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The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan
Africa. Most of the mating in these species occurs in swarms composed almost entirely of males.
Intermittent, organized patterns in such swarms have been observed, but a detailed description of
male-male interactions has not previously been available. We identify frequent, time-varying interactions
characterized by periods of parallel flight in data from 8 swarms of Anopheles gambiae and 3 swarms of
Anopheles coluzzii filmed in 2010 and 2011 in the village of Donéguébogou, Mali. We use the cross
correlation of flight direction to quantify these interactions and to induce interaction graphs, which show
that males form synchronized subgroups whose size and membership change rapidly. A swarming model
with damped springs between each male and the swarm centroid shows good agreement with the correlation
data, provided that local interactions represented by damping of relative velocity between males are
included.

C
ollective movement of animals exemplified by birds1–3, fish4–6, and insects7–9 can be broadly divided into
polarized motion and unpolarized motion. For example, members of a pigeon flock3 fly in parallel,
whereas swarming midges7,8,10 fly in seemingly random directions while aggregating around a single point.

The swarming behavior of malarial mosquitoes in the Anopheles gambiae species complex would appear to be
unpolarized, but it contains unexpectedly frequent occurrences of intermittent, parallel flight. Analysis of motion
coordination between males provides insight into the cause and function of swarming behavior, furthering our
understanding of mating in anophelines.

Crepuscular swarms of An. gambiae and Anopheles coluzzii, formerly the M and S ‘‘molecular forms’’11, can be
described as three-dimensional leks with characteristics of scramble competition by numerous males for a few
females12. The behavioral and evolutionary basis of mating swarms in this species has only recently been
examined in detail and observations to date suggest that it does not fall neatly into a single category12–14. One
important area of investigation in the mating system of these malaria vectors is the nature and extent of male-male
interaction in the swarm. Male-male interactions are representated in theories of lek-formation, where they range
from aggression or arena defense15 to collectively increased signaling to females16 and association with successful
males17.

The interactions between An. gambiae males in mating swarms have not been analyzed previously. Butail et al.
obtained three-dimensional positions and velocities of swarming mosquitoes from stereoscopic video sequences
and described the oscillatory motion of male mosquitoes in the swarm18 using the dynamic model of Okubo19.
Evidence for interactions in mosquito swarms18 was suggested by analyzing the velocity disagreement between
neighbors and for midge swarms8 using speed distributions and the statistics of spatial arrangement. For midge
swarms7, Attanasi et al. showed the existence of metric-based interaction and estimated the effective interaction
range using a correlation function similar to that used here. Inspired by studies of neural networks that show
incidence of correlated signals20, we analyze the interaction networks in a mosquito swarm using the unit-velocity
cross correlation to classify mosquito pairs as interacting or non-interacting.

Cross correlation measures the similarity between two signals taking time delay or lag into account2,3,7. The
cross-correlation value of two discrete, scalar signals f(t) and g(t) with time lag m is

rfg mð Þ~
X?

t~{?
f tzmð Þg tð Þ. Maximum correlation at a positive lag m indicates that f is lagging behind g.

We use as signals the three-dimensional velocity V of each mosquito obtained from stereo-video tracking in the
field (see Methods). Let T be an even integer that specifies the time window in which we calculate the correlation
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value and ? denote the vector inner product. The velocity cross cor-
relation of mosquito i and j at time t and lag m is

~Rij m,tð Þ~ 1
Tz1

XT
2

n~{T
2

V i tznzmð Þ:V j tznð Þ: ð1Þ

When T 5 0, ~Rij m,tð Þ~V i tzmð Þ:V j tð Þ represents an instantaneous
measure of correlation; when T $ 2, ~Rij m,tð Þ is averaged over T 1 1
video frames. Since we wish to know at each instant whether a given
pair of mosquitoes is interacting, the instantaneous correlation T 5 0
is problematic because it fails to reject incidental velocity alignment.
Further details for choosing T are described in Methods.

The cross correlation (1) is positive when the angular disagree-
ment in the direction of motion is less than p/2 radians; otherwise it is
negative. The value (1) is also affected by flight speed in the following
sense: the (absolute value of) ~Rij is large when either insect is flying at
high speed, even if the direction of motion is not well aligned. In
order to focus on the directional alignment, we consider the unit
velocity v 5 V/jjVjj of each mosquito and define the unit-velocity
cross correlation as

~rij m,tð Þ~ 1
Tz1

XT
2

n~{T
2

v i tznzmð Þ:v j tznð Þ: ð2Þ

The unit-velocity cross correlation (2) takes values in the range [21,
1]; the value 11 (resp. 21) occurs when the direction of motion is
completely parallel (resp. anti-parallel) throughout the time interval
of length T. Figure 1 illustrates the calculation of the unit-velocity
cross correlation. Although the unit-velocity cross correlation
ignores speed (i.e., velocity magnitude), its value is easier to interpret
than the velocity cross correlation because it represents the degree of
alignment in the direction of motion.

Results
Induced interaction graph. The unit-velocity cross correlation
measures the degree of interaction (if any) between two
mosquitoes according to the alignment in their direction of
motion. The choice of T 5 10 is based on the average frequency
(approximately 3 Hz) with which mosquitoes change their
direction of motion (see Methods). The quantities ~rji {m,tð Þ and
~rij m,tð Þ are averaged to obtain the correlation value ~Cij m,tð Þ. Using
the lag value m* that maximizes ~Cij m,tð Þ, we obtain the correlation
value Cij tð Þ~~Cij m�,tð Þ for every pair of mosquitoes in a swarm
sequence (see Methods). Figure 2a shows the probability density
for the correlation values taken from 8 swarms of An. gambiae
(approximately 450,000 data points). These data are compared to
simulated data from a random-walk model, simulated data from a
swarming model without interaction, and field data from 8 male-

Figure 1 | Calculation of unit-velocity cross correlation. (a), Three hypothetical flight trajectories and direction of motion projected on a plane (actual

calculation is performed with three-dimensional velocities). Mosquito k is included to show the risk of using T50; i.e., vi(t12) and vk(t) are well aligned,

which leads to a high correlation value ~rik 2,tð Þ<1, although there is no motion coordination between i and k. (b), Calculation of cross correlation (2)

between i and j with T52, using three data points from each trajectory. Cross correlation between vi and vj at time t is shown for lags m 5 21, 0, and 11.

(c), Determining the optimal lag m* and cross correlation Cij(t) by choosing the peak from ~Cij m,tð Þ. A positive lag indicates that i is following j.
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Figure 2 | Frequency distribution of correlation values and optimal lags for real and simulated swarms. (a), Unit-velocity cross correlation probabilities

calculated for 8 real swarms and 8 coupling flights, normalized to have unit integral. The vertical dashed line passing through the orange dot indicates the

threshold for interaction. The area under each curve to the right of the threshold shows the proportion of the pairs that are classified as interacting. (b),

Probability density of optimal lags calculated for interacting pairs; by symmetry, the absolute value is used.
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female coupling events (about 200 data points). Construction of the
simulated swarm is described in Methods.

Comparing the simulated swarm and the real swarm to the simu-
lated random walk, we see that the first two have their peak-prob-
ability correlation values near zero, whereas the latter has an almost
uniform distribution in the interval [21, 1]. Although the simulated
swarm without interaction captures some of the features of the real
swarm, the real swarm exhibits an elevated probability of high cor-
relation values as compared to the simulated swarm. To detect inter-
actions, we define a threshold on the correlation value inspired by
Bayes’ decision rule21, using the intersection at 0.75 of the green curve
(simulated swarm without interaction) and the red curve (male-
female couples). This choice ensures minimum error rate in clas-
sification, assuming that it is equally probable for a pair of mosqui-
toes to be interacting or not21. We label pairs that have a correlation
value greater than the threshold as interacting; otherwise we label
them as non-interacting.

For an interacting pair, a nonzero lag value m* that maximizes the
correlation indicates an instantaneous following behavior3. A pos-
itive lag for Cij (or a negative lag for Cji) indicates that mosquito i is
following the motion of mosquito j. (Note that this does not neces-
sarily imply i is chasing j; simply that i is matching its direction of
motion to that of j.) Figure 2b shows the probability density of the
optimal lags calculated for pairs defined as interacting. The male-
female coupling flight has high probability at zero lag, indicating that
their interactions tend to be bidirectional more often than male-male
interactions. The simulated random walk has a similar distribution,
but this is caused by the absence of critical points in ~Cij (see
Methods). The interaction lag analysis, combined with the cross-
correlation threshold, induces a directed graph3,20 that describes
the instantaneous interaction topology in the swarm. Each node

represents a mosquito and the edges are directed towards the fol-
lowers. Figure 3a depicts the instantaneous interaction graph for a
real swarm. Figure 3b depicts the interval graph23. Note that,
although males in the simulated swarm are not directly interacting,
pairs with correlation value above the threshold are misclassified as
interacting; the area under the green curve above the threshold,
which corresponds to the misclassified data, accounts for less than
2% of the area under the curve.

Features of pairwise interaction network. Here we analyze the
characteristics of the interactions that occur between pairs of males
in the An. gambiae swarms, as well as the subgroups that are defined
by those pairwise interactions. Figure 4a plots the probability density
of the distance between all pairs of males. The curve for interacting
pairs lies to the left of the curve for non-interacting pairs, which
indicates that an interacting pair is likely to fly closer together than
a non-interacting pair. Figure 4b shows the neighbors with which
each male is interacting, sorted by their relative proximity. When a
male is interacting with more than one other male at the same time,
the plot shows the one with the greatest correlation value. The
probability of interaction decreases as the neighbor number
increases. Figure 4c shows the duration of interaction (i.e., the
period of time that the correlation value stays above the threshold).
The resolution of this analysis is equal to the video frame rate
(0.04 s).

Consider a subgroup of a swarm to be defined as the weakly con-
nected component of an interaction graph induced as in the preced-
ing section. A weakly connected component is a set V of nodes that
are connected to each other by edges; treating the edges as undir-
ected, each node in V is reachable from any other node in V22. For
example, if i is following j and j is following k, then {i, j, k} are in the

Figure 3 | Visualization of interaction network. (a), Visualization of interaction graph generated by software ‘‘SoNIA’’ [McFarland, D., BenderedeMoll,

S., SoNIA: Social Network Image Animator. Available from http://www.stanford.edu/group/sonia]. The figure shows an instantaneous interaction

graph. Each node represents a mosquito and each edge directed towards a follower represents an interaction. The size of a node is proportional to the

number of incident edges originating from it. Note that the distance in this figure does not represent Euclidean distance. Nodes without edges are located

randomly. The animation of the time-varying interaction graph can be found at the following link: http://youtu.be/XgfShZpwYoY. (b), Interval graph.

Directed edges are shown at the starting and the ending point of each pairwise interaction. The thick line indicates that the mosquito is in an interacting

state.
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Figure 4 | Features of interaction and network. (a), Probability density of distance between two males, for interacting and non-interacting pairs. (b),

Probability of interacting with kth-neighbor. (c), Duration of interaction, i.e., the period of time that the correlation value stays above the threshold. (d),

Probability of the size of subgroup in which a male may be included at each moment for subgroup sizes greater than one. The result is compared to a

reference null model with randomized edges23. (e), Number of subgroups versus swarm size with linear regression passing through the origin.
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same subgroup. If i and j are both following k, they are also in the
same subgroup. Figure 4d shows the instantaneous probability of the
subgroup size in which a male may be included—omitting subgroup
size 1, which corresponds to no interaction. In order to find the type
of subgraph that is overrepresented in the mosquito swarm, called a
motif23, compare the result to a randomized edges model; in this
model the connected pairs are randomly shuffled while the number
of edges at each time remains the same as in the real data. Figure 4e
shows the number of subgroups versus swarm size in 8 swarm
sequences (regression slope 5 0.427, adjusted R2 5 0.612).

Simulation model with interaction. The dynamic swarming
model18,19 is based on a damped, spring-like force between each
insect and the swarm centroid (see Methods). Although such a
central-force model reproduces the cohesive motion of males in
the swarm, it does not match the unit-velocity cross correlation
probability density of the real swarms (see Fig. 2a). In the real
swarms, we observed a velocity-matching behavior of the males.
Velocity matching can be achieved if the interacting males reduce
their relative velocity. In order to model this behavior, we used a
damper as the interacting force. In the augmented model, males in
the interacting state are subject to an additional force modeled as a
velocity damper (see Methods). The damper aligns the velocity of
interacting males; only the follower feels the interaction force. For
males in the interacting state, the random force is decreased
proportionally to the gain l g (0, 1]. The damper is eliminated
when a male is in the non-interacting state. Figure 5a illustrates
the augmented swarming model. The interaction topology is
determined as follows: males interact if the disagreement in the
direction of their motion is less than the threshold 0.75; one is
picked randomly to be the follower for the duration of interaction.
Figure 5b shows the unit-velocity cross correlation of the simulation
model with interaction, which has elevated probability of high values
as compared to the model without velocity damping (see Methods for
model parameters). Nonparametric Kruskal-Wallis comparison of
the mean squared error E between the probability distributions of
real and simulated data for the 8 swarms reveal a significant
reduction in error (p 5 0.011, x2 5 6.35) from using the model
without interaction (E 5 0.072 6 0.06) to the new model with
interaction (E 5 0.024 6 0.02).

Differences between species. Along with data on 8 swarms of An.
gambiae, we have sequences of positions from 3 swarms of An.
coluzzii, formerly known as the Anopheles gambiae M form11. We
performed the same unit-velocity cross correlation analysis on the
flight data from An. coluzzii, and compared the results with those
from An. gambiae. In order to test whether the difference in the
species affects the degree of male-male interactions, we used a
linear regression model with the proportion of time each male
spends interacting with other males as the response variable; the
species and the mean swarm size were fixed effects. Data were
averaged over entire swarms. Table 1 indicates a significant
positive relationship between swarm size and the proportion of
time individuals spent interacting but no significant differences
between the species. An interaction term for the fixed effects was
included in a separate model but found to be not statistically
significant (results not shown).

Discussion
The results presented here strongly support the hypothesis that
there is significant male-male interaction in mating swarms of An.
gambiae and An. coluzzii and that these interactions go beyond
simple collision avoidance. Indeed, there is regular occurrence of
parallel flight between pairs and within subgroups of swarming
males. The presence of clusters of coordinated individuals has
been found in midge swarms7. We have described a similar clus-
tering occurring in anopheline swarms, and further studied the
directed interaction to describe the time-varying interaction net-
work. Our observation of parallel flights and the basis and func-
tion of male-male interactions have important implications on the
origins of swarming behavior and for mating in An. gambiae and
An. coluzzii.

Observed parallel flight behavior may result from velocity-match-
ing behavior by each male. It is possible that males would perform
velocity-matching to any nearby flying insect in a swarm to allow
mate recognition via wingbeat frequency matching24 or potentially
volatile pheromone communication, though as yet there is no evid-
ence of the latter25. In mating swarms, behavioral sequences leading
to insemination may be initiated by a couple matching their
velocities.

Figure 5 | Augmented swarming model with interaction. (a), Illustration of the augmented swarming model with five males. All five are connected to the

swarm centroid by a damped spring. At the instant shown, male i is in the interacting state and is subject to the (uni-directional) force from the damper

connected to j; the random force is weakened proportionally. Male j does not feel this damper force. (b), Model fit to swarming data from two real swarms

of An. gambiae. The simulated swarm with interaction (red) fits the real data better than the original swarming model without interaction (green).
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A second possibility is that the observed interactions represent a
means of obtaining information on what may be occurring in a part
of the swarm outside an individual’s perceptive range. For example, if
a female enters the swarm at a point distant from a given male, but
other males are responding to her by altering their flight patterns,
then information may be transmitted from male to male by velocity
matching. Such a scenario may be amenable to further analysis via
information theory26; interestingly, males nearest to the female
should be disadvantaged by communicating that fact, so data trans-
mission in the context of the swarm may be viewed as detrimental for
the transmitter but beneficial for the receiver.

A third interpretation of the interactions in the swarm is that
males are competing for space in the lek, so that parallel flight is a
form of ritualized aggression27 between males, such as is observed in
the dragonfly Plathemis lydia28. Early theories of lek formation
included elements of male-male competition (see review in29).
However, this hypothesis is opposed by limits to the visual acuity
of An. gambiae and An. coluzzii and by the absence of individual
territories even within the denser swarm centroid, a location sug-
gested to be advantageous for males seeking females18,30.

An important contribution of the current work is the improved
model of male An. gambiae swarming over the previous approach18.
The model presented here (see equations (5), (6), and (7) in
Methods) includes a term representing male-male interaction: velo-
city correlation between males is initiated randomly, but once it
occurs individuals attempt to maintain a high correlation.
Incorporation of male-male interactions in an improved mathemat-
ical characterization of the swarms significantly improves the stat-
istical fit of the model to real swarm data. Therefore the new model
provides a better null hypothesis against which to test deviations
from normal swarming behavior.

Male-male interactions were not found to vary significantly
between species. It has been generally observed that An. coluzzii
males swarm over markers of contrast on the ground, such as a well
or a pile of refuse, whereas An. gambiae males swarm over bare
ground13,30,31. In this respect, the degree of male-male interaction
might be expected to vary between these species31, since the external
marker may serve as an attractor. As a result, one might predict that a
higher degree of male-male interaction is required to maintain
swarm cohesion for An. gambiae, which do not swarm over a marker
in the study area, compared with An. coluzzii, which do. While our
analysis does not support this prediction, it is possible that a better
test would require a larger dataset on An. coluzzii, similar to the one
we collected for An. gambiae.

Genetic control of the degree of velocity matching may be through
one or a few linked loci and thus be a trait that can drive the spe-
ciation in the An. gambiae complex32, in this case between An. gam-
biae and An. coluzzii. The genetic basis of male-male interaction will
also be critical for any release-based program of malaria vector con-
trol such as one based on Sterile Insect Technique33 or Genetic
Modification34. Such releases will almost certainly involve colony-
reared males that will have to successfully inseminate wild females,
probably by mating with them in swarms. Therefore understanding
and regulating the genetic basis of swarming behavior for these pur-

poses may be critical to these programs. Future experiments could
include correlations between swarming behaviors and genetics to
elucidate the link between the two.

Methods
Obtaining flight data. Mosquito swarms were filmed between 17 August, 2010 and 2
September, 2010 and again between 6 October, 2011 and 9 October, 2011 in the village
of Donéguébogou, Mali, Africa. Donéguébogou has been the site of previous An.
gambiae related research including studies on mating swarms30. The filming was
performed at approximately 7 pm local time. Two identical stereo camera systems,
each consisting of a pair of parallel-mounted Hitachi KP-F120CL cameras (Hitachi-
Kokusai, Tokyo, Japan) with HF12.5SA-1 Fujinon lenses (Fujifilm, Valhalla, NY), an
Imperx FrameLink Express frame grabber (Imperx Inc., Boca Raton, FL USA), and a
2.8 GHz quad core laptop running STREAMPIX v. 5 software (Norpix Inc, Quebec,
Canada) were used to film 25 different swarms during this period. During filming,
weather data such as wind velocity and temperature were recorded at 0.1 Hz with a
Kestrel 4500 portable weather station (Nielsen-Kellerman, Boothwyn, PA, USA). A
sample of males was captured from each swarm with a hand net for later PCR-based
species identification. To transform the resulting mosquito trajectories into a world
reference frame, the inclination, magnetic direction, and height of the camera system
were recorded prior to filming.

Time-synchronized video data were post-processed using a multi-target tracking
algorithm35. The tracking algorithm used a nonlinear estimation technique called
particle filtering36 along with multi-hypothesis assignment37 to automatically recon-
struct three-dimensional trajectory segments corresponding to individual mosquito
flight patterns in the stereo images. Image sections were adaptively thresholded to
isolate faded mosquito streaks and nonlinear optimization fitting of foreground blobs
was used to resolve occlusions. Trajectory segments produced by the automatic
tracking algorithm were verified and spliced together into full-length tracks using a
custom graphical user interface. A total of 11 mosquito swarming events from various
locations in Donéguébogou were reconstructed using this method.

Correlation value. The correlation value Cij(t) between mosquito i and mosquito j at
time t with a time window T is calculated using (2) as follows:

Cij tð Þ ¼D ~Cij m�,t; Tð Þ~ 1
2

~rij m�,t; Tð Þz~rji {m�,t; Tð Þ
� �

, ð3Þ

where m�~ arg max
m[ {mmax ,mmaxf g

~Cij m,t; Tð Þ: ð4Þ

Taking the mean of ~rij and ~rji ensures the relation between i and j is consistent, i.e., i
and j do not lag behind each other at the same time. The parameter T affects the
correlation value in various ways. First, it specifies the number of the data points used
to find the similarity between the direction of motion of two mosquitoes. Therefore, a
smaller value of T leads to a higher risk of detecting accidental coordination. Second,
since we average the value over T 1 1 frames, the true correlation may be suppressed if
we choose T to be too large. Considering these two points, we base the choice of T on
the frequency of the flight turns that the males make. Figure 6a shows the cumulative
probability of the curvature k in a male’s flight trajectory. Using this figure, we set a
threshold of 0.1 (cm21) on the value of the curvature to define tight turns. Figure 6b
shows that the interval between tight turns so defined has its peak probability at 8
frames (0.32 s). We choose T 5 10 frames (0.40 s) so that these turning flights are
typically included in every sliding time window.

We set two restrictions on the optimal lag m* when we search for the maximum in
(4). First, to avoid erroneous correlation, we set an upper and a lower bound on m*
given by mmax 5 4 frames (0.16 s), based on the frequency of the tight turns as
described above. Second, since the optimal m* in terms of matching two signals

Table 1 | Linear regression model. The effect of the species and
swarm size on the proportion of time each male spends interacting
with another male. Standard error (SE), t-statistics (t), and p-values
(p) are shown

source value SE t p

Intercept 0.239 0.145 1.643 0.139
Species 20.106 0.108 20.976 0.358
Mean Swarm Size 0.025 0.009 2.772 0.024

Residual SE 5 0.155 (8df); adjusted R250.469; model F2,8 5 5.418; p 5 0.033
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should be a critical point in the curve of ~Cij m,tð Þ as shown in Figure 1c, we restrict the
candidates for m* to those m that achieve local maxima. When there are multiple
local maxima, we use m* with the largest ~Cij m,tð Þ among those candidates; when
there is no critical point within the range [2mmax, mmax], then we use the value
m* 5 0.

Simulated swarm model. Let €Ri=O be the acceleration of mosquito i with respect to an
inertial point O and m denote the mass. Following Okubo19, we model the force on

mosquito i as a linear combination of the external force F
extð Þ

i , the drag force F
dragð Þ

i ,

and the interaction force F
intð Þ

i , i.e.,

m€Ri=O~F
extð Þ

i zF
dragð Þ

i zF
intð Þ

i : ð5Þ

Velocity fluctuation is modeled as a damped oscillator18; the frequency v0 and
damping ratio j are obtained from the velocity autocorrelation. Based on this
previous analysis, we model the first two components in (5) as resulting from a
damped spring that connects the mosquito to the centroid of the swarm. Let ri 5 Ri/O/
jjRi/Ojj. Assuming the centroid is fixed in an inertial frame (only approximately true
in real data), then we can without loss of generality attach the spring to the point O,
i.e.,

F
extð Þ

i zF
dragð Þ

i ~{diag kf gRi=O{diag bf g _Ri=O
:r i

� �
r i: ð6Þ

The parameters k and b denote the three-dimensional spring and damping constants,
respectively; since they are vector quantities, the spring has different constants in each
direction (e.g., down-wind, cross-wind, and vertical)18. Since we do not know the
internal interaction force, we assign white noise as the third component, i.e., F(int) 5

W, where the random process W(t) has the autocorrelation RW(t) 5 Ad(t). The
intensity A of the white noise was determined previously18. We discretize W(t) in the
numerical integration with the integration time step Dt 5 0.04 (s), equal to the video
frame rate. Note that fitting the model to each of the 8 real swarms yields a unique set
of parameters. Table 2 shows the mean and standard deviation of the parameter
values from all 8 An. gambiae swarm sequences.

Simulated swarm model with interaction. In order to model coordinated behavior
using velocity alignment, we introduce a damper between interacting males. The
damper is compatible with a dynamical modeling viewpoint, in contrast to other self-
propelled particle models in which agents have constant speed. Let S denote the set of
mosquitoes interacting with mosquito i and W denote white noise with zero mean
and intensity A. Let Rj/i 5 Rj 2 Ri, and rj/i 5 Rj/i/jjRj/ijj. The interaction force model is

F
intð Þ

i ~l
X
j[S

bint _Rj=i
:r j=i

� �
r j=iz 1{lð ÞW : ð7Þ

The gain l g (0, 1] creates a convex combination of the damping force and the
random force when mosquito i is in the interacting state; l 5 0 eliminates the
damping term when it is in the non-interacting state. Whenever two particles are
connected by a velocity damper, it decreases the relative velocity between them and
increases the velocity alignment.

We created the following model for determining the interaction topology as
described in Results: a pair of males interact if the agreement in their direction of
motion is greater than the threshold 0.75; one of the two is picked randomly to be the
follower for the duration of interaction. The remaining model parameters are the
damping constant bint and the gain l. We used a probabilistic search method called
simulated annealing38 to obtain the values of bint and l that best fit the real swarm in
terms of the correlation probabilities. Table 2 shows the parameters that are used in
the simulation model.
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