic acid (Getino
et al. 2015). At concentrations of 0.4 mM, 2-hexadecynoic acid
reduced conjugation frequencies of IncW, IncH and IncF plas-
mids by 100 times, while concentrations of 1 mM were re-
quired to reduce conjugation of Incl, IncL/M and IncX plasmids.
Conjugation of IncP and IncN plasmids was not affected by
2-hexadecynoic acid. Using molecules with similar structures,
they determined that the carboxylic group, a 16-carbon chain
and one unsaturated bond were optimal for conjugation inhibi-
tion. They showed that 2-hexadecanoic acid acted on the donor,
and inhibited conjugation in E. coli, S. enterica, P. putida and Acine-
tobacter baumannii (Getino et al. 2015).

Four unsaturated fatty acids (linoleic, oleic, 2-hexadecynoic
and 2-ocatadecynoic acid) inhibited the activity of the plas-
mid encoded TrwD ATPase (VirB11 homologue) (Ripoll-Rozada
et al. 2016). TrwD acts as a traffic ATPase, regulating switching
between pilus biogenesis and DNA translocation through the
conjugation machinery (Ripoll-Rozada et al. 2013). Fatty acids
which did not inhibit conjugation had no impact on TrwD ac-
tivity (Ripoll-Rozada et al. 2016). The authors suggested that the
mechanism for the conjugation inhibiting activity of unsatu-
rated fatty acids was due to their binding to the N-terminal do-
main and linker region of TrwD, inhibiting the movement of the
N-terminal domain over the C-terminal domain, thus prevent-
ing ATPase activity of the enzyme (Ripoll-Rozada et al. 2016).

One of the concerns about any clinical use of synthetic fatty
acids, such as 2-hexadecanoic acid, is toxicity in people or an-
imals. Recent work focused on finding less-toxic molecules by
screening a natural compound library produced by aquatic mi-
crobes (Getino et al. 2016). Tanzawaic acid A and B, polyketides
produced by Penicillium species, were identified as effective con-
jugation inhibitors of IncW and IncFII plasmids. Tanzawaic acid
B (0.4 mM) reduced conjugation by 100-fold for IncW and Inc-
FII, as compared to untreated controls. However, they were only
moderately effective on IncFI, Incl, IncL/M, IncX and IncH plas-
mids, reducing conjugation by between 10% and 50% compared
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to untreated cells. In addition, they did not inhibit conjugation
of IncN and IncP plasmids (Getino et al. 2016). Importantly, oleic
acid, linoleic acid and tanzawaic acids A and B were less toxic
on bacteria, fungi and tissue culture cells than 2-hexadecynoic
and 2-oxydecynoic acid (Getino et al. 2016).

Unsaturated fatty acids have been shown to be effective con-
jugation inhibitors in many laboratory settings, and on a vari-
ety of plasmids. Furthermore, they are associated with reduced
toxicity on tissue culture cells. Further studies are needed to
determine the in vivo safety and efficacy of unsaturated fatty
acids, but they are promising candidates for future plasmid cur-
ing work.

TraE inhibitors

Using a targeted approach, Baron and colleagues have identified
small molecules which bind to and inhibit the dimerisation of
TraE, an essential component of the type IV secretion system in-
volved in a variety of functions including conjugation of pKM101
(Paschos et al. 2011; Casu et al. 2016, 2017). Structural studies of
the pKM101 encoded TraE dimerisation (VirB8 homologue) were
used as a basis for uncovering small molecules which inhibited
dimerisation, four of which (molecules B8I-16, BAR-072, BAR-073
and UM-024) also inhibited transmission of pKM101 (Casu et al.
2016). None of these molecules impacted upon transmission of
RP4, highlighting their specificity for pKM101 TraE (Casu et al.
2016). In a follow-up study, Casu et al. (2017) screened a frag-
ment library for compounds which bound to TraE. They used this
information to design two molecules which bound with high
affinity to TraE and were able to reduce transmission of pKM101
(molecules 105055 and 239852) (Casu et al. 2017). Together, this
work demonstrates the feasibility and specificity of structure-
based design of anti-plasmid compounds.

Drugs used in human medicine

DNA gyrase/topoisomerase inhibitors

DNA gyrase is essential in bacteria as it introduces super-
coiling into DNA molecules; it is comprised of two GyrA and
two GyrB monomers (Andriole 2005). Multiple antibiotics tar-
get DNA gyrase. Aminocoumarin antibiotics, such as novobiocin
and coumermycin A, inhibit GyrB (Gellert et al. 1976). These
and the related compounds clorobiocin and isobutyryl nove-
namine were effective at plasmid curing (Hooper et al. 1984).
The GyrB inhibiting activities of aminocoumarins are responsi-
ble for their plasmid curing properties (Taylor and Levine 1979),
and the E. coli gyrase B subunit is required for plasmid main-
tenance, and curing activity of coumermycin A1l (Wolfson et al.
1982). Novobiocin interfered with plasmid maintenance, rather
than selecting plasmid-free isolates (Hooper et al. 1984). Further-
more, bacteria with a mutation in gyrB conferring resistance to
coumermycin required higher levels of the antibiotic to produce
the curing effect (Hooper et al. 1984).

Novobiocin was effective at curing plasmids from many
Gram-positive bacteria including L. plantarum, Lactobacillus
strains isolated from chickens, L. acidophilus isolated from mo-
lasses, E. faecalis, clinical isolates of enterococci, B. subtilis and
S. aureus (Table 2) (McHugh and Swartz 1977; Ruiz-Barba, Pi-
ard and Jiménez-Diaz 1991; Chin et al. 2005; Karthikeyan and
Santosh 2010). Escherichia coli and other Gram-negative Enter-
obacteriaceae were cured of a variety of plasmids by novobiocin
(Michel-briand et al. 1986). Novobiocin eliminated the Salmonella
virulence plasmid from S. Typhimurium, resistance plasmids
from Serratia marcescens and a cryptic plasmid from Chlamy-
dia muridarum (Gulig and Curtiss III 1987; Llanes et al. 1990;



790 | FEMS Microbiology Reviews, 2018, Vol. 42, No. 6

Table 2. Quinolone and aminocoumarin antimicrobials with plasmid curing properties.

Quinolone Species Plasmid cured Key findings Reference
Ciprofloxacin E. coli R446b 1/2 MIC: no curing, 0.06 ug/mL Weisser and Wiedemann
(sub-MIC): 30% CF (1985); Michel-briand et al.
(1986)
R386 0.07 ug/mL (sub-MIC): 2% CF Michel-briand et al. (1986)
F’lac 1/2 MIC: 50% CF Weisser and Wiedemann
(1985)
R16 1/2 MIC: 1% CF Weisser and Wiedemann
(1985)
Rtsl 1/2 MIC: 32% CF Weisser and Wiedemann
(1985)
5 large plasmids Sub-MIC: 10%-90% CF. Small high  Platt and Black (1987)
copy plasmids not cured
S. sonnei PpWR105 0.05 pg/mL (sub-MIC): 50% CF Michel-briand et al. (1986)
Coumermycin A E. coli PBR322 5 ng/mL: 90% CF, 7 ug/mL: 45% CF.  Danilevskaya and Gragerov
Mechanism involves antagonism (1980); Wolfson et al. (1982)
of DNA gyrase
pMG110 7 ng/mL: 70% CF and mechanism  Wolfson et al. (1982)
involves antagonism of DNA
gyrase.
PMB9 5 ng/mL: 64.7% CF. Cou resistant Danilevskaya and Gragerov
mutant had 5% CF at 10 pg/mL (1980)
pOD162 5 ng/mL: 64.5% CF Danilevskaya and Gragerov
(1980)
pSC101 2 pg/mL: 32.5% CF Danilevskaya and Gragerov
(1980)
pKT231 3.15 ug/mL: 90% CF Bharathi and Polasa (1991)
PRK2013 3.15 pg/mL: 35.5% CF Bharathi and Polasa (1991)
Enoxacin E. coli R446b 1/2 MIC: 24% CF, 0.5 ng/mL Weisser and Wiedemann
(sub-MIC): 2% CF (1985); Michel-briand et al.
(1986)
R386 0.05 pg/mL (sub-MIC): 2% CF Michel-briand et al. (1986)
S-a 0.5 ng/mL (sub-MIC): 1% CF Michel-briand et al. (1986)
F’lac 1/2 MIC: 66% CF Weisser and Wiedemann
(1985)
R16 1/2 MIC: 11% CF Weisser and Wiedemann
(1985)
Rts1 Sub-MIC concentrations: 98% CF Weisser and Wiedemann
(1985)
pORF2 Sub-MIC concentrations: 43% CF Fu et al. (1988)
S. sonnei pWR105 0.12 pg/mL (sub-MIC): 11% CF Michel-briand et al. (1986)
Flumequine E. coli R446b 8 g/mL (sub-MIC): 2% CF Michel-briand et al. (1986)
S-a 4 pg/mL (sub-MIC): 1% CF Michel-briand et al. (1986)
S. sonnei PWR105 0.25 pug/mL (sub-MIC): <1% CF Michel-briand et al. (1986)
S. dysenteriae PWR24 0.12 pg/mL (sub-MIC): 2% CF Michel-briand et al. (1986)
S. flexneri PWR110 0.12 pg/mL (sub-MIC): <1% CF Michel-briand et al. (1986)
Nalidixic Acid E. coli pMG110 4.3 uM (sub-MIC): 1% CF Hooper et al. (1984)
R446b 1/2 MIC: 8% CF, 64 png/mL Weisser and Wiedemann
(sub-MIC): 4% CF (1985); Michel-briand et al.
(1986)
F’lac 1/2 MIC: 18% CF Weisser and Wiedemann
(1985)
R16 1/2 MIC: 41% CF Weisser and Wiedemann
(1985)
Rtsl 1/2 MIC: 4% CF Weisser and Wiedemann
(1985)
pMC1314 Sub-MIC concentrations of 0.3 Courtright, Turowski and
ng/mL: 9.6% CF; 0.6 ng/mL: 17% CF; Sonstein (1988)
1.2 pg/mL: 36% CF
S-a 32 pg/mL (sub-MIC): 1.5% CF Michel-briand et al. (1986)
S. sonnei PWR105 8 ng/mL (sub-MIC): 1% CF Michel-briand et al. (1986)

S. enterica Typhimurium  R1 plasmids

6.25 1M eliminated resistance
with CFs of: 70% Kan, 56% Chl, 60%
Str, 64% Amp

Hahn and Ciak (1976)
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Quinolone Species Plasmid cured Key findings Reference
Norfloxacin E. coli R446b 1/2 MIC: 18% CF, 0.1 ng/mL Weisser and Wiedemann
(sub-MIC): 1% CF (1985); Michel-briand et al.
(1986)
S-a 0.25 png/mL (sub-MIC): 3% CF Michel-briand et al. (1986)
F’lac 1/2 MIC: 19% CF Weisser and Wiedemann
(1985)
R16 1/2 MIC: 25% CF Weisser and Wiedemann
(1985)
Rts1 1/4 MIC: 52% CF Weisser and Wiedemann
(1985)
S. sonnei PWR105 0.5 ng/mL (sub-MIC): <1% CF Michel-briand et al. (1986)
Novobiocin E. coli pDT4 Novobiocin-sensitive strain was Taylor and Levine (1979)
cured, but isogenic resistant strain
was not
pMG110 22 uM: 99% CF in wild-type strain, Hooper et al. (1984)
in gyrB resistant strain 990 pM:
33.3% CF
R386 200 pg/mL: 15% (IncFI) CF McHugh and Swartz (1977)
R1-16 175 pg/mL: 34% (IncFII) CF McHugh and Swartz (1977)
R726 175 ng/mlL: 16.1% (IncH) CF McHugh and Swartz (1977)
pMG102 50 png/mL: 20.3%, 100 pug/mL: 14.7% McHugh and Swartz (1977)
CF
S. enterica Virulence plasmid 200-250 pg/mL used to cure Gulig and Curtiss III (1987)
(100 kb) virulence plasmid
Enterobacter pPMG150 225 pg/mlL: 52.5% CF McHugh and Swartz (1977)
E. faecalis pJH1 8 ng/mkL: 34% CF McHugh and Swartz (1977)
Enterococcus pDR1 10 pg/mL: 28% CF McHugh and Swartz (1977)
L. plantarum Multiple unidentified 0.125-0.25 png/mL: 94%-100% CF for Ruiz-Barba, Piard and
plasmids (2-68 kb) four isolates Jiménez-Diaz (1991)
L. fermentum Ery resistance plasmid  1.8-40 pg/mL (sub-MIC): 64% CF, Chin et al. (2005)
and 2.1% CF for two strains
L. acidophilus Ery resistance plasmids  1.8-40 png/mL (sub-MIC): 3.3%-9.0% Chin et al. (2005)
(4.4-11.5 kb) CF
Chl resistance plasmid 2.4 ug/mL: 4.6% CF, peaked at 18 h  Karthikeyan and Santosh
(20.3 kb) (2010)
C. muridarum Cryptic plasmid (7.5 kb)  4%-30% effective, but optimal O’Connell and Nicks (2006)
concentration inhibited 99% of
bacterial growth
Ofloxacin E. coli R446b 1/2 MIC: 10% CF Weisser and Wiedemann
(1985); Michel-briand et al.
(1986)
F’lac 1/2 MIC: 39% CF Weisser and Wiedemann
(1985)
R16 1/2 MIC: 19% CF Weisser and Wiedemann
(1985)
Rtsl 1/4 MIC: 32% CF Weisser and Wiedemann
(1985)
Oxolinic acid E. coli pMC1314 Sub-MIC concentrations of 0.06 Courtright, Turowski and
ng/mL: 24% CF; 0.12 pg/mL: 36% Sonstein (1988)
CF; 0.25 pg/mL: 100% CF
Pefloxacin E. coli R446b 1/2 MIC: 21% CF, 0.1 Weisser and Wiedemann
ng/mL(sub-MIC): 1% CF (1985); Michel-briand et al.
(1986)
F’lac 1/2 MIC: 6% CF Weisser and Wiedemann

(1985); Selan et al. (1988)
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Table 2. Continued

<1% CF p-Hydroxypiromydic acid:
0.25 pg/mL (sub-MIC): <1% CF
Cinoxacin: 1 pg/mL (sub-MIC): 12%
CF

Quinolone Species Plasmid cured Key findings Reference
R16 1/2 MIC: 16% CF Weisser and Wiedemann
(1985)
Rts1 1/2 MIC: 27% CF Weisser and Wiedemann
(1985)
S. sonnei PWR105 1 pg/mL (sub-MIC): 2% CF Michel-briand et al. (1986)
S. dysenteriae pWR24 1 pug/mL (sub-MIC): 4% CF Michel-briand et al. (1986)
S. flexneri PWR110 1 pg/mL (sub-MIC): 4% CF Michel-briand et al. (1986)
Pipemidic acid E. coli R446b 1/2 MIC: 4% CF4 pg/mL (sub-MIC): ~ Weisser and Wiedemann
6% CF (1985); Michel-briand et al.
(1986)
F’lac 1/2 MIC: 35% CF Weisser and Wiedemann
(1985)
R16 1/2 MIC: 31% CF Weisser and Wiedemann
(1985)
Rts1 1/2 MIC: 47% CF Weisser and Wiedemann
(1985)
R386 2 pg/mL (sub-MIC): 0.5% CF Michel-briand et al. (1986)
S-a 4 pg/mL (sub-MIC): 1% CF Michel-briand et al. (1986)
S. sonnei PWR105 1 pg/mL (sub-MIC): no curing Michel-briand et al. (1986)
Trovafloxacin E. coli pT713 (partial) MIC: 50% CF Brandi, Falconi and Ripa
(2000)
pJEL144 (partial) 1 MIC: 50% CF Brandi, Falconi and Ripa
(2000)
PRK2 (partial) 1/2 MIC: 30% CF. Also reduced copy Brandi, Falconi and Ripa
number (2000)
Other Quinolones E.coli R446b Rosoxacin: 2 pg/mL (sub-MIC): 1%  Michel-briand et al. (1986)
CF B-Hydroxypiromydic acid: 32
pug/mL (sub-MIC): 3% CF Cinoxacin:
4 pg/mL (sub-MIC): 1% CF
R386 Rosoxacin: 0.05 ng/mL (sub-MIC):  Michel-briand et al. (1986)
0.5% CF p-Hydroxypiromydic acid:
4 pg/ml (sub-MIC): 0.5% CF
Cinoxacin: 4 ng/mL (sub-MIC):
0.5% CF
S-a Rosoxacin: 2 pg/mL (sub-MIC): 1%  Michel-briand et al. (1986)
CF B-Hydroxypiromydic acid: 64
ng/mL (sub-MIC): no curing
Cinoxacin: 4 pg/mL (sub-MIC): 1%
CF
S. sonnei pWR105 Rosoxacin: 0.12 ng/mL (sub-MIC):  Michel-briand et al. (1986)

CF—Curing Frequency: the proportion of colonies which were cured of the plasmid compared to non-cured colonies. Kan—kanamycin, Chl—chloramphenicol, Str—

streptomycin, Amp—ampicillin, Cou—coumermycin.

O’Connell and Nicks 2006). Coumermycin eliminated some plas-
mids from E. coli, but not RP4 (Danilevskaya and Gragerov 1980;
Wolfson et al. 1982; Bharathi and Polasa 1991).

Quinolone antimicrobials also target DNA gyrase. There have
been numerous reports of plasmids cured from various bacterial
species by different quinolone antibiotics (Table 2). The majority
of studies have been done using E. coli. For example, five fluo-
roquinolones and two quinolones cured four plasmids (Weisser
and Wiedemann 1985), and subinhibitory levels of quinolones
cured E. coli of various plasmids including large clinical plasmids
(Table 2) (Oliva et al. 1985; Platt and Black 1987; Courtright, Tur-
owski and Sonstein 1988; Selan et al. 1988). However, quinolones

have variable curing activity on some plasmids (Weisser and
Wiedemann 1985, 1986). For example, quinolones resulted in in-
complete curing and reduced copy number of several plasmids
(Table 2) (Phillips and Towner 1990; Brandi, Falconi and Ripa
2000), and were ineffective at curing E. coli of other plasmids
(pBP1, R391, R27 or three small, high-copy plasmids from a clini-
cal E. coli isolate) (Weisser and Wiedemann 1985; Platt and Black
1987). In line with this, one study demonstrated in E. coli that
quinolones cured pORF2 with high efficiency, three plasmids
were poorly cured and three plasmids were unaffected (Table 2)
(Fu et al. 1988). Interestingly, this study also examined quinolone
efficacy at curing pORF2 from E. coli in vivo. They found quinolone



treatment of mice infected with E. coli/pORF2 led to significant
reduction in plasmid carriage (Fu et al. 1988).

In a large study, 12 quinolones were tested for their ability to
cure 11 plasmids of different incompatibility groups from E. coli,
and virulence plasmids in five other species of Enterobacteriaceae
(Table 2) (Michel-briand et al. 1986). The authors concluded that
non-fluorinated quinolones had slightly higher curing activity,
but that novobiocin cured better than quinolones (Michel-briand
et al. 1986). Other studies examining a range of bacteria showed
subinhibitory concentrations of quinolones reduced resistance
and virulence plasmids in S. aureus, S. Typhimurium, E. coli, P.
aeruginosa and Yersinia pseudotuberculosis (Hahn and Ciak 1976;
Sonstein and Burnham 1993).

In summary, aminocoumarin-mediated curing appears to be
more effective on Gram-positive bacteria than Gram-negative
bacteria. Quinolone-mediated plasmid curing is effective on
some plasmids in Gram-negative bacteria such as E. coli. How-
ever, this is complicated by the presence of plasmid-mediated
quinolone-resistance genes, such as qnr, aac(6')-1b-cr, gepA
and o0gxAB (Jacoby, Strahilevitz and Hooper 2014; Rodriguez-
Martinez et al. 2016). Attempting to use quinolones to cure
plasmids carrying quinolone-resistance genes could provide a
fitness advantage to plasmid-containing cells, and would there-
fore select for plasmid maintenance. Furthermore, plasmid-
mediated quinolone-resistance genes are frequently coded for
by plasmids which carry other resistance genes conferring resis-
tance to antimicrobials including beta-lactams, extended spec-
trum beta-lactams, carbapenems, aminoglycosides, trimetho-
prim and chloramphenicol (Rodriguez-Martinez et al. 2016).
Taken together, it is unlikely that antibiotics will be used to
cure AMR plasmids in humans, animals or the environment as
this will provide selection pressure for resistance to arise or
be maintained within bacteria. Therefore, aminocoumarin and
quinolone antibiotics are an effective laboratory tool, but are un-
likely to be used elsewhere for plasmid curing.

Rifampicin

The antibiotic rifampicin inhibits RNA polymerase and is used
to treat tuberculosis. Subinhibitory concentrations of rifampicin
cured a penicillin-resistance plasmid from S. aureus (Johnston
and Richmond 1970) and the F’lac plasmid from E. coli (Bazz-
icalupo and Tocchini-Valentini 1972). However, a rifampicin-
resistant strain was not susceptible to curing, suggesting that
the mechanism of curing was dependent upon the interaction
of rifampicin with RNA polymerase (Bazzicalupo and Tocchini-
Valentini 1972). In E. coli, haemolysin production was effec-
tively cured by rifampicin (Mitchell and Kenworthy 1977). A
gentamicin-resistance plasmid was not cured from two S. aureus
strains using rifampicin, but it did cure one strain of a penicillin-
resistance plasmid (Wood, Carter and Best 1977). Multiple stud-
ies have found rifampicin to be less effective than other curing
agents (Rubin and Rosenblum 1971; Poppe and Gyles 1988), and
given the importance of rifampicin in treating infections such as
tuberculosis, it is unlikely to be used as a general plasmid curing
agent.

Ascorbic acid

Research on the bioactive compound ascorbic acid (vitamin C)
dates back to the first half of the 20th century. In aerobic con-
ditions, ascorbic acid converts circular covalently closed DNA
into open circular DNA (Morgan, Cone and Elgert 1975). To in-
vestigate the mechanism of action, fragments of pBR322 with
radio-labelled 3’ ends were used to demonstrate that efficient
cleavage occurred preferentially at purine-rich regions (Chiou
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et al. 1985). Studies on DNA extracted from E. coli demonstrated
that ascorbic acid specificity was linked to negative torsion of
the DNA, and this was influenced by ionic strength, salt concen-
tration and pH (Wang and Ness 1989). In vitro studies on plas-
mid pBR322 DNA showed that ascorbic acid increased the dam-
aging effects of dimethylarsinous acid and human liver ferritin
(Ahmad, Kitchin and Cullen 2002). Synthesised ascorbic acid
variants with protected (non-reactive) hydroxyl groups were
tested for their ability to relax pUC19, which demonstrated that
the hydroxyl groups at position C2 and C3 were essential for DNA
damage (Liu et al. 2006).

In S. aureus 1 mM ascorbic acid resulted in loss of peni-
cillin and aminoglycoside resistance encoding plasmids (Table 1)
(Amabile Cuevas 1988; Amabile-Cuevas, Pina-Zentella and Wah-
Laborde 1991). Two plasmids, pI258 (penicillin resistance) and
pT181 (tetracycline resistance), were not cured by ascorbic acid.
However, there was a significant decrease in the MIC of tetracy-
cline, which the authors hypothesised was due to reduction in
plasmid copy number (Amabile-Cuevas, Pina-Zentella and Wah-
Laborde 1991).

Ascorbic acid (1 mM) cured the lactic acid bacterium Pedio-
coccus acidilactici of a plasmid coding for the production of pe-
diocin, a metabolite which inhibits growth of some pathogenic
bacteria, thus minimising food spoilage (Ramesh, Halami and
Chandrashekar 2000). Ascorbic acid is non-toxic and is asso-
ciated with human health benefits. This makes it an attrac-
tive curing agent, although it seems to be more effective at
curing plasmids from Gram-positive rather than Gram-negative
bacteria. Furthermore, after vitamin C supplementation con-
centrations of ascorbic acid in the plasma are relatively low
(0.07 mM), but concentrations in lymphocytes can be much
higher (3.5 mM), and concentrations in duodenal biopsies were
around 1.2 mmol/kg (Levine et al. 1996; Waring et al. 1996). Con-
versely, Maier et al. (2018) estimated ascorbic acid concentrations
in the intestine to be around 0.379 mM. Together this shows that
while plasma concentrations after supplementation would not
reach sufficient levels to have anti-plasmid activity, ascorbic acid
is concentrated in the intestine, where it could potentially affect
plasmids within intestinal bacteria. However this remains to be
demonstrated in vivo.

Psychotropic drugs

The phenothiazines have been widely used in human medicine,
originally as anti-helminthics, but now this class of drugs com-
prises the largest of five classes of anti-psychotic drugs (Ohlow
and Moosmann 2011). The impact of these molecules on bacteria
hasbeen reviewed elsewhere (Amaral, Viveiros and Molnar 2004;
Spengler et al. 2006; Varga et al. 2017). Plasmid curing properties
have also been attributed to phenothiazines (Table 1) (Amaral,
Viveiros and Molnar 2004; Spengler et al. 2006; Dastidar et al.
2013). In addition, a recent study found that chlorpromazine sig-
nificantly impacted the growth of diverse members of the hu-
man microbiome, including Akkermansia muciniphila, Bacteroides
uniformis, B. vulgatus, Clostridium perfringens, Parabacteroides dis-
tasonis and P. merdae (Maier et al. 2018). Phenothiazines, includ-
ing chlorpromazine, cured plasmids from E. coli (Table 1) (Mandi
et al. 1975; Molnar, Mandi and Kiraly 1976), and the curing activ-
ity was enhanced by methylene blue (Molnar et al. 1980). Thiori-
dazine cured the AMR phenotype from E. coli, S. flexneri and V.
cholerae isolates, but not from S. aureus (Table 1) (Radhakrish-
nan et al. 1999), while promethazine and trifluoperazine were
tested on clinical isolates of E. coli, Citrobacter freundii and E. cloa-
cae, but only one E. coli isolate was cured, despite E. coli K12 be-
ing readily cured of a lac-reporter plasmid (Spengler et al. 2003).
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However, trifluoroketone 18 or trifluoromethyl-ketone 14 (pro-
ton pump inhibitors) enhanced curing activity of the phenoth-
iazines, suggesting the compounds may be effluxed (Spengler
et al. 2003; Wolfart et al. 2006). In mixed cultures of E. coli, B. cereus
and S. epidermidis, promethazine cured F’lac from E. coli (Molnar,
Amaral and Molnar 2003). Chlorpromazine cured the MRSA
Iberian clone strain HPV107 of a plasmid encoding the QacA ef-
flux pump (Costa et al. 2010).

Together, this shows phenothiazines have in vitro curing ac-
tivity on some bacteria and plasmid combinations. However,
their in vivo efficacy as plasmid curing compounds remains un-
clear. Any potential connection between anti-plasmid and the
anti-commensal activity of chlorpromazine remains to be elu-
cidated. In patients being treated for psychosis with chlorpro-
mazine, serum concentrations are around 0.1-0.3 pg/mL, and
toxic side effects occur at 0.75 pg/mL (Sanofi-Aventis 2016).
However, Maier et al. (2018) estimate intestinal concentration
of chlorpromazine to be around 46 M (14.67 pug/mL). The
concentrations used for plasmid curing are generally around 10-
100 pg/mL (Mandi et al. 1975; Spengler et al. 2003). Therefore,
concentrations resulting in curing may be reached in the in-
testines of individuals being treated with chlorpromazine. Novel
approaches involving targeted drug delivery or preventing up-
take of orally administered phenothiazines may help to improve
curing efficacy and reduce toxicity. Until such obstacles are over-
come, the use of phenothiazines for in vivo plasmid curing is un-
likely.

INCOMPATIBILITY-BASED PLASMID CURING
SYSTEMS

Curing based upon the principle of plasmid incompatibility is
an alternative method to chemical or drug-based strategies to
remove plasmids from bacteria. Plasmid curing using an incom-
patible plasmid vector has been widely used in plasmid char-
acterisation of Gram-positive and Gram-negative species. Intro-
ducing a smaller high-copy-number plasmid from the same in-
compatibility group may specifically eliminate a resident plas-
mid (Bringel, Frey and Hubert 1989). Incompatibility-based cur-
ing has been useful for investigating incompatibility mecha-
nisms, plasmid-host interactions and for the construction of
gene transfer systems (Uraji, Suzuki and Yoshida 2002). The
main advantage of this method is the reduced risk of chromoso-
mal mutations and toxicity sometimes associated with chem-
ical curing agents (Hovi et al. 1988; Poppe and Gyles 1988). In
addition, incompatibility-based curing is specific to plasmids
of the targeted incompatibility group. One major drawback of
incompatibility-based curing methods is the extensive cloning
required for set up, and the detailed knowledge of the target
plasmid. Ni et al. (2008) reported the main difficulty in construct-
ing incompatibility plasmids for curing is the replication control
and/or partition region of the plasmid must be identified before
curing (Ni et al. 2008). Additional plasmid genes (e.g. antitoxin
from a TA system) may need to be included (Ni et al. 2008; Hale
et al. 2010).

Incompatibility-based curing has been used in a variety of
bacteria and plasmids (Table 3). In particular, when chemi-
cal curing methods have proven less effective, e.g. Lactobacil-
lus, and Y. pestis (Ruiz-Barba, Piard and Jiménez-Diaz 1991,
Chin et al. 2005; Ni et al. 2008; Karthikeyan and Santosh 2010).
Incompatibility-based curing systems were designed and used
in L. acidophilus, L. plantarum and L. pentosus (Table 3) (Bringel,
Frey and Hubert 1989; Posno et al. 1991). Incompatibility has

been used to study the contribution of plasmids to bacterial
pathogenesis, including a systematic investigation of the role of
plasmids in Y. pestis pathogenesis (Table 3) (Ni et al. 2008). In-
compatibility was used to cure vaccine and wild-type strains of
B. anthracis of two large pathogenicity-related plasmids (Table 3),
allowing study of their contribution to capsule and anthrax toxin
production (Wang et al. 2011; Liu et al. 2012). Incompatibility has
been used not only in human pathogens, but also to remove
tumour inducing (Ti) plasmids from Agrobacterium tumefaciens,
a dicotyledonous plant pathogen, in which Ti plasmids are re-
sponsible for inducing vegetable tumours (Table 3) (Uraji, Suzuki
and Yoshida 2002).

Incompatibility-based plasmids called pCURE were con-
structed for curing pO157 (a typical F-like plasmid), other F-like
and IncP-1e plasmids from E. coli (Table 3) (Hale et al. 2010).
To create the pCURE constructs, elements expected to inter-
fere with specific functions were chosen, such as repressing vi-
tal components (e.g. transcriptional repressor, antisense RNA or
other translational regulators) and competition for vital steps
(e.g. replication origin) (Hale et al. 2010). To control the TA sys-
tem, either the putative antitoxin or antisense RNA repressor
was included (Hale et al. 2010).

In a recent study, ‘interference plasmids’ were designed
which combined an antitoxin gene and replicon genes to cure
blanp-s and blacuy-2 encoding plasmids both in vitro and in vivo
(Table 3) (Kamruzzaman et al. 2017). In the presence of the antibi-
otic selecting for the interference plasmid, target plasmids were
effectively removed from E. coli, K. pneumoniae, C. freundii and
Morganella morganii in vitro, and from E. coli colonising the mouse
intestine. Interference plasmids were lost from the mouse intes-
tine after cessation of antibiotic treatment.

One targeted approach sought small molecules which mimic
the incompatibility system of IncB plasmids (Denap et al. 2004).
They found the aminoglycoside apramycin binds to the SLI re-
gion of the RepA mRNA, preventing translation of RepA, which is
necessary for plasmid replication (Denap et al. 2004). Treatment
of E. coli harbouring pMU2403 (IncB) with apramycin resulted in
almost complete plasmid elimination (Denap et al. 2004).

An important question regarding use outside the laboratory
of incompatibility-based curing systems is how to apply the cur-
ing plasmids to people, animals or the environment. Plasmids
could be delivered via bacteria or phage. However, the poten-
tial requirement for antibiotic treatment to select for the cur-
ing plasmids (Kamruzzaman et al. 2017) would be a significant
drawback. Another concern regarding curing plasmids is the po-
tential for acquisition of ARG(s) onto the curing backbone. More
research is needed in increasingly complex plasmid systems to
study the dynamics between curing plasmids and AMR plas-
mids, including research focused on minimising the need for
antibiotic selection.

PHAGE-BASED ANTI-PLASMID SYSTEMS

For the past 50 years, bacteriophages which specifically target
the pili of plasmid conjugation systems have been studied (Caro
and Schnos 1966). More recently, this has been studied in the
context of AMR plasmids. Phages which target the conjuga-
tion pilus preferentially kill bacteria with high pilus expression
(Dionisio 2005). Low pilus expression results in reduced suscep-
tibility to phage, but also reduced conjugation rates. Therefore,
diversity in pilus expression within a bacterial population im-
proves the chances of plasmid survival (Dionisio 2005). Another
example of bacteriophages specifically targeting AMR plasmids
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Table 3. Incompatibility based curing plasmids.
Species Curing plasmid details Cured Plasmid Details Key Findings Delivery Reference
L. plantarum pULP8 and pULP9 6.6  2.1kb pLpl Maintained in 5% of Electroporation Bringel, Frey and
kb, Amp and Ery endogenous plasmid  bacteria after 20 Hubert (1989)
resistance. generations (selection
Constructed by free media). TE: 2 x
inserting the 107 CFU/ng DNA
Ery-resistance gene
from pVA891 into a
pUC19-pLP1 construct
L. pentosus pLP3537, 6.3 kb, Ery 2.3 kb endogenous Maintained in 8% of Electroporation Posno et al. (1991)
resistance. plasmid bacteria after 100
Constructed by generations (selection
inserting 2.3 kb free media). TE:
endogenous plasmid 102-10% CFU/ug DNA
into a screening
vector, pEI2.
Contained
lactobacillus replicon
PLPE323, 3.6 kb, Ery 2.3 kb endogenous Maintained in 100% of Electroporation Posno et al. (1991)
resistance. plasmid bacteria after 100
Constructed by generations (selection
inserting 2.3 kb free media). TE:
endogenous plasmid 10?-10% CFU/ug DNA
into pE194 vector.
Contained
lactobacillus replicon
pGK12, 4.4 kb, broad 1.7 kb endogenous Maintained in <1% of  Electroporation Posno et al. (1991)
Gram-positive host plasmid bacteria after 100
range plasmid generations
(selection-free media).
TE: 10°
A. tumefaciens PMGTrepl, contained pTi-SAKURA (206kb) Between 32% Conjugation Uraji, Suzuki and
pTirepABC genes and  pTiC58 (214kb) (pTi-SAKURA) and Yoshida (2002)
sacB (sucrose 99% (pTiC58) of
sensitivity gene) to transconjugants were
select for pMGTrepl cured of pTi
loss
Y. pestis pEX18-PCP- pPCP1 pPCP1 virulence 64% of colonies cured Electroporation Ni et al. (2008)
replicon, sacB plasmid (ColE1)
PEX18-MT- pMT1 pMT1 virulence 30% of colonies cured Electroporation Ni et al. (2008)
replicon, sacB plasmid (repA)
pEX18-CD- pCD1 pCD1 virulence 98% of colonies cured Electroporation Ni et al. (2008)
replicon, sacB plasmid (IncFIIA)
PEX18-CRY- pCRY PCRY (21.7 kb) cryptic  70% of colonies cured  Electroporation Ni et al. (2008)
replicon, sacB plasmid
B. anthracis PKS5K, contains pX01 (181.6 kb) Isolate was Electroporation Liu et al. (2012)
ORF43-46, encodes anthrax successfully cured. CF
temperature sensitive toxin/regulatory genes not determined
(pagA, lef, cya,atxA,
pagRr)
pKSV7-orilV, contains pX02 (93.5 kb) Isolate was Electroporation Wang et al. (2011)
pXO2 reps, repB, ori encodes capsule successfully cured. CF
sequences, synthesis and not determined
temperature sensitive degradation genes
(capABCD).
PKORT, derived from  pXO1 and pX02 Isolate was Electroporation Wang et al. (2015)
pKSV7, contains pXO1 successfully cured. CF
and pXO2 origins of not determined
replication,
temperature sensitive
E. coli pCUREL, anti-pO157,  pO157 (F-like plasmid) Isolate was Transformation or Hale et al. (2010)

PMB1 replicon, oriTrgz,
sacB, Amp and Kan
resistance

successfully cured. CF
not determined

mobilisation by IncP-1
transfer system (due
to oriTgk2)
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Table 3. Continued

Species Curing plasmid details Cured Plasmid Details Key Findings Delivery Reference
pCURE2, anti-IncF IncF-like plasmids Highly effective on Transformation or Hale et al. (2010)
PMBL1 replicon, oriTgrk,, including p1658/97, IncF plasmids, CFup  mobilisation by IncP-1
sacB, Amp and Kan PpKDSC50 (RepFIB and  to 100%. Inclusion of  transfer system (due
resistance RepFIIA), F and F’ anti-toxin genes on to oriTgk2)
plasmids (RepFIA) PpCURE2 increased
efficacy
pCUREL11, PRK24 (IncP-1e), CF: 100% of tested Transformation or Hale et al. (2010)
anti-IncP-1«, pMB1 derivative of RK2 colonies mobilisation by IncP-1
replicon, oriTrgk2, SacB, transfer system (due
Amp and Kan to oriTrk2)
resistance
pJIMK3, peml pEI1573 (IncL/M), 30% CF of pEI1573 in E. Transformation Kamruzzaman et al.
anti-toxin gene, no carries blapp-4 coli (2017)
incompatibility genes isolated from E. cloacae
included
pJIMK25, pJIMK3 with pEI1573 100% CF pEI1573in E.  Transformation Kamruzzaman et al.
addition of IncL/M coli (2017)
replication fragments
E. coli, K. pJIMK46, peml pEI1573, pJIES12b Cured when curing Conjugation Kamruzzaman et al.

pneumoniae, C.
freundii, M. morganii

anti-toxin gene, fosA3,
IncL/M and IncI1
replicons

(conjugative Incll
plasmid with blacuy-2
isolated from E. coli)

plasmid was selected
for using antibiotics.
Cured in vitro in E. coli,
K. pneumoniae, C.
freundii, M. morganii.
Cured pEI1573 in vivo,

(2017)

from E. coli, but
required antibiotic
selection for pJIMK46

TE—Transformation efficiency of curing plasmid, CF—curing frequency of plasmid, Ery—erythromycin, Amp—ampicillin, Kan—kanamycin.

involved the phage PRD1 which targeted the mating pair com-
plex of plasmids RP4 and RN3 (Jalasvuori et al. 2011). PRD1 re-
duced plasmid carriage within E. coli and Salmonella popula-
tions from 100% to 5% after 10 days. Furthermore, the 5% which
retained plasmid had lost the ability to conjugate (Jalasvuori
et al. 2011). PRD1 significantly reduced the number of E. coli
K12 RP4 transconjugants, and even reduced transconjugants
when single, sub-MIC antibiotic selection was applied (Ojala,
Laitalainen and Jalasvuori 2013). However, when double selec-
tion for transconjugants was applied phage-resistant mutants
arose, but 65% had lost the ability to conjugate (Ojala, Laita-
lainen and Jalasvuori 2013). Together, this demonstrates the use
of phage to produce an evolutionary pressure which results
in either plasmid loss or evolution of a non-conjugative plas-
mid. This fits with the other research focused on using phage-
mediated directed evolution to select for antibiotic sensitive bac-
teria (Chan et al. 2016).

The M13 filamentous phage minor coat protein g3p was
necessary and sufficient to inhibit F-plasmid conjugation in E.
coli (Lin et al. 2011). Another study modelled the dynamics of
the F-plasmid and M13 phage in E. coli (Wan and Goddard 2012).
They found M13 infection reduced cell growth rate, and the con-
jugation rate was only one order of magnitude faster than the
rate of phage infection. This implies that a high concentration of
phage would be required to effectively prevent conjugation, and
they showed that conjugation continues even with phage (Wan
and Goddard 2012). Recently, the evolutionary and ecological
implications of lytic bacteriophage predation on plasmid main-
tenance in a population of P. fluorescens were examined (Harrison
et al. 2015). They concluded that phage accelerates plasmid loss
in the absence of selective pressure (Harrison et al. 2015).

In summary, these studies show that phage can be a highly
effective tool for reducing plasmid prevalence within a popu-
lation. Another advantage of bacteriophage approaches is their
status as ‘generally regarded as safe’, which streamlines down-
stream applications such as use of phage to decolonise sur-
faces, as a probiotic or use on farms. However, unclear reg-
ulatory pathways for use of phage as medication still pose a
problem. Another problem associated with phage therapy is bac-
terial evolution of resistance to phage. By understanding the
evolutionary pressures applied to bacteria by phage predation,
this evolution can be harnessed to increase susceptibility to an-
tibiotics (Jalasvuori et al. 2011; Ojala, Laitalainen and Jalasvuori
2013; Chan et al. 2016). Future research is needed to further
our understanding of the phage-plasmid-host dynamics, to im-
prove upon evolution-optimised approaches and to test these
approaches in increasingly complex models.

CRISPR/CAS-BASED PLASMID CURING
SYSTEMS

CRISRP/Cas is a bacterial ‘adaptive immune system’ which
allows recognition, degradation and memory of foreign DNA se-
quences. CRISPR/Cas works as a result of spacer DNA segments
coded by the bacteria that are transcribed into crRNA. The crRNA
is bound by the Cas protein complex which cleaves nucleic acid
sequences matching the crRNA, resulting in double-stranded
breaks (Sternberg and Doudna 2015). DNA repair mechanisms
can be used to insert a desired sequence into the break
(Sternberg and Doudna 2015). In bacteria, double-stranded
breaks are often fatal, but combination with traditional



recombineering systems such as A-red can allow for ef-
fective genome editing (Peters et al. 2015). The highly specific
CRISPR/Cas system has been extensively described and reviewed
elsewhere (Jiang and Doudna 2015; Sternberg and Doudna 2015;
Wright, Nunez and Doudna 2016). In a seminal paper, Garneau
et al. (2010) showed that Streptococcus thermophiles isolates which
had lost the plasmid pNT1 had acquired new spacer sequences
which targeted pNT1. This work demonstrated that CRISPR/Cas
acted to remove plasmid DNA from bacteria.

Recently, the CRISPR/Cas system has been explored as a
method for plasmid curing. Firstly, it can be designed to tar-
get specific plasmid genes, including ARGs. The double-stranded
breaks introduced in the process can reduce the stability of the
plasmid, and in some cases result in plasmid loss (Fig. 2a) (Kim
et al. 2016; Lin et al. 2016). Plasmids in isolates from man, ani-
mals or the environment frequently carry TA systems. TA sys-
tems, sometimes called addiction systems, are comprised of a
toxin and an antitoxin gene (Van Melderen and Saavedra De
Bast 2009; Chan, Espinosa and Yeo 2016). Generally, the activ-
ity of the stable toxin is mitigated by a less stable antitoxin.
Therefore, as long as the antitoxin is produced, the toxin cannot
act (Van Melderen and Saavedra De Bast 2009; Chan, Espinosa
and Yeo 2016). When encoded on plasmids, the TA system func-
tions by killing daughter cells which do not contain a copy of
the plasmid coding for the antitoxin gene, a process termed
postsegregational killing (Chan, Espinosa and Yeo 2016). There-
fore, targeting plasmids with TA systems resulted in bacterial
cell death (Fig. 2a) (Citorik, Mimee and Lu 2014). Toxin-mediated
cell death could be complemented by antitoxin-encoding phage
(Citorik, Mimee and Lu 2014). Specific ARGs can also be targeted
by CRISPR/Cas systems (Citorik, Mimee and Lu 2014; Kim et al.
2016). For example, homologous regions in TEM and SHV beta-
lactamases were targeted (Kim et al. 2016). CRISPR/Cas systems
can also target plasmid backbone genes such as replicase genes
(Caoetal. 2017). CRISPR/Cas systems targeted and removed mul-
tiple AMR plasmids simultaneously (Yosef et al. 2015).

Secondly, CRISPR/Cas is an attractive strategy because it
can be used to prevent plasmid transmission by ‘vaccination’
(Fig. 2b). Methicillin-sensitive S. aureus was vaccinated against
PUSAO02, the plasmid responsible for methicillin resistance in
the epidemic MRSA strain USA300 (Bikard et al. 2014). Likewise,
E. coli containing CRISPR/Cas targeting bldcrx-m-15 and blanpm-1
were less efficiently transformed with an AMR plasmid carrying
these genes (Yosef et al. 2015). In E. faecalis the CRISPR3-Cas locus
was deleted, resulting in significantly higher acquisition of the
pAD1 plasmid (target sequence located in CRISPR3), while acqui-
sition of pCF10 was unaffected, as it is not targeted by CRISPR3
(Price et al. 2016). In line with this, carbapenem-resistant K. pneu-
moniae were less likely to have active CRISPR/Cas systems than
carbapenem-sensitive strains (Lin et al. 2016). Similarly, type I-F
CRISPR/Cas systems were more common in E. coli isolates that
were antimicrobial sensitive (Aydin et al. 2017). Some of these
CRISPR spacers aligned to sequences commonly found in IncFII
and Incl1 plasmids, which are associated with clinical resistance
(Aydin et al. 2017). This strongly suggests that antimicrobial-
sensitive isolates can use CRISPR/Cas systems to degrade incom-
ing AMR plasmids.

The benefits of using CRISPR/Cas systems to cure bacterial
plasmids are clear. However, there are significant drawbacks
associated with this strategy. One of the primary problems
is delivery. A variety of delivery methods including plasmid
transformation, conjugation, phagemid and bacteriophages
have been used predominantly in vitro, with limited studies
using in vivo models (Bikard et al. 2014; Yosef et al. 2015; Kim
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et al. 2016). Despite this, so far the practical use of these systems
is limited. One study used bacteria sensitised to antibiotics by a
lysogenic CRISPR phage which also carried resistance to a lytic
phage, thus combining use of the lytic and lysogenic phages to
put evolutionary pressure on bacteria to become drug sensitive
(Fig. 2c) (Yosef et al. 2015). A recently devised system termed
GOTraP enhances DNA transduction to a variety of bacterial
species, including E. coli, S. sonnei and K. pneumoniae (Yosef et al.
2017). Such a strategy could be employed to improve the delivery
of anti-ARG or anti-plasmid CRISPR/Cas systems. In another
study, a phagemid was effective for treating S. aureus skin le-
sions in mice (Bikard et al. 2014). CRISPR/Cas may be an effective
treatment for curing plasmids from surface wounds and burns,
but advances in systemic treatment are still required.

The specificity of CRISPR/Cas is both a benefit and a draw-
back. For example, the lack of common sequences among vari-
ants of blapxa and blacrx. beta-lactamases restricted CRISPR
design (Kim et al. 2016). Frequently, plasmid-mediated antibi-
otic resistance genes have multiple sequence variants, so if
CRISPR/Cas sequences were used to kill bacteria there could
be selective pressure for mutations in the regions targeted by
CRISPR to give a CRISPR-resistant plasmid (Gomaa et al. 2014).
Similarly, in a phagemid system, resistance occurred due to
deletions of the cas9 gene on the phagemid (Bikard et al. 2014).
Future research must consider the evolutionary pressure, and
as some have done (Yosef et al. 2015), design strategies to reduce
development of resistance.

FUTURE OF PLASMID CURING AND
ANTI-PLASMID APPROACHES

We and others anticipate that future research will continue in
this area, driven in large part by the need to prevent and treat
resistant infections (Getino and de la Cruz 2018). Methods to ef-
fectively and safely cure plasmids have the potential to dimin-
ish the severity of the impact of drug-resistant infections. Cur-
rently, few studies have examined curing methods in vivo. These
studies along with future in vivo plasmid curing studies will be
crucial in developing methods to sensitise bacteria to existing
antibiotics. In the future, it may be that doctors prescribe a plas-
mid curing agent to help ensure that the antibiotics taken by
the patient are effective. Alternatively, a plasmid curing agent
could be taken by an individual (e.g. on return from an area
where plasmid-mediated drug-resistance is common) as a way
of restoring drug-susceptible bacteria to the gastrointestinal mi-
crobiome.

The use of plasmid curing strategies in settings other than in
humans and animals should not be under appreciated. Reduc-
ing the global burden of AMR will require a multifaceted One-
Health approach, and curing AMR plasmids from ARG hot spots
such as waste water, manure and downstream of pharmaceu-
tical (antibiotic) factories is a viable strategy. Some of the ap-
proaches described may be more suited to an environmental
or agricultural setting and not for human use. For instance, an-
other potential use of curing strategies could be on farms where
livestock are often exposed to antibiotics, and harbour multi-
ple MDR plasmids. Soil, waste water treatment and aquaculture
could all be treated with plasmid curing agents to reduce drug
resistance.

One concern surrounding plasmid curing is the potential
for the development of resistance to anti-plasmid approaches,
and the impact of these approaches on the bacterial commu-
nity structure. Bacteria are constantly evolving, which makes
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developing ‘evolution-proof’ drugs extremely challenging, but by
striving for this gold standard it may be possible to delay resis-
tance (Bell and MacLean 2018). While these ideas apply to an-
timicrobials, similar principles can applied to plasmid curing
strategies. If an anti-plasmid approach kills or produces a fit-
ness defectin the bacteria, it seems likely that resistance will oc-
cur. For example, some of the CRISPR/Cas approaches selectively
kill resistant bacteria by targeting specific sequences. Mutations
in these sequences would then result in survival of the mu-
tants, and expansion due to the resistance phenotypes. Thus,
methods to provide selective advantages for the sensitive strains
or to guide evolution towards antimicrobial susceptible strains
can be utilised to help overcome these challenges. Antibiotics
which have curing properties (e.g. quinolones and rifampicin)
are obvious examples where resistance would be selected, and
therefore should not be used as curing compounds outside the
laboratory. Another concern is cell permeability. If plasmids pro-
vide a beneficial trait, mutations which reduce permeability or
increase efflux may be selected by plasmid curing compounds.
Indeed bacteria may increase expression of efflux to remove po-
tentially detrimental plasmid curing compounds from the cells.
Such mutations could also produce reduced susceptibility to
clinically important antimicrobials. Research should consider
and address these concerns.

Altogether, plasmid curing has come a long way, from the use
of toxic compounds to novel designer curing methods based on
incompatibility or CRISPR/Cas. Further research is now needed
to uncover safe and effective means to cure plasmids, particu-
larly in the face of the global AMR crisis.
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