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Abstract
Background Decoding human genomic sequences requires comprehensive analysis of DNA sequence functionality. 
Through computational and experimental approaches, researchers have studied the genotype-phenotype 
relationship and generate important datasets that help unravel complicated genetic blueprints. Thus, the recently 
developed artificial intelligence methods can be used to interpret the functions of those DNA sequences.

Methods This study explores the use of deep learning, particularly pre-trained genomic models like DNA_bert_6 
and human_gpt2-v1, in interpreting and representing human genome sequences. Initially, we meticulously 
constructed multiple datasets linking genotypes and phenotypes to fine-tune those models for precise DNA 
sequence classification. Additionally, we evaluate the influence of sequence length on classification results and 
analyze the impact of feature extraction in the hidden layers of our model using the HERV dataset. To enhance our 
understanding of phenotype-specific patterns recognized by the model, we perform enrichment, pathogenicity and 
conservation analyzes of specific motifs in the human endogenous retrovirus (HERV) sequence with high average 
local representation weight (ALRW) scores.

Results We have constructed multiple genotype-phenotype datasets displaying commendable classification 
performance in comparison with random genomic sequences, particularly in the HERV dataset, which achieved 
binary and multi-classification accuracies and F1 values exceeding 0.935 and 0.888, respectively. Notably, the fine-
tuning of the HERV dataset not only improved our ability to identify and distinguish diverse information types within 
DNA sequences but also successfully identified specific motifs associated with neurological disorders and cancers in 
regions with high ALRW scores. Subsequent analysis of these motifs shed light on the adaptive responses of species to 
environmental pressures and their co-evolution with pathogens.

Conclusions These findings highlight the potential of pre-trained genomic models in learning DNA sequence 
representations, particularly when utilizing the HERV dataset, and provide valuable insights for future research 
endeavors. This study represents an innovative strategy that combines pre-trained genomic model representations 

Enhancing recognition and interpretation 
of functional phenotypic sequences through 
fine-tuning pre-trained genomic models
Duo Du1, Fan Zhong1* and Lei Liu1,2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0002-9995-9080
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-024-05567-z&domain=pdf&date_stamp=2024-8-9


Page 2 of 21Du et al. Journal of Translational Medicine          (2024) 22:756 

Background
The Human Genome Project marked the beginning of an 
era characterized by the assembly to resolve high-quality 
genome sequences, in which the complete genetic code 
of DNA is gradually being deciphered [1]. The improve-
ment of high-quality reference genome sequences and 
their gene annotation information, enhancing molecular 
diagnostics capabilities and enabling advances in dis-
ease prevention and personalized treatment strategies 
[2]. However, the current functional studies of genome 
sequences focus primarily on ∼ 3% protein-coding 
regions, leaving the vast majority of regulatory functions 
largely unexplored [3]. Therefore, we need to employ 
more strategies to explore even the unknown functional 
regulatory elements in the human genome, such as the 
recently prominent HERV sequences, which are closely 
associated with gene regulation, immune modulation, 
carcinogenesis and the pathophysiology of complex dis-
eases such as neurodegenerative disorders [4].

In the field of artificial intelligence, natural language 
processing (NLP) has made rapid progress, particularly 
owing to advancements in transfer learning and Trans-
former architectures, which has led to innovative meth-
ods for processing and analyzing large-scale complex 
datasets [5, 6]. The development of models like Bidi-
rectional Encoder Representations from Transformers 
(BERT) and Generative Pre-trained Transformer (GPT), 
leveraging the Transformer architecture, has significantly 
boosted NLP by capturing context and data dependencies 
through self-attention mechanisms [7]. These advances 
have not only revolutionized traditional text process-
ing tasks, but also provided new methods for fields such 
as bioinformatics and healthcare. In bioinformatics, the 
adoption of Transformer models has been particularly 
transformative in sequence analysis, gene expression, 
proteomics, and drug discovery, with notable advance-
ments made in the latter two domains due to their ability 
to model long-range associations [8]. Moreover, the inte-
gration of NLP techniques with bioinformatics enhances 
data analysis and interpretation, opens new avenues for 
personalized and precision medicine, and facilitates sci-
entific discovery.

Owing to their length and complexity, genomic DNA 
sequences present unique challenges for machine learn-
ing. However, their structural similarity to human lan-
guage (long strings consisting of basic units such as bases 
or words) provides opportunities for modeling and inter-
preting DNA sequences using NLP methods [9, 10]. Sci-
entists are increasingly leveraging pre-trained genomic 

models, leading to significant successes with Trans-
former-based frameworks [11, 12] and other language 
framework models [10]. For sequence classification eval-
uation, researchers have constructed benchmark datasets 
for DNA classification and used modified Convolutional 
Neural Network (CNN) models as baselines. Ultimately, 
they reported that fine-tuning the pre-trained genomic 
model DNABERT achieved better performance in classi-
fication tasks than the DNABERT model with randomly 
initialized weights and the CNN model [13, 14]. Nev-
ertheless, there is a notable shortage of comprehensive 
datasets for evaluating the performance of large genomic 
models, especially for analyses involving complex geno-
types [13, 15].

This study has constructed several medically significant 
genotype-phenotype datasets by utilizing human refer-
ence and pan-genome data [16], as well as information 
from the 1000 Genomes Project. We performed DNA 
sequence balanced binary classification and imbalanced 
multi-classification performance evaluation by optimiz-
ing pre-trained models such as DNA_bert_6 and human_
gpt2-v1. Focusing on the HERV dataset, we extensively 
investigated the representability of the models on these 
data and identified phenotype-specific motifs within the 
HERV sequences. Further analysis revealed that genes 
associated with these motif sequences play critical roles 
in various biological processes, including neural devel-
opment and synaptic functions, oncogenesis, cellular 
adhesion, and spatial localization (Fig. 1; Supplementary 
Fig. 1). The genotype-phenotype datasets we constructed 
can be used as benchmarks for DNA sequence model-
ing and performance evaluation of pre-trained genomic 
models, providing novel insights into the functionality 
of genomic sequences when exploring the HERV dataset 
based on fine-tuned models.

Methods
Pan-genomic phenotype classification datasets 
construction
Screening of potential phenotype-related regions
Based on existing literature and databases, we compiled 
potential functional phenotype datasets. According to 
the specific conditions of different phenotype datasets, 
we adopted various filtering steps, merged adjacent inter-
vals within 10  bp using Bedtools Merge [17], and ulti-
mately unified them to non-overlapping genomic regions 
on hg38, designated as phenotype-related regions. Simul-
taneously, we used Bedtools Shuffle to generate non-phe-
notype regions with similar length distributions. We then 

with classical methods for analyzing the functionality of genome sequences, thereby promoting cross-fertilization 
between genomics and artificial intelligence.
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conducted a final confirmation to ensure that the identi-
fied regions did not overlap.

Phenotype dataset construction
Functional phenotypic sequence extraction within 
dataset-specific regions We started using Bedtools Get-
fasta to extract the regional sequences from the hg38 for 
potential regions in each dataset. Using Bedtools Inter-
sect, we isolated human pangenomic and 1000 Genome 

Project structural variation data [16, 17]. After splitting 
the continuous sequence with two or more consecutive 
Ns, retain those longer than 150 bp and further remove 
sequences with a similarity above 95% using Mmseqs 
Easy-linclust [18].

Data partitioning for model training For the sequences 
extracted from each specific region of the dataset, we 

Fig. 1 A schematic diagram of the article’s overall structure. (A) Generation of the multi-phenotypic classification datasets. (B) Demonstration of the 
model fine-tuning process using the HERV dataset. (C) The primary sequence features learned by our model. (D) Identification of motifs from high ALRW 
scoring sequences and their related classical analysis strategy
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conducted sequence feature statistics using Seqkit Stat 
[19]. Subsequently, we employed Seqkit Sample (-s100) 
to extract approximately 20% of the dataset as an inde-
pendent test set, while using the remaining approximately 
80% as the training and validation set (further divid-
ing ∼ 20% as the validation set). Subsequently, in order to 
conduct further research and validate our conclusions, we 
divided the datasets into training, validation, and test sets 
in accordance with the same ratio as required. In addi-
tion, for efficient management, we store all the data in a 
single file and provide each dataset with a numerical label 
(Supplementary Table 1).

Display of phenotype-related regions and datasets
We calculated and plotted the cumulative autosomal 
sequence length within all phenotype-related regions and 
datasets. Furthermore, we performed statistical analy-
sis to compare the overall distribution and chromosome 
distribution between sequences in phenotypic and non-
phenotypic regions. The gene enrichment rate in specific 
phenotypic regions was calculated as:

 
Enrichment Rate =

(Number of Region genes/Region length)
Number of hg38 genes/hg38 length

Fine-tuning of pre-trained models for phenotypic datasets
Model selection and Hyperparameters
Overview of the core models The main models, DNA_
bert_6 and human_gpt2-v1, are utilized to fine-tune 
diverse genotype-phenotype datasets, evaluating their 
ability to classify and recognize functional phenotypic 
data and assign records precisely to the corresponding 
labels. DNA_bert_6 processes DNA sequences using 
6-mer (stride 1) tokens, with pre-training on the BERT 
architecture, which consists of 12 hidden layers, 12 
attention heads, a 768-dimensional hidden layer, and a 
maximum input token limit of 512. The outputs of DNA_
bert_6 include attention weights, pooling layers, and all 
hidden layers. In contrast, Human_gpt2-v1 handles DNA 
sequences via Byte Pair Encoding (BPE) tokens and is pre-
trained with the gpt2 framework on the human telomere-
to-telomere genome (T2T-CHM13), which consists of 12 
hidden layers, 12 attention heads, a 768-dimensional hid-
den layer, and a maximum input token limit of 1,024. The 
outputs of the model, similar to those of DNA_bert_6, 
also include attention weights, and all hidden layers.

Sequence classification model structure The pre-
trained model can be regarded as a data compressor that 
identifies patterns and latent knowledge within datasets. 
Therefore, it is possible to incorporate additional network 
architectures after their hidden layers to achieve sequence 

classification tasks. In this study, the main approach 
involved using the AutoModelForSequenceClassifica-
tion class provided by Huggingface to load those mod-
els for fine-tuning of multiple phenotype datasets. The 
AutoModelForSequenceClassification class can utilize 
BertForSequenceClassification and GPT2ForSequence-
Classification to apply the pre-trained large BERT and 
GPT2 models to text classification tasks. The BertForSe-
quenceClassification class adds a dropout layer after the 
output pooling layer of the BERT model and then passes 
it through a linear classification layer. On the other hand, 
the GPT2ForSequenceClassification class directly uses a 
linear classification layer on top of the last hidden layer.

Hyperparameters for training The fine-tuning hyper-
parameters for DNA_bert_6 and human_gpt2-v1 on mul-
tiple phenotype datasets are specified as follows: 6-mer 
(stride 1), batch size of 10, accumulation steps of 4, a 
learning rate of 2E-5, 50 epochs, and a warmup ratio of 
0.1.

Binary classification of functional phenotypic sequences
The fine-tuning process for binary classification was 
performed on balanced multi-functional phenotype 
datasets, ultimately achieving good robustness and high 
accuracy (Fig. 1B). After the sequence data related to the 
phenotype were processed into 6-mer, the first 300 and 
last 212 6-mer strings in the sequence were extracted. 
Phenotypic sequences consisting of 512 tokens were 
then used as the input for the DNA_bert_6 model using 
padding and truncation strategies. Meanwhile, the phe-
notype-related sequence data were processed via BPE, 
and the first 1,024 tokens of the sequence were selected 
using padding and truncation strategies as the inputs for 
the human_gpt2-v1 model. Subsequently, independent 
fine-tuning trials (RUN0, RUN1, RUN2) process these 
data under specified models and parameters, with evalu-
ations across training, validation, and test sets following 
an approximate 6:2:2 ratio. In each round of indepen-
dent fine-tuning, we selected the optimal model based 
on the minimum validation loss and calculated various 
evaluation metrics. After the three rounds of fine-tuning, 
we averaged these metrics to assess the model’s perfor-
mance. Additionally, a voting mechanism was employed, 
with two identical predicted labels being retained. Other-
wise, the predicted label from RUN0 was used, resulting 
in the final RUN_Vote. The entire training process, facili-
tated by Huggingface and PyTorch, is streamlined by the 
Trainer function’s embedded optimization strategies for 
efficient fine-tuning of large models.

Multiclass classification of functional phenotypic sequences
The multi-classification of phenotypes was carried out via 
a strategy similar to binary classification. To attenuate the 
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effects of class imbalance on classification efficiency, the 
ratio of each data category within the training set labels 
was calculated and integrated into the CrossEntropyLoss 
function as a customized Trainer function. Subsequently, 
the independent fine-tuning of pre-trained genomic 
models (RUN0, RUN1, RUN2) was achieved using Hug-
gingface and PyTorch. To validate the efficacy of our 
training model strategy and the reasonableness of the 
related conclusions, we utilized the DNA_bert_6 model 
for cross-validation (Cross-Valid) and random data split-
ting strategies (Split1, Split2, Split3_1, Split3_2, Split3_3) 
on the dataset with the best classification performance. 
The cross-validation modeling strategy involved split-
ting the original dataset into training, validation, and test 
sets. The model was then trained using 5-fold cross-val-
idation, with performance assessed based on the cross-
validation and initial validation sets. To select the best 
model, it needed to achieve the highest F1 score on the 
cross-validation validation set and the lowest loss on the 
initial validation set. If the current model performed well 
on both selection criteria, the state dictionary of the best 
model was updated. Subsequently, the optimal model 
was then evaluated on the test set to validate its general-
ization capability. Additionally, the random data splitting 
strategy involves multiple random splits of the dataset, 
followed by modeling using the original method, to fur-
ther confirm the reliability of the conclusions.

Model evaluation metrics
All multiple phenotypic datasets are evaluated using the 
following metrics while recording the loss and runtime of 
the model on the test set:

Accuracy is the quotient of the number of correctly 
predicted samples by the total sample count.

 
Accuracy =

TP + TN
Number of all predictions

Recall is the ratio of correctly predicted true positives to 
all actual positives.

 
Recall =

TP
TP + FN

Precision measures the ratio of true positives in all posi-
tive predictions.

 
Precision =

TP
TP + FP

The F1 score, the harmonic mean of precision and 
recall, usually used to measure the accuracy of classifi-
cation models, especially in cases of imbalanced class 
distributions.

 
F1 = 2× Precision × Recall

Precision + Recall

The ROC AUC (Auroc) is the area under the ROC curve 
and is used to measure model performance across vari-
ous classification thresholds. Auroc can be calculated 
in two ways: Auroc_macro, which averages the AUC 
scores for each class equally, while Auroc_weighted, 
which assigns weights on the basis of the number of true 
instances per class to account for class imbalance.

Pr_auc represents the area under the Precision-Recall 
Curve. It focuses on the predictive power of a small num-
ber of classes (positive classes) without being affected by 
a large number of negative samples, and is suitable for the 
case of class imbalance.

The MCC (Matthews correlation coefficient) quantifies 
the performance of binary classification models, consid-
ering all varieties of positives and negatives.

 
MCC =

TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

The impact of different lengths of HERV datasets on 
phenotypic classification
To evaluate the classification performance of the mod-
els at different sequence lengths, we further evaluate the 
changes in the prediction results of the DNA_bert_6 and 
human_gpt2-v1 models within the HERV dataset for 
three independent fine-tunings (RUN0, RUN1, RUN2 
and RUN_Vote). To mitigate the significant differences in 
sequence length distribution, a logarithmic transforma-
tion of the sequence lengths was applied, supplemented 
by uniformly distributed random noise from − 0.1 to 
0.1 for length correction. We then sort the corrected 
sequence lengths and select 20 equally spaced values as 
the interval divisions. For the last intervals with fewer 
than 10 data points, we merge them into a single interval 
to maintain reliability and visualization. Next, we present 
the results of fine-tuning the DNA_bert_6 and human_
gpt2-v1 models on the HERV dataset, highlighting the 
models’ maximum token input threshold and the propor-
tional distribution of data points across intervals. Simi-
larly, a statistical analysis of various classification metrics 
across different chromosomes was conducted.

Model feature learning effect evaluation in the HERV 
dataset
Representativeness of classification labels
The DNA sequences in the test set were processed into 
6-mer nucleotide fragments. Their frequencies were cal-
culated via CountVectorizer to convert the sequences 
into numerical feature vectors. The sparse matrices of 
these feature vectors in a high-dimensional feature space 
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were subjected to dimensionality reduction via Truncat-
edSVD (n_components = 10) and SparsePCA (n_compo-
nents = 10) for further data visualization.

Feature extraction by the fine-tuned model
The DNA_bert_6 and human_gpt2-v1 models fine-tuned 
with the HERV dataset (RUN0, Cross-Valid, Split1, Split2, 
Split3_3) were used to extract features in batches from 
sequences in their test sets. We utilized the final layer of 
the hidden layer features (batch_size, sequence_length, 
hidden_size) to calculate the mean feature values across 
all positions within a sequence, obtaining the representa-
tion vector (hidden_size = 768) of the entire sequence. A 
test set feature matrix (sequence_number, 768) was com-
piled by combining the extracted features from all test set 
sequences. Subsequently, PCA and t-SNE were applied to 
reduce the dimensions and visualize this feature matrix.

Visualization of HERV subtype information
The complete HERV dataset was retrieved from the data-
base, and data from HervD_Atlas [20] were matched 
with the HERV test set based on hg38 coordinates. The 
HervD_Atlas fragment with the longest overlap with the 
test set sequence was selected as the subtype for that 
sequence. The largest overlapping segment of HervD_
Atlas was designated as the subtype for the correspond-
ing sequence. These overlapping sequences were used 
as reference points in the HERV test set, along with 
the associated subtype information to interpret t-SNE 
results.

Analysis of phenotype-specific high ALRW in the HERV 
dataset
Extraction of attention matrices from the fine-tuned model 
using the test set
Using the DNA_bert_6 model fine-tuned on the HERV 
dataset (RUN0, Cross-Valid, Split1, Split2, Split3_1, 
Split3_2, Split3_3), the final layer attention matrix scores 
(batch_size, num_heads, sequence_length, sequence_
length) for the test set data were extracted. To calculate 
and enhance the representation of the entire 6-mers 
token scores, we first iterated through the attention 
matrices to calculate the attention scores at each posi-
tion. Next, these scores were aggregated with those of 
the subsequent five positions, resulting in the cumula-
tive score for the entire 6-mer tokens. Given that each 
position could be included in multiple different 6-mer 
combinations during cumulative score calculation, it was 
necessary to record the count frequency at each position 
to calculate the mean score, which was then normalized 
across all 6-mer tokens using L2 normalization. Follow-
ing this approach, we calculated the overall average atten-
tion score (single attention) for the 12 attention heads, as 
well as the individual attention scores (multiple attention) 

for each of the 12 attention heads, more accurately cap-
turing the relative significance of each 6-mer token in 
the DNA sequence. During the calculation of single and 
multiple attention for test set data in batches, if the com-
puted length is shorter than 512 tokens, a padded array 
filled with zeros can be used to avoid errors.

Statistical analyses of attention matrices by phenotype-
specific labels
To preliminarily characterize the phenotypic sequence 
features learned by different models after fine-tuning 
(RUN0, Cross-Valid, Split1, Split2, Split3_1, Split3_2, 
Split3_3), we conducted statistical analyses of the single 
attention matrices specific to the phenotypic sequences 
[“Non-HERV_Coding”, “HERV_Coding”, “Non-HERV_
Non-Coding”, “HERV_Non-Coding”], focusing on the 
minimum, median, mean and third quartile values to 
characterize the overall distribution and variability of 
the matrices. Furthermore, the multiple attention score 
matrices learned by the RUN0 model were extracted, and 
these statistical values for the 12 headers were calculated 
to represent their learning phenotype-specific sequence 
characteristics.

Visualization attention scores and sequence analysis by 
phenotype-specific labels
The single and multiple attention score matrices, derived 
from the above methods and integrated with their respec-
tive test set labels, were used to investigate the distribu-
tion patterns of single and multi-head attentions across 
various token lengths for different phenotypes (RUN0, 
Split1, Split2, Split3_3). Notably, there was minimal over-
lap among these test sets, highlighting their distinctive-
ness and enabling a more nuanced analysis of attention 
patterns across diverse phenotypic labels. For single 
attention, the average attention score was calculated for 
each phenotype and referred to as the phenotype-specific 
average local representation weighted (ALRW) score, 
which is the average of certain specific phenotype-related 
sequences and multi-head attention layers. In the case 
of multiple attention, the average attention score was 
calculated for each head and subsequently displayed. 
To further characterize the sequence feature variations 
across different token intervals and explain the DNA 
sequence reasons for phenotypic attentions distribu-
tion differences, specific token regions [(0, 50), (50, 150), 
(150, 250), (250, 350), (350, 450), (450, 512)] were ana-
lyzed within the BERT model. The DNA feature statuses 
in the corresponding token regions for different pheno-
type sequences [“Non-HERV_Coding”, “HERV_Coding”, 
“Non-HERV_Non-Coding”, “HERV_Non-Coding”] in the 
test set were calculated as follows:

GC Content: The proportion of guanine (G) and cyto-
sine (C) in the DNA sequence, typically denoted by:
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GC Content =

Count of ′G′ + Count of ′C ′

Length of the sequence

6-mer(6mer) frequency: refers to the number of unique 
6-mer sequences in DNA, calculated as:

 
6mer Frequency =

Number of unique 6mer
Length of the sequence − 6 + 1

Shannon Entropy: A measure of DNA sequence com-
plexity, computed using the probabilities of each base’s 
occurrence and applying the concept of information 
entropy:H (X) = −

∑
p (x) log2p (x), where p (x)  is the 

probability of the occurrence of base x.
CpG Island Score: The observed-to-expected frequency 

ratio of CpG dinucleotides, which is calculated on the 
basis of the occurrence probabilities of C and G within 
the DNA sequence:

 
CpG Score =

Count of ′CG′

Expected count of ′CG′

where the expected count of ‘CG’ is the product of the 
frequency of ‘C’, the frequency of ‘G’, and the sequence 
length.

Line graphs depicting the variation in DNA sequence 
features in the different token regions [(0, 50), (50, 150), 
(150, 250), (250, 350), (350, 450), (450, 512)] were plotted.

Analysis of phenotype-specific HERV subtypes in the dataset
In the HERV test set, data that overlapped with the 
HervD_Atlas database were selected to calculate the per-
centage of various HERV classes (ERV1, ERV2, ERV3, 
ERVL-MaLR, Gypsy, LTR) within coding and non-coding 
regions.

The data were further analyzed to determine the rep-
resentation of different HERV functional groups. The 
relative enrichment rates were calculated as the ratio of 
each group’s percentage in non-coding regions to coding 
regions. This ratio allows us to understand the tendency 
of each group for being in non-coding versus coding 
regions, thereby providing insight into the functional 
dynamics of HERV elements within the genome.

 
Relative Enrichment Rate =

A%(HERVNon − Coding)
A%(HERVCoding)

Here, A denotes an individual element within the HERV 
functional group.

Motif analysis using high ALRW scores in the HERV dataset
Enrichment of motifs in continuously high ALRW score 
sequences
Extraction of continuously high ALRW score 
sequences In order to extract the continuous high ALRW 
score regions in specific phenotypic DNA sequences, 
each sequence within every phenotypic subset [“Non-
HERV_Coding”, “HERV_Coding”,“Non-HERV_Non-
Coding”,“HERV_Non-Coding”] is processed. Regions in 
each sequence with scores exceeding the average value and 
the minimum value by 10 times were identified as poten-
tial areas of interest, represented as Boolean arrays with 
high attention parts set to true. Subsequently, consecu-
tive true regions with lengths exceeding 5 bp are identified 
from the Boolean array as continuous high attention score 
regions. These segments were aligned to the correspond-
ing DNA sequences, which were extended 4 bp upstream 
and downstream to capture maximum potential informa-
tion. Furthermore, the above procedure was also applied 
to the non-overlapping HERV dataset test sets (RUN0-
Related, Split1-Related, Split2-Related, Split3-Related).

Motif analysis of high ALRW scoring sequences DNA 
sequences from the HERV dataset associated with the 
identified high ALRW score sequences across differ-
ent phenotypes [“Non-HERV_Coding”, “HERV_Cod-
ing”, “Non-HERV_Non-Coding”, “HERV_Non-Coding”] 
underwent motifs analysis using Fimo software in con-
junction with non-redundant transcription factor bind-
ing sites sourced from the JASPAR database in both 
the MEME and TRANSFAC formats [21, 22]. Motif 
sequences identified in the above four phenotypes were 
combined and filtered to retain those with q.value ≤ 0.05 
for further analysis. Firstly, Venn diagrams are used to 
represent the number of intersections of identified motifs 
among different phenotypes. Secondly, the specific-
ity enrichment of motif sequences in the HERV group 
[“HERV_Coding”, “HERV_Non-Coding”] relative to the 
Non-HERV group [“Non-HERV_Coding”, “Non-HERV_
Non-Coding”] is statistically analyzed. The frequency of 
motif sequences occurring in the HERV and Non-HERV 
groups is normalized by dividing by the cumulative num-
ber of motif sequences in each group. Then, the hyper-
geometric distribution test is used to perform enrichment 
analysis on specific motifs, with the calculation method 
being phyper(k-1, m, total_motifs-m, total_case, lower.
tail = FALSE), where k is the normalized frequency of each 
specific motif in the HERV group, m is the normalized 
frequency of each specific motif in the HERV and Non-
HERV groups, total_motifs is the total number of motifs 
in the HERV and Non-HERV groups, and total_case is 
the total number of motifs in the HERV group. Next, the 
Benjamini-Hochberg method was used to correct the 
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p-values. The frequency of enriched motifs in HERV_
Coding and HERV_Non-Coding facilitated the categori-
zation of motifs into three categories [“HERV_NonCod-
ing”, “HERV_Coding”, “HERV_Both”]. The selected motif 
sequences are shown for enrichment results (P_hyper_
adjust ≤ 0.05; HERV_Rate ≥ 0.5; HERV_Num > 10, where 
P_hyper_adjust is the adjusted p-value, HERV_Rate is the 
proportion of the specific motif ’s normalized frequency 
in the HERV group, and HERV_Num is the normalized 
frequency of the specific motif in the HERV group). This 
analysis method was applied to the high ALRW scoring 
sequences identified in the four non-overlapping HERV 
dataset test sets as described above, which served as inde-
pendent replicates to further increase the reliability of our 
findings.

Motif analysis of the full-length HERV dataset 
sequences To validate the reliability of motif sequences 
identified by high ALRW scores, we performed a simi-
lar statistical analysis and evaluation on the full-length 
HERV test sets as previously described. Furthermore, we 
conducted a comparative analysis of specifically enriched 
motifs by high ALRW scores and those enriched in full-
length sequences within the four non-overlapping HERV 
dataset test sets.

Functional enrichment and pathogenicity of phenotype-
specific motifs
We compiled the HERV sequence motifs identified in 
each of the four experiments and matched the selected 
motifs to the hg38 genome, combining adjacent intervals 
within a 10  bp range to define HERV sequence-specific 
motif regions. Initially, we characterized the basic char-
acteristics of the four HERV-specific motifs. Then, using 
regulatory element annotation information from hg38, 
we quantified the functional element ratios within these 
specific motif regions. Subsequently, we performed func-
tional enrichment and related disease analyses on pro-
tein-coding genes via Metascape [23], which associated 
with HERV-specific motifs extracted from high ALRW 
sequences in four independent experiments. Although 
many common HERV-special motifs were identified 
across the four independent test sets, we selected RUN0-
related motifs for comparison of the detailed characteris-
tics and pathogenicity between the high ALRW score and 
full-sequence analysis method due to their genomic non-
overlapping. Pathogenicity scores for variants in these 
regions were predicted using PrimateAI and AlphaMis-
sense [24, 25], and subsequently checked for intersection 
with HervD_Atlas.

Species conservation of HERV sequence-specifically enriched 
motif sequences
Polymorphism in specific motif regions of the human 
pangenome The genomic diversity within HERV 
sequence-specific enriched motif regions of the human 
pangenome was assessed via Odgi Depth [26]. Gene 
annotations that overlapped with these regions were cat-
egorized by chromosome and gene category using Bed-
tools Intersect. We identified genes that exhibited both 
high divergence and high conservation in the human 
population.

Conservation of specific motifs in primates Genome-
wide alignment data from 27 primate species, obtained 
from UCSC with hg38 as the reference, were extracted 
using MafSpeciesSubset. The primate evolutionary tree 
was reconstructed with PhyloFit, facilitating the evaluation 
of primate conservation scores using PhyloP and Phast-
Cons. The conservation scores within motif-enriched 
regions were determined using BigWigAverageOverBed, 
complemented by gene annotations from Bedtools Inter-
sect to present a comprehensive conservation landscape 
and annotate specific genes [27, 28]. Moreover, to fur-
ther explore the potential functions of motif sequences 
located in non-gene regions, we annotated HERV-related 
motifs by integrating regulatory elements, including those 
located 1 kb upstream and downstream of genes, promot-
ers, enhancers, and open chromatin regions. Additionally, 
we compiled the basic information, population diversity, 
and primate conservation of specific motifs as needed.

Results
Phenotypic regions collection and dataset construction
Functional phenotypic regions of the human genome
We consolidated five biomedically significant phenotypes 
from existing knowledge datasets: potential disease sus-
ceptible regions (Diseases_GWAS), regulatory element 
regions (Regulatory), endogenous viral regions (HERV), 
immunogenetic regions (Immunogenetic), and highly 
specifically expressed gene regions (Highly_Specifically 
_Gene). By organizing the genome coordinates linked 
to these phenotypes, we collected essential information 
about the specific sequences associated with each phe-
notype (Supplementary Table 2). For instance, the inter-
vals within the HERV dataset cover nearly 302.9  Mb of 
the genome, with the longest interval length exceeding 
153 kb. There are a total of 382,317 intervals within the 
genome, covering approximately 98.47% of the HERV 
intervals from the HervD_Atlas dataset, and spanning 
a total of 29.68 Mb [20]. Using the genomic coordinates 
of these five phenotypes, we illustrated the cumulative 
length distribution of the phenotype sequence regions 
across different chromosomes (Fig. 2A). The cumulative 
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distributions of Diseases_GWAS and Regulatory Regions 
are relatively consistent across different chromosome 
lengths, whereas HERV, Immunogenetic and Highly_Spe-
cifically_Gene show distinct chromosomal enrichments. 
Notably, the X chromosome has extremely long inter-
vals, whereas the Y chromosome has very few intervals in 
most phenotypic datasets, especially in the HERV dataset 
which accounts for ∼ 6.4% (Supplementary Tables 3, 4). 

This phenomenon may be closely related to the greater 
concentration of regulatory elements and genes on the X 
chromosome. To further emphasize the genes as critical 
functional units, the study also revealed gene enrichment 
ratios within the phenotypic regions (Fig. 2B), highlight-
ing an enrichment in the number of genes compared with 
the genome-wide average, particularly for protein-coding 
genes.

Table 1 Display of the functional phenotypic dataset sequence
Dataset Classification Numbers Length

(Multiclass/Binary) Sum Average Max
Dataset_HERV
(HERV)

HERV_Coding/HERV 16,556 22,643,342 1,368 125,188
HERV_Non-Coding/HERV 400,860 295,693,006 738 112,801
Non-HERV_Coding/ Non-HERV 18,994 23,490,411 1,237 83,426
Non-HERV_Non-Coding/ Non-HERV 343,913 251,939,874 733 93,893

Dataset_Immuno
(Immunogenetic)

Immuno_KIR/Immuno 1,723 3,096,500 1,797 39,269
Immuno_Others/Immuno 16,719 83,307,498 4,983 71,249
Non-Immuno 18,326 78,935,043 4,307 93,519

Dataset_Regulatory
(Regulatory)

TF_binding_site/Regulatory 22,860 13,391,832 586 93,893
Enhancer/Regulatory 320,389 335,938,843 1,049 93,893
CTCF_binding_site/Regulatory 94,738 52,273,466 552 93,893
Promoter/Regulatory 52,413 79,591,023 1,519 99,371
Open_chromatin_region/Regulatory 130,006 54,838,694 422 93,893
Non-Regulatory 494,389 435,738,664 881 96,745

Dataset_Diseases_GWAS
(GWAS_loci/PrimateAI-3D scores)

Diseases-GWAS_Coding/Diseases_GWAS 175,920 566,540,577 3,220 99,371
Diseases-GWAS_Non-Coding/Diseases_GWAS 51,427 132,677,910 2,580 92,731
Non_Diseases-GWAS_Coding/Non_Diseases_GWAS 148,235 550,157,564 3,711 93,893
Non_Diseases-GWAS_Non-Coding/Non_Diseases_GWAS 31,298 104,453,319 3,337 93,893

Dataset_Highly_Specifically_Gene
(Defensins/Olfactory Receptor)

Defensins/Highly_Specifically_Gene 415 418,877 1,009 9,191
Olfactory_Receptor/ Highly_Specifically_Gene 5,400 5,305,444 983 40,645
Others 5,610 6,653,032 1,186 94,155

Fig. 2 Illustrates the distribution and genetic characteristics of the selected phenotypic regions. (A) The cumulative chromosomal distribution patterns 
of five regions with phenotypic data. (B) The enrichment rates of all genes (red) and coding genes (blue) within the five phenotypic regions compared 
with the entire genome. A black color (y = 1) or below indicates the absence of enrichment
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Construction of a multi-phenotype classification dataset for 
humans
We constructed multiple functional phenotypic classi-
fication datasets by linking specific interval features of 
genomic phenotypic sequences with randomly selected 
non-phenotypic genomic regions as controls. We also 
inspected the length distributions of functional and non-
functional random regions for different phenotypes (Sup-
plementary Fig.  2A). The results revealed similar length 
distributions between the two regions in all datasets. The 
HERV and Regulatory phenotype datasets, which main-
tain the original interval lengths, allowed us to analyze 
the chromosomal distribution of the corresponding func-
tional and non-functional random regions, thereby con-
firming the uniformity of the constructed datasets across 
all chromosomes (Supplementary Fig. 2B).

Subsequently, we extracted corresponding sequences 
from the selected specific functional and non-functional 
random regions, using databases like hg38, the human 
pangenome, and the 1000 Genomes Project. After 
removing redundancy, we performed sequence statistics 
on the constructed functional phenotype datasets. Fur-
thermore, we classified these datasets into binary and 
multi-classification categories considering biological 
factors (Table 1; Supplementary Tables 4, 5). The HERV 
dataset, for example, includes both balanced binary clas-
sification (HERV: Non-HERV = 417,416: 362,907) and 
imbalanced multi-classification (HERV_Coding: Non-
HERV_Coding: HERV_Non-Coding: Non-HERV_Non-
Coding = 16,556: 18,994: 400,860: 343,913). This dataset 
features approximately 22.64  Mb of coding sequences 
and roughly 295.69 Mb of non-coding sequences within 
the HERV functional regions, enabling the development 
of a multi-classification task through binary classifica-
tion. Furthermore, the Dataset_Regulatory is the most 
diverse, requiring a six-class classification task to distin-
guish TF_binding_site, Enhancer, CTCF_binding_site, 
Promoter, Open_chromatin_region, and Non-Regulatory 
element sequences within the genome.

Binary and multi-classification of functional phenotype 
datasets
Binary classification performance of multiple phenotype 
datasets
To evaluate the performance of fine-tuning pre-trained 
genomic models on multiple phenotype datasets, we con-
ducted three independent fine-tuning iterations using the 
DNA_bert_6 and human_gpt2-v1 models for each phe-
notype dataset, including both the training and valida-
tion sets. The model performance was then evaluated on 
the test set with various metrics for all datasets (Table 2), 
using the random genomic region dataset (Dataset_Ran-
dom) serving as a foundational baseline. The constructed 
multiple phenotype datasets demonstrated differential Ta
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classification performance, with Dataset_HERV, Data-
set_ Diseases-GWAS, and Dataset_Immuno models 
performed well for all metrics, especially Dataset_HERV 
with accuracy and F1 values were above 0.935. In com-
parison, the DNA_bert_6 and human_gpt2-v1 models 
showed negligible performance variance, although with 
a notable increase in fine-tuning time for human_gpt2-
v1. In summary, the models’ performance across vari-
ous phenotypic datasets highlights that the phenotypic 
labels assigned to specific DNA sequences can partially 
reflect the inherent information within the data, imply-
ing distinctive DNA sequence patterns associated with 
the HERV, Diseases-GWAS, and Immuno phenotypes. 
Moreover, the Dataset_Random outcomes imply that 
current those models struggle to distinguish genomic 
regions in a non-selective manner. This discrepancy is 
likely due to the incongruence between the information 
contained in the sequence data and the assigned labels.

Multi-classification performance of phenotypic datasets
We adopted a training and evaluation strategy similar 
to that employed in assessing multi-classification per-
formance across various phenotype datasets. Given the 
significant class imbalance in certain multiclass pheno-
type datasets (Table  1), we optimized the cross-entropy 
loss function in the DNA_bert_6 and human_gpt2-v1 
models during fine-tuning by adjusting it according to 
the label proportions in the training set. Moreover, we 
performed three independent fine-tuning rounds for 
each dataset, including both the training and valida-
tion sets, and subsequently evaluated the classification 
outcomes via the test set (Table 3). Notably, when com-
paring the model’s performance in multi-classification 
fine-tuning versus binary classification within the same 
phenotype dataset, we observed a decrease in metrics, 
which may be attributed to the increased difficulty of the 
multi-classification task. Consistently, the model’s per-
formance exceeded that of the genomic random region 
dataset (Dataset_Random) across Dataset_HERV, Data-
set_Immuno, and Dataset_Disease-GWAS, with Data-
set_HERV achieving accuracy and F1 scores above 0.888. 
Furthermore, we used cross-validation and random data 
splitting strategies for sequence classification in Dataset_
HERV, achieving similar results after fine-tuning DNA_
bert_6 (Supplementary Table 6). In specific functional 
phenotypic tasks, a significant decrease in performance 
between multi-classification and binary classification 
tasks was observed in Dataset_Regulatory and Dataset_
Diseases-GWAS, suggesting that too many class labels 
and inconsistencies between data and label information 
can detrimentally affect the final sequence classification 
performance.

Binary and multi-classification performance across HERV 
sequence lengths
When fine-tuning the DNA_bert_6 and human_gpt2-v1 
models with new datasets, it is necessary to adjust the 
length of the input DNA sequences within the maximum 
allowed tokens for each respective model. Consider-
ing the model’s outstanding performance on the HERV 
dataset and the preservation of original functional phe-
notype interval lengths, we delved into how sequence 
length influences model effectiveness within this specific 
dataset. The test set was partitioned into multiple sub-
sets based on sequence length, and the changes in HERV 
sequence classification scoring metrics within different 
length ranges were evaluated in three independent fine-
tuning experiments (Fig.  3; Supplementary Fig.  3). The 
fine-tuning experiments on the HERV dataset, which uti-
lizing the DNA_bert_6 (Fig. 3A; Supplementary Fig. 3A) 
and the human_gpt2-v1 (Fig. 3B; Supplementary Fig. 3B) 
models, revealed that as the sequence length surpasses 
the maximum token limit of the model, the model’s clas-
sification metrics gradually decrease. The trend observed 
in the multiclass evaluation metrics is consistent with 
the change in sequence length frequency, likely due to 
the varying number of test samples for each class in the 
multiclass task, thereby leading to a significant metric 
variability, unlike the more stable trend seen in binary 
classification metrics. Furthermore, the human_gpt2-v1 
model slightly outperformed the DNA_bert_6 in han-
dling longer sequences due to an increased input length 
within a permissible range. Nevertheless, considering 
that the majority of test sequences adhere to the token 
limit of the DNA_bert_6 model, the differences in the 
final evaluation metrics are not statistically significant, 
and overall performance remained high. Moreover, a 
voting strategy across classification trials may improve 
model consistency (RUN_Vote), in split of a decrease in 
the MCC metric was observed in RUN1. Additionally, 
we evaluated the model’s performance across different 
chromosomes and found that while some chromosomes 
presented slightly lower metrics, the overall classifica-
tion effect remained unaffected (Supplementary Fig.  4). 
Therefore, it is crucial to thoroughly assess both the data 
distribution characteristics and the complexity of the 
classification task in a comprehensive manner. Besides, 
conducting multiple independent experiments to assess 
the model’s overall classification efficacy is crucial in 
strengthening its robustness.

Model feature learning performance in the HERV dataset
After fine-tuning on the HERV dataset, the advanced pre-
trained models DNA_bert_6 and human_gpt2-v1 dem-
onstrated effective sequence classification performance. 
To gain a deeper understanding of the representation 
learning ability of fine-tuned large models, we visualized 
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the latent patterns learned through unsupervised learn-
ing from the dataset, as well as the representations 
learned by the models respectively (Fig.  4). The DNA 
sequences in the test set were parsed into 6-mers, which 
yielded high-dimensional sparse matrices that were sub-
sequently dimensionally reduced and visualized using 
SparsePCA and TruncatedSVD (Fig. 4A, B). The visual-
ization revealed that specific sequence patterns matching 
the labels were present in the dataset, HERV and Non-
HERV sequences in non-coding regions exhibited clear 
differences, whereas HERV and Non-HERV sequences in 
coding regions showed smaller differences and clustered 
together with the points in non-coding regions. To evalu-
ate the models’ ability to recognize sequence features, 
we utilized the last hidden layer of the fine-tuned DNA_
bert_6 model for the HERV multi-classification dataset. 
We employed PCA and t-SNE methods to visualize the 
hidden layer representations, and the results showed that 
our fine-tuned DNA_bert_6 model successfully learned 
the patterns specific to HERV sequences and could dis-
tinguish HERV sequences within coding regions from 
HERV Non-coding regions more distinctly. PCA clearly 
captured differences between multiple classification 
labels, whereas the t-SNE method revealed differences 
between classification labels and also highlighted sub-
groups within specific label types (Fig.  4C, D; Supple-
mentary Fig.  5). We marked the ∼ 3.92% overlapping 
HERV sequences in the test set with the HervD_Atlas 
database as reference points, and further visualization 
of the t-SNE results indicated that the model learned the 
specific patterns of the ERV1, ERV2, and ERV3 subtypes 
in the HERV sequences through unsupervised learning, 
and could differentiate them. However, it is crucial to 
note that it remains unclear whether the model classified 
subgroups based on the length differences of these three 
types of HERV sequences [29] (Supplementary Fig.  6). 
Furthermore, the last layer feature visualization of the 
fine-tuned human_gpt2-v1 model also demonstrated that 
this pre-trained model learned the latent patterns from 
the HERV dataset (Supplementary Fig. 7).

Phenotype-specific ALRW scores in the HERV dataset
In our investigation of the attention scores assigned to 
different regions within DNA sequences by the DNA_
bert_6 model after fine-tuning on the HERV dataset, we 
extracted the attention score matrices from the final layer. 
Initially, we calculated the single and multiple attention 
score matrices for phenotype-specific sequences and 
computed basic statistics, including the mean and other 
values. The results revealed that the scores for HERV_
Non-Coding sequences were lower than those for other 
phenotype-specific sequences (Supplementary Tables 
7, 8). We then calculated the phenotype-specific ALRW 
score, which represents the overall average attention Ta
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score of related sequences, taking into account the mean 
values from all heads. The ALRW scores of different 
phenotype-specific labels in the HERV dataset exhibited 
variation across the 512 tokens of the input sequences 
(Fig. 5A; Supplementary Fig. 8). All the phenotypic label-
specific sequences showed higher ALRW scores at the 
beginning and end of the tokens. Compared with those 
of the other sequences, the ALRW scores of the non-cod-
ing HERV sequences were highest at the beginning and 
end, but lower in almost all other regions. In contrast, the 
overall distribution of ALRW scores for HERV sequences 
closely matched that of Non-HERV sequences within 
the coding regions. Notably, the ALRW scores for the 12 
multi-head attention blocks on the non-coding HERV 
sequences within the test dataset demonstrated a dis-
tinct distribution (Supplementary Fig.  9). Furthermore, 
the distinct distributions of ALRW scores within the 
12 multi-head attention blocks indicated that different 
attention heads captured various feature representations 
from the sequences (Supplementary Fig. 10).

To further investigate the reasons for the differences 
in ALRW scores among the various phenotype-specific 
labels, we truncated the HERV phenotypic sequence in 
the corresponding regions based on token positions. 
Then, we calculated the GC content, unique 6-mer fre-
quency, sequence information entropy, and poten-
tial CpG island scores of these sequences. It can be 
observed that the non-coding HERV sequences had 

higher sequence information entropy and unique 6-mer 
frequency, as well as lower CpG island scores, whereas 
both the non-coding and coding region HERV sequences 
presented higher GC content (Fig.  5B; Supplementary 
Fig. 11). Moreover, the test set of HERV sequences that 
could be classified by the HervD_Atlas database revealed 
that compared with the coding region sequences, the 
non-coding region sequences had a greater proportion of 
ERV3-type HERVs and a lower proportion of ERV2-type 
HERVs (Supplementary Fig.  12). The phylogenetic tree 
of ERV sequences indicated that ERV3-type sequences 
were older than ERV1 and ERV2 [29], implying that their 
prevalence in non-coding regions might result from evo-
lutionary silencing, which is consistent with the finding 
that the ALRW score distribution is significantly differ-
ent from that of other phenotype-specific sequences. To 
further explore this phenomenon, we calculated the rela-
tive enrichment rates of non-coding versus coding region 
HERV sequences in the HervD_Atlas dataset (Fig.  5C). 
The results indicated a marked enrichment of ERV3-type 
HERVL sequences in non-coding regions, characterized 
by the loss of viral coding capabilities. These sequences 
are highly conserved and ubiquitously distributed among 
mammals [30, 31]. Conversely, ERV2-type HERVK 
sequences, preserving the original provirus structure, 
were significantly enriched in coding regions. It was also 
shown that HERVK (HML-2) is not fixed in the gorilla 
genome but is present in the Neanderthal and Denisovan 

Fig. 3 Multi-classification effects of sequences across different length ranges in the HERV dataset. (A) DNA_bert_6 model fine-tuning results; (B) human_
gpt2-v1 model fine-tuning results. The top grey line is the percentage of sequences in different length ranges, the red line is the maximum number of 
tokens allowed by the model, and the RUN_Vote is the result of three independent runs of voting (RUN0, RUN1, RUN2)
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genomes [30], highlighting its recent positive selection 
and integration into the human genome.

Based on the characteristics observed in these 
sequences, we can roughly summarize the potential rea-
sons for the overall low ALRW of the non-coding region 
HERV sequences as follows: (1) Enhanced complexity 
and diversity: The high sequence information entropy 
and unique 6-mer frequency of non-coding HERV 
sequences indicate their complexity and diversity, which 
makes it challenging for the model to capture useful fea-
tures, resulting in lower scores; (2) Evolutionary silenc-
ing and balance: Non-coding HERV sequences may have 
been subjected to more extensive silencing events during 
evolution, leading to differences in their activity, expres-
sion, or functionality compared with other sequences, 
such as low CpG island scores, loss of HERVL viral cod-
ing sequences, etc.; (3) A bias towards learning promi-
nent sequence features: The non-coding HERV region 
contains more solitary LRT sequences, and the model 
tends to focus on assimilating these prominent features, 

thereby reducing the ability to capture complex features 
in other HERV sequences.

Motif analysis of HERV dataset with high ALRW scores
Enrichment and pathogenicity analysis of motifs in high 
ALRW score regions
The above analysis demonstrated that pre-trained 
genomic models can capture distinctive internal fea-
tures of HERV sequences, suggesting their potential 
associations with functional elements such as regulatory 
motifs. Further exploration using four independent test 
sets revealed that sequences with high ALRW scores are 
effective in identifying motifs that exhibit both specific 
and shared features across various phenotype-specific 
labels. Our analysis generally found that these non-over-
lapping genomic sequences identified a limited number 
of HERV-specific motifs in both coding and non-coding 
regions, while unique motifs were also discernible in 
these regions (Supplementary Fig.  13). To assess motif 
enrichment specificity in HERV sequences, a hypergeo-
metric test was employed to statistically analyze motifs 

Fig. 4 The RUN0 model representation learning of potential feature patterns in the HERV dataset. Visualization of (A) SparsePCA and (B) TruncatedSVD 
downscaled components of the original DNA sequences. Visualization of (C) PCA and (D) t-SNE downscaled components of the last hidden layer in the 
fine-tuned model
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in both coding and non-coding regions across all test 
sets. The significant enrichment of 42 overlapping HERV 
sequence motifs identified in the four experiments indi-
cates a similarity in regulatory elements within different 
genomic regions containing HERV sequences (Fig.  6A; 
Supplementary Table 9). Additionally, using high ALRW 
scores, we identified these overlapping motifs in phe-
notype-specific sequences, most of which could also be 
identified via the full-length test set sequences, where 
analyzing motifs with the complete sequences exhibited 
similar trends (Supplementary Figs.  14, 15  A; Supple-
mentary Table 10). Furthermore, high ALRW scores in 
phenotype-specific sequences identified certain pheno-
type-specific sequence patterns learned by the model 

(Supplementary Figs.  14, 15). The results revealed a 
significant enrichment of HERV-specific motifs when 
identifying motifs through high ALRW scores compared 
to using full-length sequences. This indicates that high 
ALRW scores can effectively capture and filter unique 
patterns in HERV sequences.

Using the motifs identified in the above four experi-
ments and their corresponding non-redundant genomic 
regions, we further explored the potential regulatory 
functions of these HERV-specific enriched motifs. Based 
on the HERV sequence encoding types, we found that the 
42 overlapping specific-enriched HERV motifs identified 
across the four experiments are associated with DNA-
binding and gene regulation. These motifs include factors 

Fig. 5 In-depth analysis of ALRW scores for specific phenotypic sequences in the RUN0 model. (A) The general distribution of ALRW scores across specific 
phenotypic sequences; (B) the characterization of sequences within different tokens positional regions; (C) Relative enrichment rates of specific group 
sequences within different HERV subtypes (ERV1, ERV2, ERV3, ERVL-ma) in overlapping sequences of the HervD Atlas database
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such as C2H2 zinc finger factors, tryptophan cluster fac-
tors, and AP2/EREBP, which are enriched in both coding 
and non-coding regions [32–35]. Conversely, motifs such 
as nuclear receptors with C4 zinc fingers were predomi-
nantly found in coding regions, whereas transcription-
related motifs, such as Fork head/winged helix factors 
and TATA-binding proteins, were abundant in non-
coding regions [36–40] (Fig. 6B; Supplementary Fig. 16; 

Supplementary Table 9). In summary, specific enriched 
motifs present in HERV sequences are implicated in gene 
expression regulation, with some unique motifs involved 
in recognizing nuclear receptors within coding regions. 
Additionally, motifs identified from the full-length 
sequences also demonstrated enrichment, with those like 
Rbpjl, vertebrates, Rel homology region (RHR) factors 
playing roles in immune regulation, development, and 

Fig. 6 Identification analysis of motifs within phenotype-specific high ALRW scores sequences. (A) The overlap of motifs was determined for four non-
overlapping HERV dataset test sets (RUN0-Related, Split1-Related, Split2-Related, Split3-Related); (B) HERV phenotype sequence-specific motif enrich-
ment analysis demonstrated, where the x-axis of the analysis represents the overall rate of HERV type motifs; (C) The multiple motifs-enriched AKR1E2 
gene screened by two strategies in RUN0-related test set. ominoidae-specific HERV sequences chr10_ERV1_01040 are highlighted in orange (Hominoi-
dae: Human, Chimp, Bonobo, Gorilla, Gibbon)
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inflammation regulation processes in organisms [41–43] 
(Supplementary Fig.  17; Supplementary Table 10). Fur-
thermore, combining gene annotation information, we 
analyzed the genomic regions of HERV-specific enriched 
motifs and found that the major genes overlapping within 
these intervals were located primarily in the protein-
coding and lncRNA regions (Supplementary Table 11). 
We also observed specific enrichment of motifs in genes 
related to neurodevelopment and synaptic function, cel-
lular processes and cancer, cell adhesion and intercellular 
communication, and signal transduction. These regions 
involve functional sequence elements such as enhanc-
ers, CTCF binding sites, and open chromatin regions 
(Supplementary Fig. 18). Functional enrichment analysis 
of all protein-coding genes and disease relevance analysis 
revealed that genes associated with the specific enriched 
motifs were involved in processes such as neural activity, 
cellular morphology and transport, metabolic regulation, 
and GPCR signaling. Moreover, these genes were closely 
associated with spinal health, neural development and 
intelligence, and exhibited specific enrichment in DRG 
neuronal cells (Supplementary Fig. 19).

To further investigate the induction of disease by spe-
cific enriched motifs, we integrated information from 
the HervD_Atlas database with the pathogenicity scores 
predicted by AlphaMissense [25] and PrimateAI [24]. 
By utilizing the HERV-specific non-redundant motif 
sequence intervals identified by high ALRW score 
sequences, a cumulative length of 47,759  bp (∼ 15.31%) 
mainly from the ERV1 family overlapped with sequences 
in the HervD_Atlas, which are involved in diseases such 
as cancer and the nervous system. Compared with the 
motifs identified based on the full-length sequences, the 
motifs identified on the basis of high ALRW scores lean 
toward high-frequency HERV sequences, resulting in 
the loss of low-frequency sequence information but also 
the identification of new motifs. Employing both strate-
gies, we successfully identified 8 shared motifs within the 
AKR1E2 gene. Within this gene, there is a Hominoidae-
specific HERV sequence chr10_ERV1_01040 exhibited 
low expressed in 8 cancerous tissues but demonstrated 
high pathogenicity scores at specific sites (Supplementary 
Tables 12–14). The motif sequences AT3G46070, SP8, 
and KLF17 within this interval play important roles in 
processes such as cell proliferation and metabolism, brain 
development [44], and cancer invasion [45] (Fig.  6C; 
Supplementary Fig.  20). Furthermore, motifs like Eor-
1, identified between genes in the chr6_ERV2_01565 
sequence, which is significantly upregulated in liver can-
cer (Supplementary Table 12). Regarding HERV-spe-
cific motifs identified through high ALRW scores, it is 
worth mentioning that the Hominoidae-specific HERV 
sequence chr9_ERV2_01861 contains the CTFC motifs 
identified by high ALRW scores within the PRUNE2 gene. 

This particular HERV sequence is expressed at low lev-
els in 4 cancerous tissues and encompasses a CRE regu-
latory element (Supplementary Fig. 21A; Supplementary 
Tables 12, 14). Lastly, specific motifs identified through 
full-length sequence analysis, motifs like ZNF135 within 
PPIL1, which are associated with protein folding and acti-
vation processes, closely correlation with a wide range of 
biological functions and diseases [46, 47] (Supplementary 
Fig. 21B; Supplementary Tables 13, 14).

Species conservation of HERV-specific enriched motif 
sequences
Using fine-tuned genomic models to obtain the ALRW of 
DNA sequences, our study pinpointed motifs uniquely 
enriched within human HERV. These HERV-specific 
motif sequences are involved in regulating essential bio-
logical activities and are closely related to nervous system 
diseases and tumors. To further evaluate the characteris-
tics of HERV-specific motifs, we investigated their diver-
sity among human populations and their conservation 
across primate species (Fig.  7; Supplementary Fig.  22; 
Supplementary Table 15). By integrating published 
human pan-genomic data, we analyzed the sequence 
polymorphism (alignment depth) of HERV-specific 
motifs within their corresponding intervals and visual-
ized them based on overlapping gene types. This analysis 
indicated that lncRNA and protein-coding genes exhibit 
higher polymorphism (Fig. 7A). We also identified highly 
conserved motif sequences in the CCDC200 gene within 
the human population, although significant differentia-
tion was observed in primates. Notably, the CCDC family 
proteins are believed to be involved in various physiologi-
cal and pathological processes, including gametogenesis, 
embryonic development, hematopoiesis, angiogenesis, 
ciliogenesis, and cancer [48, 49] (Fig. 7B; Supplementary 
Fig.  23). Additionally, regions with highly differentiated 
motifs in the human population or genes containing mul-
tiple repetitive segments within the genome are associ-
ated with immune function and inflammatory responses, 
signal transduction, cell communication, the nervous 
system, and metabolic processes. These findings sug-
gest their role in the transcriptional regulation of diver-
gent traits within primates and their co-evolution with 
environmental pathogens [30, 50, 51] (Fig. 7). Moreover, 
motifs that are conserved among primates but polymor-
phic in humans may be involved in the development 
of human organs and immune system adaptability. By 
comparing brain organ samples from humans and great 
apes, it was found that the epithelial-mesenchymal tran-
sition regulator ZEB2 promotes the transformation of 
the neural epithelium, ultimately leading to the expan-
sion of the human brain [52]. The membrane receptor 
ROR1, which is crucial for embryonic development and 
is overexpressed in multiple cancers, has been shown to 
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be a safe and practical target for CAR-T cell immuno-
therapy in clinical trials involving non-human primates 
[53, 54]. Additionally, our annotation of HERV-related 
motifs within non-gene regions revealed that ∼ 47.6% 
were enhancers, over 10% were genes upstream /down-
stream and CTCF binding sites, and over 7% were open 
chromatin regions, highlighting their potential biological 
significance (Supplementary Fig. 24). Further exploration 
revealed that only motifs within 1 kb of genes presented 
predictive conservation scores, indicating higher species-
specific variation in non-gene sequences, possibly due to 
early viral retrotransposon fixation (Supplementary Table 
16). Most motifs enriched in gene upstream/downstream 
regions were not conserved in primates but showed 
high diversity in human populations, with some show-
ing potential population-level conservation (requiring 
broader validation). These motifs need further investiga-
tion to understand their roles in regulatory mechanisms.

Discussion
In the post-genomic era, the functional analysis of DNA 
sequences has paramount importance. We constructed 
multiple genotype-phenotype (individual and molecular 
phenotypes) dataset by integrating accumulated data and 
knowledge. After fine-tuning the genomic model with 
DNA_bert_6 and human_gpt2-v1, we achieved balanced 
binary and imbalanced multiclass phenotypic classifica-
tions with exceptional efficacy. Notably, the fine-tuning 
of the HERV dataset not only demonstrated an enhanced 
capability in identifying and delineating various informa-
tional types within DNA sequences, but also pinpointed 

specific motifs associated with neurological disorders and 
cancers regions with high ALRW scores. Further analy-
sis of these conserved motifs shed light on the adaptive 
responses of species to their environment and co-evo-
lution with pathogens. These sequence-specific motifs 
could revolutionize nucleic acid vaccine development 
and targeted therapeutics for genomic diseases, such 
as liver cancer intervention vaccines and drug develop-
ment based on the expanded sequence of the Eor-1 motif 
within HERVK.

The main challenges of DNA sequence analysis include 
the complex sequence features and model input length 
limitations. DNA sequences usually encapsulate vast 
amounts of information and complex structures, such as 
repetitive sequences, etc., making high-quality sequence 
resolution of these regions challenging and making 
it difficult to extract useful knowledge via traditional 
methods. Moreover, variability in loss function results 
due to different sequence complexities may necessitate 
sequence-type-specific model pre-training. In addition, 
the population biases and sequence frequency may gen-
erate learning bias in the model and affect downstream 
tasks. Currently, the commonly used pre-trained BERT 
and GPT models have a maximum input token limita-
tion, possibly resulting in loss of spatial information of 
the genome and important regulatory elements, such as 
the long-distance enhancers. While DNA controls com-
plex life activities, research has focuses predominantly on 
just 3% of protein-coding sequences in the genome. The 
deployment of pre-trained genomic models can improve 
the understanding of the DNA genetic blueprint, which is 

Fig. 7 Conservation of species within phenotype-specific RUN0-related enriched motif regions. (A) Pan-genomic representation of population polymor-
phisms within phenotype-specific enriched motif regions; (B) The conservation of these motifs is investigated in primates
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vital for deciphering gene control of biological traits and 
disease.

Future research will focus on developing incremental 
pre-training models for the human pangenome, incor-
porating model knowledge distillation, and integrating 
knowledge graphs, etc. We will also explore innovative 
frameworks capable of handling extended input tokens, 
such as HyenaDNA and LongNet, and further evaluate 
their genomic representation capabilities [10, 55]. Ulti-
mately, it is expected that our pangenome incremental 
pre-trained model can surpass the capabilities of the hg38 
reference, potentially transforming the computational 
biology landscape. This advancement in genome-level 
representation learning will deepen our understanding of 
life and potentially impact related fields, including NLP 
technologies. Furthermore, the findings and data from 
this research will contribute to personalized therapy 
strategies, including vaccine and drug development tar-
geting HERVK sequences [56]. Additionally, using pre-
trained genomic models to explore the high proportion 
of HERV sequences on chromosomes X and Y, this will 
prompt us to consider their genetic patterns, chromo-
somal evolution, and embryonic development.

Conclusion
This study employs a pre-trained genome model to 
identify and interpret genetic signals associated with 
specific phenotypes. The findings can be categorized 
into three main aspects:1) Genotype-Phenotype Data-
set: We utilized various genotype-phenotype datasets 
to assess the effectiveness of fine-tuned large models in 
balanced binary classification and imbalanced multi-
class sequence challenges. Using the HERV dataset, we 
evaluated the variation in model classification metrics 
across different sequence length distributions, explor-
ing the correlation between data distribution patterns 
and model performance. These datasets play a critical 
role in assessing the efficacy of those models and they 
highlight the importance of model selection based on 
data distribution, requirements, and costs. 2) Represen-
tation Learning in Pre-trained Genomic Models: The 
fine-tuned HERV dataset reveals that hidden layer fea-
tures enable the model to recognize phenotypic informa-
tion in sequences and reduce noise. To investigate how 
the model isolates phenotypic label-specific signals, we 
calculated the ALRW for phenotypic labels using aver-
age attention matrices. The distribution of ALRW scores 
aligns with the fundamental characteristics of coding 
and non-coding areas in HERV sequences and their evo-
lutionary subtypes, validating the utility of pre-trained 
models in the deep analysis of biological sequences. 3) 
Novel attempts to integrating Pre-trained Genomic Mod-
els with Classical Omics Analysis: By selecting sequences 
with high ALRW scores specific to phenotypes for motif 

enrichment analysis, we identified HERV-specific motifs 
that are implicated in neurological diseases, tumors, and 
other biological processes. Therefore, they have potential 
applications in vaccine and targeted drug discovery. Fur-
thermore, the polymorphism of these motifs in human 
populations and their conservation in primates provide 
insights into primate adaptation to environmental pres-
sures and integration of pathogens into the host genome. 
This insight aids in selecting motifs for further research 
and development in vaccines and drugs, using non-
human primates, exemplified by HERVK sequences.
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