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ABSTRACT We analyzed five metagenome-assembled genomes (MAGs) belonging to
the rare, yet-uncultured phylum CSSED10-310 recovered from the anoxic sediments of
Zodletone Spring (Oklahoma). Our analysis suggests their potential involvement in sulfite
respiration.

Zodletone Spring is a surficial, anoxic, sulfide- and sulfur-rich spring in southwestern
Oklahoma. Prior studies have documented the phylogenetic diversity in the spring

(1–5). Such studies have demonstrated that the spring harbors a plethora of novel and
rare taxa. Here, we report on the assembly and analysis of five genomes belonging
to the rare, yet-uncultured phylum CSSED10-310. Currently (April 2021), this phylum is
represented in the Genome Taxonomy Database (GTDB; release 95) by a single genome
(GCA_003558985.1) binned from sediments of a hypersaline soda lake (6). The phylum
appears to be a sister phylum to the Acidobacteriota.

Samples from the anoxic, sulfide-saturated source sediments were obtained from
Zodletone Spring in September 2017. Ten samples were collected from 5 cm deep into
the anoxic sediments by completely filling sterile 50-ml polypropylene plastic tubes.
The tubes were kept on ice until they were brought back to the lab (;2-h drive), where
they were immediately processed. DNA extraction was conducted on 0.5 g sediment
from each of the 10 replicate samples using the DNeasy PowerSoil kit (Qiagen, Valencia, CA,
USA) according to manufacturer’s protocols. All DNA extractions were pooled and used for
the preparation of sequencing libraries using the Nextera XT DNA library prep kit (Illumina,
San Diego, CA, USA) as per the manufacturer’s instructions. Sequencing was conducted
using the Illumina HiSeq 2500 platform using the services of Novogene (Beijing, China), gen-
erating 281 Gbp of 150-bp paired-end raw sequence output. FastQC v0.11.5 (http://www
.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess the quality of the reads,
followed by trimming using Trimmomatic v0.38 (7). High-quality reads were assembled into
contigs using MEGAHIT v1.1.3 (8). MetaBAT 2 v1.7 (9) and MaxBin 2 v2.2.4 (10) were used to
bin the contigs into draft genomes, and DasTool v1.1.1-0 (11) was used to select the highest-
quality bins. Genome completeness, strain heterogeneity, and contamination were estimated
using CheckM v1.1.3 (12). Default parameters were used except where otherwise noted.
GhostKOALA (13) was used for functional annotation by assigning protein-coding genes to
KEGG orthologies (KOs). KEGG mapper (14) was used to visualize metabolic pathways for
this phylum. The taxonomic affiliation of the genomes was determined using GTDB-Tk v1.1.0
(15, 16), and the generated concatenated alignment was used to construct a maximum likeli-
hood phylogenomic tree using FastTree (17).

Five genomes recovered from the spring source sediment metagenome were affiliated
with the rare, yet-uncultured phylum CSSED10-310 (Fig. 1). Sequencing statistics (including
the number of contigs, median genome coverage, and N50 value) and general genomic
features of the CSSED10-310 genomes are shown in Table 1. The expected genome sizes
ranged from 3.01 to 5.72 Mbp, and the GC content ranged from 43.4 to 58.9%. The cells
are predicted to be Gram negative and possibly motile (based on the identification of the
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majority of flagellum and type IV pilus biosynthesis and assembly genes). A heterotrophic
lifestyle is predicted, with sugars (glucose, fructose, mannose, ribulose, and galactose),
starch, and propionate as potential carbon sources. Two genomes (Zod_Metabat.252 and
Zod_Metabat.419) encoded the anaerobic sulfite reductase (AsrABC) system, as well as the
membrane-bound heterodisulfide reductase-related enzymes (HdrABC) for transfer of elec-
trons to the AsrC subunit, suggesting sulfite reduction capacities coupled to sugar degradation
as an energy-generating process in the analyzed phylum CSSED10-310 genomes. In addition,
the genomes encoded sugar fermentative capabilities.
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FIG 1 Maximum likelihood tree based on the concatenated alignment of 120 single-copy marker genes showing the
phylogenetic position of phylum CSSED10-310 relative to other phyla. The tree was constructed in FastTree (17) and
visualized using iTOL (18). Phylum CSSED10-310 is highlighted in yellow, and all other phyla are wedged. The 5 MAGs
from Zodletone Spring discussed here are shown in red bold text. Names depict the MAG bin name (as shown in
Table 1). The single CSSED10-310 genome (assembly accession number GCA_003558985.1) available in GTDB is also
highlighted in the same clade. The tree was midpoint rooted, and the bootstrap values (from 100) are displayed for
the branches with$50% support.
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Data availability. Raw sequencing reads were deposited in the SRA under accession
number SRX9813571. The whole-genome shotgun project was submitted to GenBank under
BioProject number PRJNA690107 and BioSample number SAMN17269717. The individual
metagenome-assembled genomes (MAGs) have been deposited at DDBJ/ENA/GenBank
under the accession numbers JAFGEQ000000000, JAFGDC000000000, JAFGJC000000000,
JAFGMN000000000, and JAFGLW000000000 and were annotated using the NCBI Prokaryotic
Genome Annotation Pipeline.
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TABLE 1 General genomic features of the five MAGs studied

Data for indicated MAG bin name

Parameter Zod_Metabat.1153 Zod_Metabat.1246 Zod_Metabat.252 Zod_Metabat.419 Zod_Metabat.479
GenBank assembly accession no. JAFGDC000000000 JAFGEQ000000000 JAFGJC000000000 JAFGLW000000000 JAFGMN000000000
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Phylum CSSED10-310 CSSED10-310 CSSED10-310 CSSED10-310 CSSED10-310
Class CSSED10-310 CSSED10-310 CSSED10-310 CSSED10-310 CSSED10-310
Order Novel order ZNO13a CSSED10-310 CSSED10-310 CSSED10-310 CSSED10-310
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