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ABSTRACT

Recently we presented a frequentist dynamic pro-
gramming (DP) approach for multiple sequence
alignment based on the explicit model of indel evo-
lution Poisson Indel Process (PIP). This phylogeny-
aware approach produces evolutionary meaningful
gap patterns and is robust to the ‘over-alignment’
bias. Despite linear time complexity for the compu-
tation of marginal likelihoods, the overall method’s
complexity is cubic in sequence length. Inspired
by the popular aligner MAFFT, we propose a new
technique to accelerate the evolutionary indel based
alignment. Amino acid sequences are converted
to sequences representing their physicochemical
properties, and homologous blocks are identified
by multi-scale short-time Fourier transform. Three
three-dimensional DP matrices are then created un-
der PIP, with homologous blocks defining sparse
structures where most cells are excluded from the
calculations. The homologous blocks are connected
through intermediate ‘linking blocks’. The homolo-
gous and linking blocks are aligned under PIP as
independent DP sub-matrices and their tracebacks
merged to yield the final alignment. The new al-
gorithm can largely profit from parallel computing,
yielding a theoretical speed-up estimated to be pro-
portional to the cubic power of the number of sub-
blocks in the DP matrices. We compare the new
method to the original PIP approach and demonstrate
it on real data.

INTRODUCTION

Today’s large genomics datasets provide a rich source of in-
formation and enable increasingly realistic models to be ap-
plied to study the underlying mechanisms shaping biologi-

cal sequences. Such models however tend to be mathemat-
ically more sophisticated, and as a consequence, are com-
putationally more demanding. In this context, one of the
oldest and most fundamental problems is the alignment of
related genomic sequences. This problem is well-known in
the bioinformatics community as multiple sequence align-
ment (MSA).

Due to the inherent computational complexity of the
MSA inference, heuristic algorithms have been developed
to enable this task as a part of routine sequence analy-
ses. The progressive MSA heuristics simplify the problem
by splitting it into a series of pairwise alignments guided
by a tree structure representing the evolutionary relation-
ship of the sequences. Each pairwise alignment is typically
constructed by dynamic programming (DP), which usually
scales quadratically with the sequence length. A typical ap-
proach however considers only point substitutions and a
length distribution of observed sequence gaps. Including
more sophisticated scenarios necessitates methods of higher
complexity. For example, the computational complexity of
a pairwise alignment with non-overlapping inversions be-
comes cubic with the sequence length (1).

A sound mathematical description of the evolutionary
process of insertions and deletions (indels) requires more
complex models such as the classical TKF91 (2) or the more
recent Poisson Indel Process (PIP) (3). The advantage of
both models consists in describing the evolution of indels
on a tree. Their computational complexity is largely deter-
mined by the evaluation of the marginal likelihood of an
MSA and a tree, which is exponential in the number of taxa
for TKF91, but is reduced to linear for PIP. The Poisson In-
del Process is a mathematical model that describes an evo-
lutionary process of character substitutions, deletions and
insertions along a phylogenetic tree. Single character inser-
tions occur over time as poissonian events, and the inserted
characters evolve under a continuous-time Markov process
of substitutions and deletions. Once a character is deleted,
its homology history expires in order to prevent a subse-
quent insertion. The gap patterns of an MSA generated un-
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der PIP are defined using two parameters, insertion rate and
deletion rate.

Recently we have presented a new progressive DP algo-
rithm (4) that aligns two MSAs under the PIP model by
maximum likelihood (ML). This algorithm runs through
a given guide tree and computes at each internal node
a column-wise likelihood for all the homology paths im-
plied by the two sub-alignments observed at the children
nodes. The DP algorithm then returns the optimal ML pair-
wise alignment conditioned on the input. However, this ap-
proach requires sparse three-dimensional (3D) DP matrices
to account for the non-monotonicity of the marginal like-
lihood for non-observable scenarios. As a consequence, the
overall computational complexity of the method becomes
cubic in the sequence length.

A possible approach to reducing computational complex-
ity in a DP framework is to pre-detect candidate homolo-
gous sequence segments in order to filter out non-promising
regions in the DP matrix prior to the effective alignment
process (5,6). This allows to heavily constrain the number
of candidate alignments thus reducing the overall problem
complexity. One of the fastest and accurate popular align-
ers, MAFFT (6,7), relies on a fast Fourier transform (FFT)
for the homologous segments detection. The usage of FFT
for alignment can be traced back to the work by Felsenstein
(8) who applied it to obtain ungapped pairwise alignments
of entire sequences in O(L log L) (where L is the average
sequence length). Nonetheless, the method was deemed of
‘limited value’ because of the impossibility of accommodat-
ing indels. In MAFFT ungapped homologous segments are
used to constrain possible DP paths and, thus, exclude areas
from the DP calculation. Gappy regions then link consecu-
tive homologous regions thus yielding the final MSA. The
resulting speed up increases with an increasing number of
detected homologous segments.

Here, we present a novel FFT-inspired approach to iden-
tify homologous segments and apply it in the progressive
DP-PIP framework. Our approach differs from MAFFT
in several aspects: (i) instead of FFT, we use a multiple-
resolution short-time Fourier Transform (STFT), which im-
proves the detection of homologous regions especially for
distantly related sequences; (ii) we define a general approach
to construct logically sound paths connecting homologous
blocks and to resolve overlaps between them; (iii) we com-
pute several critical tuning parameters directly from the in-
put data, instead of relying on hard-coded default values.

In addition, the proposed method is easily parallelized.
Finally, we show that compared to the original DP-PIP al-
gorithm the STFT approach produces very similar align-
ments. The new method is demonstrated on real data.

MATERIALS AND METHODS

Converting amino acid sequences to signals of physicochemi-
cal properties

Substitutions between amino acids with similar physico-
chemical properties are known to be more frequent than
those between chemically distant ones. Replacements by
similar amino acids tend to preserve the structure of pro-
teins and are, therefore, more likely to occur during evolu-
tion. Based on this, MAFFT (6) detects presumed homolo-

gous amino acids between evolutionary related sequences
with a cross-correlation-based analysis of their physico-
chemical properties, namely volume and polarity. The de-
gree of cross-correlation acts as a measure of physicochem-
ical similarity and, thus, serves as proxy for the likelihood
that the sequences might undergo substitutions. Here, in
addition to volume and polarity, we also consider chemi-
cal composition, as suggested in (9). Consequently, in our
method an amino acid sequence of length L is represented
as a 3 × L matrix s, subsequently referred to as signal,

s =
[v

p
c

]
=

[
v1 v2 v3 . . . vL
p1 p2 p3 . . . pL
c1 c2 c3 . . . cL

]
, (1)

where vi, pi and ci, i = 1, . . . , L, denote volume, polarity
and chemical composition, respectively, of the i-th amino
acid in the sequence (9). More generally, to convert an MSA
into a multi-dimensional signal s, we define vi, pi and ci as
the average volume, polarity and chemical composition, re-
spectively, of the amino acids aligned in the i-th column of
the MSA. Since the magnitude of the three physicochemi-
cal properties v, p, c varies significantly, MAFFT standard-
izes the signal assuming a homogeneous distribution of the
20 amino acids. We have refined the method to allow for
non-homogeneous distributions. Therefore, a standardized
volume v̂ is defined by v̂ = (v − v)/σv, where v and �v are
the sample mean and standard deviation over the L volume
components in the data. Analogous definitions hold for p̂
and ĉ. We refer to the standardized signal as ŝ.

Computing cross-correlation of physicochemical properties
signals

Given two MSAs represented by signals ŝ1 and ŝ2, their
cross-correlation returns a discrete function f[k], where k is
the relative positional shift between ŝ1 and ŝ2:

f [k] =
∑

1≤i,i+k≤L

ŝ1,i · ŝ2,i+k . (2)

The product in the sum denotes the scalar product between
the column vectors indexed by i and i + k.

Peaks in the function f[k] identify shifts k for which re-
gions in the two mutually shifted sequences show a high de-
gree of similarity and, therefore, evidence for putative ho-
mology. Note that the signals ŝ1 and ŝ2 can be padded and
therefore do not need to be of equal length (see Appendix
Signal padding).

The cross-correlation operation (Equation 2) can be
rewritten in terms of the Fourier Transform (see Appendix
The Fourier transform). An FFT algorithm (10) reduces
the computational complexity of the cross-correlation from
O(L2) toO(L log L), where L is the average sequence length.
Moreover, the FFT approach further reduces the original
O(L2) complexity required by a classic DP based aligner by
filtering out the non-promising regions in the DP matrix.
This last reduction is a function of the number of homolo-
gous blocks and their sizes (6).
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Figure 1. An hypothetical example of a homology matrix with detected
homology blocks. Shown are five homologous blocks with various forms
of overlap. Each block is defined by the coordinates of the upper-left [uj, 1,
uj, 2] and bottom-right [vj, 1, vj, 2] vertices, e.g. as shown for block 2.

Homologous block localization

As pointed out above, the cross correlation measures the
similarity f[k] between two sequences, as a function of the
shift k of one relative to the other. Values of k for which
f[k] is high, indicate that the shifted sequences contain
overlapping regions with high similarity. However, the ac-
tual locations of the regions on the sequences are not pro-
vided. MAFFT localizes homologous regions by comput-
ing column-wise scores on the shifted sequences. Columns
with a score above a threshold of 0.7 are deemed to be ho-
mologous. Note that the threshold is hard coded.

Instead, we propose to use a multiple-resolution STFT
(11), which applies a series of Fourier Transforms to a mov-
ing windowed signal, thus enabling a precise localization of
putative homologies. Therefore, the STFT provides simulta-
neous information on both the shift k and the location of re-
sembling residue patterns. The STFT analysis is performed
at increasing levels of resolution. The gradual reduction of
the size of the moving window in which the signal is ana-
lyzed yields a progressively more precise localization of the
detected similar blocks, albeit at the greater computational
cost.

The putative homologous regions detected by the STFT
define a set of blocks in the MSA homology matrix, as
shown for example in Figure 1. Such blocks are then se-
lected and linked so as to maximize the coverage of the ho-
mology matrix. The selected blocks are then aligned inde-
pendently and assembled to build the final MSA. Note that
the selection of blocks helps to reduce the number of cells
that have to be computed by the DP procedure. This is par-
ticularly effective for full ML alignment under the explicit
indel model PIP (4), where the homology matrix is 3D.

Figure 2. Graphical representation of a full cross-correlation matrix fw[m,
k] generated using two arbitrary synthetic sequences of 1000 amino acids.
One can identify two distinct shifts k�

1 and k�
2 where the cross-correlation

exceeds the noise threshold th, as explained in the text. The condition is
fulfilled by the sets of window displacements M1 and M2, when k = k�

1,
and by the set M3 when k = k�

2.

In the following sections, we describe in more detail the
STFT-based algorithm for block detection, selection and
linking.

STFT-based algorithm

As mentioned above, MAFFT localizes potential homol-
ogous regions based on column-wise scores. These scores
tend to be high for virtually gap-free columns and, con-
versely, very low for columns with high gap content. This
approach, however, cannot be applied under the PIP model,
where there is no correlation between a column likelihood
and its gap content, for example see Supplementary Figure
D.1.

Instead, in our method regions of high similarity are lo-
calized using a multi-scale STFT analysis (Appendix The
multi-scale STFT). For a given window function � of size
w, the cross-correlation is a 2D matrix fw[m, k]. It is a dis-
crete function of both the shift k and the location m of a
moving window on the shifted sequences (see Figure 2 and
Appendix The multi-scale Short-Time Fourier Transform
STFT). We start with a moving window of large support
size w to detect the shifts k, which predict putative homol-
ogous regions on the shifted sequences. In this first itera-
tion, the boundaries of the homologous regions are iden-
tified with relatively low accuracy (depending on the win-
dow size w), but at a modest computational cost. After the
first coarse estimation, we progressively half both the win-
dow support w and the step size �m. This allows us to de-
termine the edges of the homologous regions with corre-
spondingly higher precision. In principle, the process can
be iterated until w is equal to 1. However, this is not recom-
mended due to an increased false positive rate for shorter
window sizes. Practically, we observed that two to three iter-
ations, corresponding to a window size reduction of a factor
four−eight, are sufficient to obtain a satisfactory resolution
at the boundaries of the homologous patterns.

The step size �m of the window function � must be such
that the windows overlap each other in order to avoid nu-
merical artifacts (12). Note that the choice of the step size
affects the dimensions of the matrix fw[m, k] and therefore
its computational cost. Indeed, the matrix fw has a size of
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Figure 3. Algorithm scheme.

((max(L1, L2) + w)/�m) × (max(L1, L2) + w) , where L1
and L2 are the lengths of the two sequences.

The main steps of the algorithm are sketched in Figure 3
and described below in details. The algorithm takes as input
two sequences (signals) ŝ1 and ŝ2, a window function � with
size w and the step �m.

i. Starting at the lowest resolution or level l0, corre-
sponding to the largest window support size w, e.g. 128
amino acids, we construct the full cross-correlation
matrix fw[m, k], as described in Equation B.2. An ex-
ample cross-correlation matrix is shown in Figure 2.

ii. At level l0 we compute a noise threshold th (the dashed
line in Figure 4). It allows us to distinguish shifts
with no similarity between the sequences from shifts
containing putative homology. The threshold is cal-
culated by recomputing the cross-correlation matrix
fw[m, k] after randomly permuting the residues of one
of the two sequences. This procedure statistically de-
stroys any potential homologous patterns in the se-
quences and allows us to define an intrinsic ‘noise’ level
as the maximum of the cross-correlation coefficients

Figure 4. Boundary analysis at different levels of the multi-scale STFT al-
gorithm. The boundaries of the blocks are analyzed at different scales. At
the next level (at higher resolution) the analysis is performed only in the
neighborhood of the boundary. Top: Slice of the spectrogram fw[m, k] at
k�

1 analyzed with a window of size 64 (l0), 32 (l1) and 16 (l2).

fw[m, k]. This operation is repeated until the noise level
reaches a stationary value. Typically, only a few itera-
tions are sufficient for a good estimation of the noise
threshold th. The noise level is computed only once at
the first resolution level l0 and assumed constant in all
further steps.

iii. We scan the cross-correlation matrix to identify all
shifts k� that exhibit peaks where fw[m, k�] > th. These
peaks are clearly visible in Figure 2. Further, Supple-
mentary Figure B.1 shows how those peaks are refined
at different resolution levels, as described below.

iv. For each shift k�, the condition at point 3 is fulfilled
by one or more window displacements m. The latter
tend to cluster at specific locations in the matrix form-
ing sets Mi with i = 1, . . . , N. Each set Mi corresponds
to a specific pattern in the sequences characterized by
a high correlation coefficient, i.e. a candidate homolo-
gous block. In Figure 2, for example, one can identify
three sets Mi (i = 1, 2, 3) of window displacements cor-
responding to two shifts k�

1 and k�
2. Figure 4 shows the

profiles of the same putative homologous blocks.
v. We increase the resolution level from l0 to l1, by halving

the window size w and the step size �m.
vi. For each k� and for each set Mi, we calculate the corre-

sponding correlation coefficient using a slightly modi-
fied form of Equation (2),

fk� [m] = 1
Aw

∑
j, j+k�∈Mi

ŝ j,1 · ŝ j+k�,2 . (3)

This way, we restrict our analysis only to the regions of
interest (e.g. M1, M2 and M3 in Figure 2), while most
part of the cross-correlation matrix is neglected. In or-
der to guarantee a scale-invariant analysis through the
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iterative process described here, the cross-correlation
function is normalized by the window area Aw =∑

i wi .
vii. The one-dimensional cross-correlation of Equation (3)

allows us to refine the boundaries of the candidate ho-
mologous regions Mi (e.g. Figure 4), so that they fulfil
the condition fk� [m] > th .

viii. The algorithm iterates the procedure from point five
to seven, increasing the resolution level to l2, l3 and
so on. Typically, a resolution l2 is sufficient to achieve
good accuracy in estimating the edges of the individ-
ual homologous blocks. A comparison of three differ-
ent resolution levels is shown in Supplementary Figure
B.1.

Selection, connection and alignment of putative homologous
regions

Once putative homologous regions between two MSAs are
identified, the next task is to assemble an alignment based
on the homologous blocks detected by STFT. To accom-
plish this, the required three steps are as follows: (i) select
an optimal path connecting the homologous blocks (or a
selection of them) in the homology matrix (see Figure 1),
(ii) resolve possible overlaps between the selected blocks
and align each block independently by DP, (iii) identify
‘linking’ blocks connecting the aligned homologous blocks,
align each linking block independently, and obtain the final
alignment by joining the tracebacks of all sub-alignments
for homologous and linking blocks. We now describe in de-
tail the steps outlined above.

Selecting homologous blocks and the optimal path

The optimal connecting path maximizes the total sum of in-
volved homologous residues or, equivalently, maximize the
total area of the selected blocks. This can formulated as a
longest path problem through a weighted Directed Acyclic
Graph (DAG), whereby the putative homologous blocks
represent the nodes of the graph.

Block bj characterized by the coordinates of its upper-left
(u) and bottom-right (v) vertices, {[uj, 1, uj, 2], [vj, 1, vj, 2]} is
compatible with another block bk if (uk, 1 ≥ uj, 1)∧(uk, 2 ≥
uj, 2). The direction associated with an edge reflects the order
in which the residues appear in the sequences to be aligned.
We define the edge weight as the block area of the node to-
ward which it is directed (target). In order to search through
all possible paths, the algorithm adds two extra nodes, a
start and an end, defining the start and end of the optimal
path. The start node is connected to all blocks and all blocks
are connected to the end node. So, the weight of the start
node to a given node is the area of the block it is connected
to. The weight of the connection to the last dummy node
is any number >0. The longest path through such weighted
DAG is equivalent to the shortest path in the same DAG
with negative weights and therefore it can be computed in
linear time by means of the Bellman-Ford-Moore algorithm
(13,14).

Overlap resolution and block alignment

The Bellman-Ford-Moore algorithm returns a list of blocks
that together constitute the optimal path, maximizing
the number of residues considered homologous by cross-
correlation.

Since each block is treated independently by the DP
alignment, the overlaps must be resolved prior to their
alignment. While resolving the overlaps, the structure of the
detected homologous regions should be retained as much
as possible. Therefore, the overlaps are resolved by replac-
ing the overlapping blocks by two re-sized non-overlapping
blocks that retain the largest possible part of the diagonal
elements of the original ones. The algorithm resolves over-
laps by scrolling through the blocks and processing two of
them at a time until all overlaps are removed, leaving no
more residues shared by adjacent blocks.

Each resolved block is aligned as an independent subma-
trix by DP, resulting in a traceback path. Block diagonals
correspond to matches in the DP alignment and represent
therefore the expected traceback paths that we want to pre-
serve as much as possible. To link these independent paths,
we shorten each traceback path from both ends, so that it
starts at the first and ends at the last match state. The aligned
non-overlapping and re-sized homologous blocks are then
connected by linking blocks as described below.

Linking blocks and final alignment

The linking blocks correspond to the gap-rich regions in the
alignment, they join adjacent homologous blocks with vir-
tually no gaps. The endpoint of the first path is the starting
corner of the first linking block, while the starting point of
the second path is the end corner of the previous linking
block, and so on. Each linking block is aligned as an inde-
pendent submatrix by DP, which results in linking the trace-
back paths. Eventually, all the tracebacks are merged to ob-
tain the final alignment. Note that the procedure can easily
be parallelized, as all blocks are independently aligned by
DP. Moreover, only the selected homologous and linking
blocks are aligned, while the rest of the homology matrix is
excluded from the calculations.

RESULTS

To evaluate the performance of the new DP method with the
STFT block detection, we compared it with: (i) our original
DP approach without STFT (4), and (ii) an FT-based ap-
proach in the manner of MAFFT (6).

Alignment with and without STFT

Recall that the STFT approach reduces the input sequences
to their amino acid ‘signal’, in order to speed up the method
by pre-detecting homologous regions. Thus, the expecta-
tion is that this approach results in speed gains but does
not reduce the MSA accuracy. We therefore compared the
inferred MSAs for several real datasets, as listed in Table
1. For all datasets MSAs inferred with and without STFT
were nearly identical. For example, Figure 5 compares the
two inferred MSAs for envelope glycoprotein gp120 from
HIV/SIV. As one can note from the diagonal of the matrix,
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Figure 5. Two MSAs of envelope glycoprotein gp120 from eight human
strains HIV inferred with STFT (top) and without the STFT (left). The
degree of matching between MSAs is represented with color gradient and
bubble size. The two MSAs are very similar, despite the constraints im-
posed by the STFT (region boundaries) and the filtering of not promising
regions. Sum-of-pairs (SP) = 0.998.

Table 1. Speed-up table

Number of DP matrix elements

Dataset DP DP-STFT Speed-up

RV912-B096* 9 016 347 960 2 800 662 444 3.2
RV913-B290* 3 184 395 957 1 869 814 875 1.7
RV913-B079* 896 083 842 177 635 637 5.0
GP120 16 240 871 307 4 568 044 458 3.6
Papillomavirus 116 033 223 45 256 197 2.6

*Datasets from BAliBASE (19).
RV912-B096: ATP-dependent DNA helicase 2 subunit KU70, five strains
from human, arachnida,dictyostelia, liliopsida and oligohymenophorea.
Average sequence length = 669 AA.
RV913-B290: Alpha-methylacyl-CoA racemase, nine strains form from
human, amphibia, aves, actinopterygii and insecta. Average sequence
length = 389 AA.
RV913-B079: Osteopontin protein, six sequences from human and mam-
malian. Average sequence length = 305 AA.
GP120: Envelope glycoprotein gp120 sequences from 23 strains of human
and simian immunodeficiency virus. Average sequence length = 485 AA.
Papillomavirus: Protein E7 from 18 strains of human and mammalian. Av-
erage sequence length = 99 AA. More details in Supplementary Materials.

the two MSAs are almost identical, with only few differ-
ences generally coinciding with the gappy regions.

Table 1 shows the speed-up values of the aligner with and
without STFT. The table reports the total number of entries
to be calculated in the DP matrices in the two problems. The
speed-up is then the ratio between the two numbers.

Comparison between FT and STFT

We carried out two tests to assess whether the FT or STFT
approach is more effective at detecting similar patterns be-
tween two sequences.

Figure 6. (A) Noise sensitivity experiment. The test is built in the following
way: we have synthesized two amino acid sequences with a length of 160
residues. The first sequence contains a residue pattern of length 100, the
second sequence is incrementally corrupted with noise by changing ran-
dom residues at random positions (thereby preventing residues from being
replaced by an equal residue). (B) Pattern length sensitivity test. We have
synthesized two amino acid sequences of increasing length. The sequences
have been constructed to have random residues at the head and tail, while
the middle was fixed to the same pattern in both sequences. The middle
pattern was incrementally extended from a length of 1 to a final length of
100 residues.

In the first test, we evaluated the method’s ability to dis-
tinguish similar regions from regions with an increasing dis-
similarity. In simulation studies, amino-acid substitutions
are often introduced with a standard evolutionary Marko-
vian approach. Typical amino-acid substitution models are
JTT, WAG, LG and the Gonnet matrices. Such empirical
models are fitted on a large number of sequences so that
they capture the physicochemical properties of the amino-
acids. For our evaluations, we used a random sampling pro-
cess, where the substitutions take place without considering
the previous state of the amino acids being replaced. The ap-
proach does not take the physicochemical properties of the
residues into account. As the tested methods consider such
properties, the search for similar patterns is harder than un-
der a standard model. Specifically, we generated data by
starting with two identical sequences, each of 160 residues
and progressively corrupting a 100-residue pattern in one
of the sequences by mutating the residue states uniformly at
random (see Figure 6 A). Noise (point mutations) was intro-
duced increasingly from 1 to 100% in steps of 1%, with three
replicates per number of mutations. In accordance with ter-
minology from signal processing, we refer to the resulting
mismatches between the originally identical sequences as
noise.

Note that the addition of noise at random does not fol-
low any evolutionary model, and the physicochemical char-
acteristics of the residue that is being replaced are not even
taken into consideration. Our approach makes the problem
more complicated and corresponds to the worst situation in
biology where saturation is reached and therefore the evo-
lutionary time reference is lost. In this test we wanted to
focus only on evaluating the two approaches, namely FFT
and STFT, to compare their effectiveness in detecting sim-
ilar patterns. Our tests are meant to be generic, so that the
results apply not only to molecular sequences separated by
finite evolutionary distances, but also to any kind of generic
signals. As such, our approach is also applicable in other
contexts.
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Figure 7. Noise sensitivity test: This graph shows the SNR measured be-
tween the cross correlations obtained with FT and the one obtained with
STFT. We started with two sequences with a length of 100 amino acids
each. Then, one of the two sequences was incrementally corrupted by
noise by randomly changing residues. Each experiment was repeated sev-
eral times. The figure shows that STFT has a better SNR than FT and,
therefore, is more effective in detecting similar but not necessarily identi-
cal patterns.

Data were generated with an increasing levels of noise,
measured as a percentage of substitutions. For each new
synthesized pair of sequences we have computed the cross-
correlation coefficients both with the FT and the STFT
approaches. We have evaluated the two MSA methods by
estimating the signal-to-noise ratio (SNR), calculated as
the cross-correlation value of a peak, at the known posi-
tional shift, divided by the inferred noise threshold th de-
fined above. The SNR gives an indication of the ability to
distinguish peaks due to highly correlated regions rather
than from the noisy background. Figure 7 shows SNR val-
ues obtained with the two methods as a function of the noise
content. The STFT approach is clearly more effective in
finding noisy patterns compared to FT. Indeed, throughout
the simulated noise range the advantage margin remained
visibly large, even at the highest noise levels.

In the second test, we have quantified the ability of the
method to detect short identical patterns. To this end, we
synthesized two sequences of increasing length from 61 to
160 residues, which contained identical patterns of increas-
ing length from 1 to 100 residues respectively (see Fig-
ure 6B). Once again, for each pattern length we have com-
puted the cross-correlation coefficients both with the FT
and the STFT approaches. Figure 8 shows SNR values ob-
tained with the two methods as a function of the pattern
length. We observe that the STFT approach is always more
effective in finding short patterns compared to FT. The ad-
vantage margin over FT increases dramatically for longer
patterns. At the same time, STFT is also better than FT at
detecting very short patterns. This can be explained by the
use of the window function that restricts the effectiveness of

Figure 8. This graph compares the SNR obtained using FT and STFT.
The values were obtained by increasing the length of an identical pattern
present in both sequences. For each increment the cross-correlation and
the SNR were calculated. Each experiment was repeated several times. The
graph shows that STFT is more effective than FT in detecting patterns
(higher SNR), also in presence of short relative patterns.

FT for a shorter segment so that the cross-correlation coef-
ficients of similar patterns become more important.

Therefore, in both tests STFT outperformed FT with a
large margin, thus supporting the application of our novel
approach to homology detection.

DISCUSSION AND CONCLUSION

In this article, we described a new approach to accelerate
the phylogeny-aware MSA inference based on the explicit
model of indel evolution PIP. While we applied our new ap-
proach under PIP, its elements can be used more generally
in a context of DP-based alignment, such as in the popu-
lar programs MAFFT (6) or PRANK (15). Although our
method is inspired by MAFFT, we have introduced a num-
ber of novelties.

First, similar to MAFFT, input amino acids sequences
are converted into signals representing their physicochem-
ical properties. However, in addition to volume and polar-
ity used in MAFFT, we included the chemical composition
(described by Grantham’s distance based metric), and we
also standardized all the physicochemical properties, in or-
der to allow for non-homogeneous distribution of amino
acids. Note that there are several ways to define chemical
composition and using a different definition may have an
effect on the statistical properties of homologous blocks de-
tection, with some definitions performing better than oth-
ers.

Next, in contrast to MAFFT’s FFT approach, we pre-
detect potential homologous blocks by multi-scale STFT.
The advantage is that STFT simultaneously provides infor-
mation on both the positional lags and the relative posi-
tions of homologous regions. These are computed simul-
taneously and in a unique framework. There is therefore
no need to define two different thresholds in two different
and incompatible measuring systems. However, this advan-
tage comes at a computational cost, which can be quanti-
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fied for a naive implementation of STFT by a complexity
of O

(
L2 log L

)
, where O (log L) is due to halving the win-

dow until size 1. Since we use only two or three iterations,
the complexity in our case is O

(
L2

)
. Further, various al-

gorithms have been proposed to reduce the complexity of
STFT. For instance, for a sliding rectangular window, one
can recycle most of the previously computed correlation co-
efficients (16–18). In addition, the sliding window can be
moved in discrete steps larger than one while retaining most
of the information carried by the signal. Moreover, further
reductions of the computational effort can be achieved if
each step of the analysis is performed only on the regions
emerged at the previous coarser iteration.

Another advantage of our STFT approach is that several
critical tuning parameters are computed directly from the
input sequences, instead of relying on general purpose hard-
coded values. For example, in our method the cardinality
of the set of candidate positional lags for homologous re-
gions is not fixed a priori but is constructed using a data-
dependent and statistically robust noise threshold. In the
same manner, we do not impose a fixed match-threshold to
label homologous regions (set to 0.7 by MAFFT (6)), nor
do we define minimum and maximum homologous block
sizes, set by MAFFT to 30 and 150, respectively.

Our experiments suggest that the use of multiple-
resolution STFT improves the detection of homologous re-
gions especially for divergent sequences. Also, the use of a
window function makes the STFT more effective in detect-
ing short patterns compared to the classical FFT. Further-
more, our analyses of real data suggest that the new STFT
approach does not distort the alignment accuracy, allowing
to infer almost identical alignments, compared to the slower
original approach.

Note that thanks to the detection of ‘gappy’ and ‘non-
gappy’ blocks there is a possibility to align different regions
with different model parameters, as they might evolve un-
der different evolutionary conditions. Moreover, by label-
ing gappy and non-gappy blocks, in the optimization phase
(e.g. MSA optimization) it is possible to focus the effort on
the regions of greater variability (gappy) while keeping the
rest constant. This enables an additional saving of compu-
tational time.

The homologous regions pre-detected by STFT define
candidate homologous blocks within the three 3D DP ma-
trices used under the PIP model. An optimal selection of
blocks is connected through intermediate ‘linking blocks’.
The homologous and linking blocks are aligned under PIP
as independent DP sub-matrices and their traceback paths
merged to yield the final alignment. Thereby, we define a
new sophisticated and general approach to generate logi-
cally sound paths to connect an optimal selection of homol-
ogous blocks and to resolve overlaps between them. This
constitutes another novel and independent contribution of
our work, which is applicable to other DP alignment meth-
ods.

Finally, note that due to the independence of the sub-
blocks in the DP matrices, the new algorithm can largely
profit from parallel computing.

It is worth mentioning that our proposed algorithm
is also applicable to nucleotide sequences. We follow
MAFFT’s approach. Specifically, the calculations are based

on the nucleotide frequencies within the sequences. The in-
put data is converted to a 5 × L matrix, having one di-
mension for each possible state (4 nt and one gap state).
Considering that the alphabet is smaller and not exploiting
Grantham’s principle of substitution between residues with
similar characteristics, the approach is not expected to be as
accurate. In this case the method responds very well to sim-
ilar patterns but cannot rely on transition patterns between
nucleotides.

Today’s state of the art alignment methods rely on gap
costs. It is not clear how to define cost values suitable for
specific datasets. Users often experiment with their data by
trial and error (i.e. examining by eye the alternative MSAs
produced with different gap costs), or simply resort to soft-
ware defaults, which are typically defined based on empir-
ical examination of numerous datasets. While default gap
costs might work well on average, they are not directly in-
terpretable, and there is no objective method to adapt gap
costs to the data. Gap costs are not informative about the in-
del generating process over evolutionary time, but only de-
scribe the distribution of gap patterns in a given MSA. The
progressive alignment methods with gap penalty schemes
very often lead to an overestimation of deletions, a distor-
tion called ‘over-alignment’.

To avoid the over-alignment bias, PRANK keeps track
of indel events on the phylogeny and adjusts gap scores in
an ad-hoc manner. The lack of an explicit evolutionary in-
del model however, imposes significant limitations on sta-
tistical inferences. Overcoming this, PIP-based evolutionary
alignment has no gap costs, but instead uses indel rates in a
sound statistical context. These indel rates are not only in-
terpretable biologically, but also can be adapted to the spe-
cific problem (i.e. optimized as model parameters). Previ-
ously, we have shown that PIP-based DP alignment avoids
over-alignment, producing MSAs of similar lengths com-
pared to PRANK (4). Via indel rate settings, the PIP-based
aligner allows to infer gap patterns similar to PRANK’s.
These inferred gap patterns are also phylogenetically mean-
ingful as supported by empirical studies (e.g. 20). How-
ever, aligning sequences with PIP is computationally ex-
pensive. To speed up this process we have introduced the
STFT heuristics, inspired by the FFT approach introduced
in MAFFT. This further enhances the MAFFT algorithm
while remaining generic, so it can be combined with other
DP based aligners.
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