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A B S T R A C T   

SARS-CoV-2 case data are primary sources for estimating epidemiological parameters and for modelling the 
dynamics of outbreaks. Understanding biases within case-based data sources used in epidemiological analyses is 
important as they can detract from the value of these rich datasets. This raises questions of how variations in 
surveillance can affect the estimation of epidemiological parameters such as the case growth rates. We use 
standardised line list data of COVID-19 from Argentina, Brazil, Mexico and Colombia to estimate delay distri
butions of symptom-onset-to-confirmation, -hospitalisation and -death as well as hospitalisation-to-death at high 
spatial resolutions and throughout time. Using these estimates, we model the biases introduced by the delay from 
symptom-onset-to-confirmation on national and state level case growth rates (rt) using an adaptation of the 
Richardson-Lucy deconvolution algorithm. We find significant heterogeneities in the estimation of delay dis
tributions through time and space with delay difference of up to 19 days between epochs at the state level. 
Further, we find that by changing the spatial scale, estimates of case growth rate can vary by up to 0.13 d− 1. 
Lastly, we find that states with a high variance and/or mean delay in symptom-onset-to-diagnosis also have the 
largest difference between the rt estimated from raw and deconvolved case counts at the state level. We highlight 
the importance of high-resolution case-based data in understanding biases in disease reporting and how these 
biases can be avoided by adjusting case numbers based on empirical delay distributions. Code and openly 
accessible data to reproduce analyses presented here are available.   

1. Introduction 

Surveillance of Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) has expanded since it was first reported in November 
2019 (Oude Munnink et al., 2021; Zhu et al., 2020). However, disease 
surveillance remains highly heterogeneous across countries and case 
definitions have changed significantly as a result of changing testing 
capacity, improved understanding about transmission during the 
asymptomatic phase and general human behavioural change in response 
to the pandemic (Flaxman et al., 2020; Verity et al., 2020; Wu et al., 

2020; Ke et al., 2021; Pullano et al., 2021; Parag et al., 2022). Im
provements to surveillance efforts can affect key epidemiological dis
tributions by reducing the time delay from exposure to onset of 
infectiousness to diagnosis (Kraemer et al., 2021). These in turn can 
directly influence estimation of the time-varying reproduction number 
(Rt) and growth rate (rt) (Rong et al., 2020; Pitzer et al., 2021) (Sup
plementary Table. 1). Estimation of these epidemiological dis
tributions/parameters provides key information on changes in 
transmission, which contribute to decisions on the implementation of 
pharmaceutical and non-pharmaceutical interventions (NPIs) (Anderson 

* Corresponding author. 
** Corresponding author at: Department of Biology, University of Oxford, United Kingdom. 

E-mail addresses: rhys.inward@zoo.ox.ac.uk (R.P.D. Inward), moritz.kraemer@zoo.ox.ac.uk (M.U.G. Kraemer).   
1 These authors contributed equally as first authors.  
2 Full list of contributors can be found here: https://github.com/orgs/globaldothealth/people 

Contents lists available at ScienceDirect 

Epidemics 

journal homepage: www.elsevier.com/locate/epidemics 

https://doi.org/10.1016/j.epidem.2022.100627 
Received 31 March 2022; Received in revised form 4 August 2022; Accepted 3 September 2022   

mailto:rhys.inward@zoo.ox.ac.uk
mailto:moritz.kraemer@zoo.ox.ac.uk
https://github.com/orgs/globaldothealth/people
www.sciencedirect.com/science/journal/17554365
https://www.elsevier.com/locate/epidemics
https://doi.org/10.1016/j.epidem.2022.100627
https://doi.org/10.1016/j.epidem.2022.100627
https://doi.org/10.1016/j.epidem.2022.100627
http://creativecommons.org/licenses/by/4.0/


Epidemics 41 (2022) 100627

2

et al., 2020; Dushoff and Park, 2021; Parag et al., 2021; Pellis et al., 
2021). 

Initial estimations of SARS-CoV-2 epidemiological distributions/pa
rameters were based on biased data primarily due to limited capacity of 
testing for SARS-CoV-2 in hospitalised patients (Vandenberg et al., 
2021). This contributes to a degree of uncertainty and heterogeneity in 
the accuracy and precision of these estimates especially when 
comparing them between countries and across age groups (Cowling 
et al., 2020; Mellan et al., 2020; Verity et al., 2020; Parag et al., 2022). 
Since the initial stages of the pandemic, global surveillance and notifi
cation systems have significantly improved (Vandenberg et al., 2021) 
providing a wealth of data which can be used to re-evaluate SARS-CoV-2 
epidemiological distributions/parameters. 

This raises the question of how variations in surveillance affects the 
estimation of epidemiological distributions/parameters. We aim to un
derstand how spatial and temporal heterogeneities in reporting (spe
cifically delays in reporting) can impact the accuracy of estimates of 
epidemiological parameters (specifically growth rate rt) within and be
tween countries. To do this, we are using a rich, standardised, and in
dividual level line list database extracted from Global.health (htt 
ps://global.health/). We focus on estimating the delays between 
symptom-onset-to-confirmation, -hospitalisation and -death as well as 
hospitalisation-to-death. 

2. Methods 

2.1. Data 

The Global.health database contains individual case data from over 
100 countries (https://global.health/). The database contains a rich 
array of fields describing demographics, location (up to Administrative 
Area 3 resolution), and key epidemiological and clinical events for 

confirmed COVID-19 cases. In relational database format, each row is a 
single confirmed COVID-19 case, and columns detail attributes for each 
case (Schema: https://github.com/globaldothealth/list/blob/c0da5 
7d6b227ab861ad5e695d711699c02c2721f/data-serving/scripts/ex 
port-data/data_dictionary.txt). Data is primarily sourced from official 
country line lists compiled and shared by national health institutions 
where available, as was the case for all countries in this study (Xu et al., 
2020). The detail of the case data varies by country: inter-country 
variability in COVID-19 data collection and reporting online leads to 
differences in Global.health data availability, as detailed in Fig. 1. The 
dataset used in this study was downloaded from Global.health on 
31/01/2022. An updated line list can be downloaded from Global.health 
via the website or by following instructions on the API docs: https://gith 
ub.com/globaldothealth/list/tree/main/api. We can provide the exact 
dataset downloaded for this analysis upon written request. 

To investigate the spatial heterogeneity of epidemiological parame
ters inferred from public data, we focus on COVID-19 line lists from four 
countries in Latin America that have consistently provided compre
hensive and detailed line list data since the start of the pandemic in early 
2020: Mexico, Brazil, Argentina, and Colombia. For each country, we 
aggregated data to the state level, then for each state, calculated delay 
distributions defined in Supplementary Table 1. To investigate trends 
over time, the line lists for each country are split into three time-periods 
hereafter called epochs. These epochs represent different stages of the 
SARS-CoV-2 epidemic in each country. We use the same time periods for 
each country analysed in this study due to the difficulties in stand
ardising phases of epidemic progression between countries. These dif
ficulties arise from a lack of reliable epidemiological information and 
case incidence data, but also by existing gaps in our understanding of the 
mechanisms involved in the transmission dynamics between different 
social and geographical contexts particularly for newly emerging in
fectious diseases (Chowell et al., 2016). However, in each country we 

Fig. 1. The number and proportion of recorded cases with data entries for each epidemiological distribution have been extracted from Global.health line lists for 
Argentina, Brazil, Colombia, and Mexico. A, B and D represent the delay from symptom-onset-to-diagnosis, -hospitalisation, and -death respectively whilst C rep
resents the delay from hospitalisation-to-death. The blue, red, teal, and yellow solid line represents a 7-day rolling average for the total number of data entries for 
Argentina, Brazil, Colombia, and Mexico respectively. The blue, red, teal and yellow dashed line represents a 7-day rolling average for the proportion of recorded 
cases with data entries for Argentina, Brazil, Colombia, and Mexico respectively. The dashed vertical lines represent epoch change times. 
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cover the 1st and 2nd waves of infections as well as a period of low 
incidence in infections between these two waves:  

• Epoch 1: 2020–03-03–2020-06–30 (initial COVID-19 wave)  
• Epoch 2: 2020–07-01–2020-11–30 (receding epidemic and low case 

counts)  
• Epoch 3: 2020–12-01–2021-03–31 (second wave/SARS-CoV-2 

VOCs) 

Additional filtering of the data was applied to these time delays to 
eliminate biases introduced by erroneous entries. We removed all cases 
which were reported before the first reported case in the countries of 
interest based on the Ministry of Health’s websites (Roberts et al., 2021). 
Moreover, we removed outliers that fell outside of the 97.5 % range of 
the data on each of the delay distributions. 

2.2. Epidemiological distributions 

To estimate the epidemiological distribution, a gamma probability 
density function (PDF) was fitted to onset-to-death and hospitalisation- 
to-death whilst a generalised lognormal (GLN) probability density 
function (Singh et al., 2012) was fitted to onset to diagnosis and hos
pitalisation (Table 1). These PDFs were chosen as they were evaluated to 
best fit COVID-19 line list data (Hawryluk et. al., 2020). The parameters 
of each distribution are fitted by a joint hierarchical model with partial 
pooling similar to (Hawryluk et. al., 2020), using state level data 
(Administrative Area 1 resolution) from Argentina, Brazil, Colombia, 
and Mexico. 

Posterior samples of the parameters are generated using Hamiltonian 
Monte Carlo (HMC) (Hoffman and Gelman, 2014) in Stan (Carpenter 
et al., 2017) using PyStan (v.2.19.0.0: https://mc-stan.org/users/inter 
faces/pystan). Four chains with 2000 iterations, with 50 % of the iter
ations dedicated to burn-in, were used for each fit. For all fitted den
sities, the mean and variance parameters were constrained to be 
positive. 

2.3. Correlation analysis 

Spearman’s rank-order correlation coefficient (rs) was calculated for 
delays between symptom-onset-to-confirmation, -hospitalisation and 
-death as well as hospitalisation-to-death for each state, using the scipy. 
stats ‘spearmanr’ function (scipy version 1.7.3). P-values were provided 
by this function, which indicates the probability of an uncorrelated 
system producing data with a correlation value at least as extreme as the 
one observed. 

We also explored if there was a correlation between the population 
density of each state and the mean onset-to-diagnosis averaged across all 
epochs by using a spearman’s rank test. We used parametric boot
strapping (n = 1000) to test statistical significance, defined using 
approximate unbiased p-values less than 0.05. 

2.4. Deconvolution 

We used deconvolution to adjust for delays in the development of 
detectable viral loads, symptom onset, and reporting (Gostic et al., 
2020). Deconvolution allows us to reconstruct the unlagged incidence 
time series given a known delay distribution (estimated above). Here, 
we adapted the method by Goldstein et al. (Goldstein et al., 2009). This 
method uses the daily confirmed incidence curve (It) and the symptom 
onset to confirmation probability distribution (d1,.,dI) to calculate the 
expected number of cases (μt) to occur at time t adjusting for delays. We 
assume that the daily incidence curve (It) is Poisson distributed. The 
model requires non-negativity constraints on the parameters λt, which 
represents estimates of mean infection incidence, reflecting the fact that 
they are Poisson means. 

μt =
∑t

S=1
λsdt− s (1) 

The model ran for 50 iterations or until the normalised x2 statistic 
(Eq. 2) comparing the observed and expected number of cases per day 
falls below 1. Here, N represents the length of our study period, E is the 
expected number of cases on day i and D is the probability of observation 
on day i. We calculated the deconvolved case counts at both the national 
and state level for each epoch. 

x2 =
1
N
∑

i

(En
i − Di)

2

En
i

(2)  

2.5. Growth rate 

To estimate the daily growth rate (rt) by country and state we 
adapted the approach from Pellis et al. (Pellis et al., 2021). In short, the 
growth of daily case numbers of lagged and unlagged SARS-CoV-2 cases 
(y) at time (t) was considered exponential. To estimate rt, a quasi-Poisson 
family generalised linear model (GLM) with a log link was applied. We 
used a quasi-Poisson distribution opposed to the standard 
negative-binomial distribution within our main results (Figs. 5 and 6) as 
a negative-binomial distribution tends to give a higher weighting to 
smaller case counts than a quasi-Poisson distribution (ver Hoef and 
Boveng, 2007). As our data predominately covers periods of high case 
counts, we would prefer our adjustments to be dominated by those with 
higher case counts. 

To allow growth rates to vary over time in a semi-parametric 
manner, a generalised additive model (GAM) was used where y(t) ∝ es 

(t) for some smoother s(t). As such, rt is the time derivative of the 
smoother rt = s(t). We started calculating the growth rate once the cu
mulative number of daily cases reached over 100 on the national level 
and over 20 on the state level to ensure that the exponential growth 
phase was captured. 

Code: Code to reproduce analyses can be accessed here: https://gith 
ub.com/fojackson8/COVID19_mapping_epiparams and data can be 
downloaded via https://data.covid-19.global.health/ or via our API: 
https://github.com/globaldothealth/list/tree/main/api. Data down
loads require agreeing with the Terms of Use: https://global.health 
/terms-of-use/. 

3. Results 

3.1. Number of data entries / Global.health case counts 

Disease reporting varied by country and field. Fig. 1 shows the 
number and proportion of recorded cases with data entries (Supple
mentary Table 2) from the Global.health linelist from which we can infer 
the delays between onset-to-confirmation (A), onset-to-hospitalisation 
(B), hospitalisation-to-death (C) and onset-to-death (D). There are sig
nificant heterogeneities between countries and overtime between the 
number of cases recorded and a data entry being present for a specific 

Table 1 
Probability density functions with analytical formulae for mean and variance. y 
denotes the data, v () is a gamma function. GLN, generalised log-normal.  

PDF Mean Variance 

gamma(y|α,β) =

βα

υ(α)y
a− 1exp( − βγ)

α
β 

a
β2 

GLN(γ|μ,σ, s) =

1
y

s

2
s + 1

s συ(1
s
)

exp( −

1
2
|
log y − μ

σ |
S) 

exp(μ)[1 +
s

2υ(1
s
)

], 

S =
∑∞
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(− 1)j
)2j/s

υ((j + 1)
2

)

υ(j + 1)

exp(2μ)[1 +
s

2υ(1
s
)

] −

[Mean]2, 
S =
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(− 1)j)2j/s
υ((j + 1)

2
)

υ(j + 1)
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delay. For example, almost all cases in Mexico are populated with the 
delay between onset-to-confirmation. In contrast, while almost all initial 
cases in Argentina were populated with the delay between onset-to- 
confirmation, over time, the proportion of cases with data entries fell 
consistently to around 55 %. Further, there is a large variability in 
completeness of the fields that allow estimation of symptom-onset-to- 
diagnosis ranging between 36 % and 97 % in Brazil. Data was not 
available for symptom-onset-to-hospitalisation for Colombia and 
hospitalisation-to-death for both Argentina and Colombia. They were 
therefore not included in subsequent analyses. 

3.2. Estimation of delay distribution and growth rate 

We estimate the delay distributions (Supplementary table 1), 
reconstruct deconvolved case numbers and rt for local SARS-CoV-2 ep
idemics in Argentina, Brazil, Colombia, and Mexico. 

3.3. Delay distributions 

PDFs were applied to epidemiological data from Argentina, Brazil, 
Colombia, and Mexico to estimate the delay from symptom onset-to- 
diagnosis, delay from symptom onset-to-hospitalisation, delay from 
hospitalisation-to-death, and the delay from symptom onset-to-death at 
the state level. Posterior plots of state-level results (Figs. 2, 3 and Sup
plementary Figures 2 and 3) show the shape (the range and pattern) and 
spread (the variance) for the delay for all delay distributions between 
states and over time. 

3.4. Brazil 

In Brazil, we observe substantial heterogeneities in the mean delay 
across all four distributions between states and for the epochs. For 
example, for all states, the mean delay from symptom-onset-to-diagnosis 

increases from 7.24 days in epoch 1–10.46 days in epoch 2, declining to 
5.55 days in epoch 3 (Supplementary Table 2). At the state level, Distrito 
Federal had the 3rd overall lowest mean delay of 4.08 days whilst Par
aná had the highest mean delay of 22.74 days (Fig. 2, Supplementary 
Table 3). Interestingly, this trend was reversed for the distribution of 
hospitalisation-to-death with Distrito Federal having the highest mean 
delay of 13.89 days and Paraná having the 3rd lowest mean delay of 
10.01 days (Fig. 2, Supplementary Table 3). Additionally, states with a 
large delay from symptom-onset-to-diagnosis also had a large delay from 
symptom-onset-to-hospitalisation (rs = 0.58, p < 0.01). Conversely, we 
found states with a large delay from symptom-onset-to-diagnosis had a 
shorter delay from hospitalisation-to-death (rs = 0.60, p < 0.01) (Sup
plementary Figure 1). Moreover, we found that the longer the delay 
from symptom-onset-to-hospitalisation the shorter the delay from 
hospitalisation-to-death (rs = − 0.37, p < 0.01) (Supplementary 
Figure 1) implying the longer it takes to be hospitalised after becoming 
symptomatic the shorter the time in hospital before death. 

3.5. Mexico 

Similar to Brazil, we found heterogeneities across states and time for 
all delay distributions within Mexico (Fig. 3). Moreover, the trends for 
each distribution overtime are similar to Brazil with the mean delay 
from symptom-onset-to-diagnosis decreasing overtime from 3.08 in 
epoch 1 and 2.62 in epoch 3 (Supplementary Table 2). However, there is 
substantially less variability in the delay from symptom-onset-to diag
nosis and from hospitalisation-to-death (Fig. 3 A and C). This can be seen 
by the mean difference in delay from symptom-onset-to diagnosis and 
from hospitalisation-to-death between the highest state (Nayarit) and 
lowest state (Chihuahua) differing only by 2.33 days and 3.76 days 
respectively over all epochs (Supplementary table 3). Further, like 
Brazil, we also found that increases in the mean delay from symptom- 
onset-to-diagnosis was negatively correlated with symptom-onset-to- 

Fig. 2. Delay distributions are estimated from daily case counts on the state level for three distinct epochs for Brazil. A, B and D represent the delay from symptom- 
onset-to-diagnosis, -hospitalisation, and -death respectively whilst C represents the delay from hospitalisation-to-death. Orange represents epoch 1, purple represents 
epoch 2 and blue represents epoch three. All plots are ordered from the smallest to largest by the epoch with the smallest mean delay. 
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death (rs = − 0.38, p = 0.03) and positively correlated with symptom- 
onset-to-hospitalisation (rs = 0.65, p < 0.01) (Supplementary Figure 1). 

3.6. Argentina 

In contrast to both Brazil and Mexico, epoch 1 in Argentina had the 
lowest delay from symptom-onset-to-diagnosis and the highest delay for 
the symptom-onset-to-death (Supplementary Figure 2). We found that 
there was a high inter-state variance, as seen by the elongated shape on 
the violin plot. For the 11 states where data was available for the delay 
from symptom-onset-to-hospitalisation, the mean delay increased from 
2.46 days in epoch 1–4.64 days in epoch 3 whilst the mean delay be
tween symptom-onset-to-death decreased from 16.98 days in epoch 
1–15.54 days in epoch 3 (Supplementary table 2). We did not find a 
significant relationship between delay distributions but note that no 
data was available for hospitalisation-to-death (Supplementary 
Figure 1). 

3.7. Colombia 

Like Argentina, we find that for Colombia epoch 1 had the lowest 
delay from symptom-onset-to-diagnosis (Supplementary Figure 3A). We 
find that the overall mean delay between symptom-onset-to-diagnosis is 
substantially longer for epoch 3 (10.83 days) than for epoch 1 (1.96 
days) (Supplementary table 2). This large increase in the overall mean 
delay is driven by three states; Norte de Santander, Guainía, and Santa, 
which have mean delay from symptom-onset-to-diagnosis of over 30 
days for epoch 3 (Supplementary Figure 3A, Supplementary Table 3). 
There is no overall trend across symptom-onset-to-death (Figure 5B). 

3.8. Relationship between state population density and delay from 
symptom-onset-to-diagnosis 

For each country, we calculated the correlation between the mean 
delay from symptom-onset-to-diagnosis across epochs and the median 
population density at the state level (logged). Overall, we found a very 
weak correlation between the mean symptom-onset-to-diagnosis across 
epochs and population density at the state level. Our Spearman corre
lation coefficients were: Mexico 0.09, Colombia 0.06, Brazil 0.09, 
Argentina 0.39. Overall, we see no statistically significant correlations 
(p > 0.05) between symptom-onset-to-diagnosis delay and median state 
population density across the four countries (Supplementary Figure 4). 

3.9. Deconvolution of case time series 

We apply methods from Goldstein et al. to raw SARS-CoV-2 case 
counts (date of confirmation) in the four countries studied to obtain the 
deconvolved daily case counts. Fig. 4 shows the deconvolved incidences 
curves. Notability, we find a marked delay in cases for Colombia in 
epoch 3 particularly after the 1st of February 2021. Further, we find that 
the initial peak in cases within Brazil had significant delays perhaps due 
to high case incidence. 

3.10. Growth rates 

We applied the Pellis et al. model to estimate rt from raw case data 
and deconvolved case data for each of our countries of interest (Fig. 5) 
using a quasi-Poisson family generalised linear model (GLM). The same 
calculation was done using a negative binomial family and the same 
trends were observed (Supplementary figure 5). Based on the decon
volved case counts, initially, for all countries the mean rt was above zero, 
indicating a growing epidemic. For all countries the mean rt declined 
moving into the second epoch. Argentina experienced a mean rt falling 

Fig. 3. Delay distributions are estimated from daily case counts on the state level for three distinct epochs for Mexico. A, B and D represent the delay from symptom- 
onset-to-diagnosis, -hospitalisation, and -death respectively whilst C represents the delay from hospitalisation-to-death. Orange represents epoch 1, purple represents 
epoch 2 and blue represents epoch three. All plots are ordered from the smallest to largest by the epoch with the smallest mean delay. 
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Fig. 4. Deconvolved case counts have been estimated from raw case counts extracted from Global.health line lists for Argentina, Brazil, Colombia, and Mexico. The 
blue and red line represents a 7-day rolling average of deconvolved and raw case counts respectively. The dashed lines represent epoch change times. 

Fig. 5. rt estimated from both raw and deconvolved case counts for Argentina, Brazil, Colombia, and Mexico. The light-shaded area represents the 95 % Confidence 
Interval with the darker-shaded area presenting where the two estimations overlap. The solid line represents the mean rt estimate with rt estimated from raw case 
counts in red and deconvolved case counts in blue. The vertical dashed lines represent epoch change times and the horizontal dashed line represents rt = 0. 
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consistently below zero during epoch 2. Towards the end of epoch 2, the 
mean rt increased above zero and remained above zero at the start of 
epoch 3 for all countries. 

Generally, it appears that the rt estimated from the raw case counts 
lags behind the rt estimated from the deconvolved case counts, which is 
expected. However, this difference is not significant, and all 95 % con
fidence intervals (CIs) are overlapping (Fig. 5). At the start of the study 
period there is an increase in uncertainty for the deconvolved case 
counts represented by the wider CIs and in general higher rt in all 
countries using raw case data. 

Next, we evaluated rt on a state level by selecting states with the 
lowest mean delay (Fig. 6A, B, E and G) and highest mean delay (Fig. 6B, 
D, F and H) of symptom-onset-to-confirmation. We compared rt esti
mates from state and national deconvolved case counts in addition to 
raw case counts. When the delay from symptom-onset-to-confirmation is 
low, there is a mismatch between the rt calculated using national level 
deconvolved case counts and the rt calculated using raw case and state 
level deconvolved case counts. For example, in La Pampa, Argentina 
(Fig. 6E), mean rt is initially below 0 ( − 0.03 d− 1) when using national 
level deconvolved case counts and above 0 when using raw ( 0.1 d− 1) 
and state level deconvolved case counts ( 0.07 d− 1). Conversely, when 
the delay from symptom-onset-to-confirmation is high, there is a 
mismatch between the rt calculated using state level deconvolved case 
counts and the rt calculated using raw case and national level decon
volved case counts. This can be seen in Roraima state, Brazil (Fig. 6B), 
where there are fluctuations of rt below and above 0 when rt is calculated 
using state level deconvolved case counts when compared to rt estima
tions from raw and national level deconvolved case counts where rt 
= ~0 indicating epidemic stabilisation has occurred. 

4. Discussion 

In this study, we fitted multiple probability density functions to a 
number of epidemiological datasets to quantify the delay from 
symptom-onset-to-hospitalisation and hospitalisation-to-death, from the 
Global.health database (https://global.health/), using Bayesian hierar
chical models. Subsequently, the national level and state level delay 
from symptom-onset-to-confirmation was used to deconvolve raw case 
counts and we measure the impact on case growth rates rt. 

We found that across all countries investigated (Argentina, Brazil, 
Colombia, and Mexico) there were strong geographical heterogeneities 
between states for our inferred delays (Supplementary Table 2 and 3) 
with the delays from symptom-onset-to-diagnosis and symptom-onset- 
to-death being most accentuated. Whilst studies exploring testing het
erogeneities in Latin America are limited, in the early stages of the 
epidemic, frequent and free testing was not available and testing was 
largely reserved for patients within hospitals and symptomatic in
dividuals (Asahi et al., 2021; Gaudart et al., 2021; Vandenberg et al., 
2021). Less urbanised states, such as Roraima state, Brazil, Michoacán 
state, Mexico, and Boyacá, Colombia within the countries analysed had 
the largest delay in symptom-onset-to-diagnosis. It has been shown in 
other settings that access to symptomatic testing varied spatially due to 
geographic accessibility (Jaitman, 2015) and length of travel to 
healthcare facilities (Syed et al., 2013; Kelly et al., 2016; Rader et al., 
2020). 

In addition to spatial heterogeneities, strong temporal heterogene
ities were observed. For Brazil and Mexico, the delay in symptom-onset- 
to-diagnosis decreased over time by 23 % and 15 % respectively whilst 
for Argentina and Colombia this delay increased over time by 18 % and 
452 % respectively. Brazil and Mexico experienced a more rapid 
epidemic progression with the first wave of cases peaking at the end of 
the first epoch (Fig. 4B and D). In contrast, Colombia and Argentina had 

Fig. 6. rt estimated from both raw, national and states level deconvolved case counts for states with the highest mean delay in symptom-onset-to-diagnosis (A, C,6E 
and G) and the lowest mean delay in symptom-onset-to-diagnosis (B, D, F and H) for Argentina, Brazil, Colombia, and Mexico. The light-shaded area represents the 95 
% Confidence Interval with the darker-shaded area presenting where the two estimations overlap. The solid line represents the mean rt estimate with rt estimated 
from raw case counts in red, state level deconvolved case counts in orange and national level case counts in blue. The vertical dashed lines represent epoch 
change times. 
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a slower epidemic progression with their first wave of cases peaking in 
the second epoch (Fig. 4A and C). This is also reflected in the number of 
data entries with Brazil and Mexico having over double the number of 
entries in epoch 1 than Argentina and Colombia (Fig. 1). With limited 
testing resources available (Asahi et al., 2021; Gaudart et al., 2021; 
Vandenberg et al., 2021), it is plausible that public health departments 
in Brazil and Mexico struggled to test all symptomatic cases in a timely 
manner when compared to Argentina and Colombia which had fewer 
cases during that period. 

By using deconvolution to infer the unlagged time series of in
fections, we can improve the accuracy of key epidemiological parame
ters (Gostic et al., 2020). In particular, by using the delay distribution of 
symptom-onset-to-confirmation we allow rt to be estimated closer to real 
time (some have called this ‘nowcasting’ (McGough et al., 2020)). We 
found that in states with a small delay from symptom-onset-to-diagnosis 
there was a mismatch between rt estimated using national level decon
volved case counts and raw or state level deconvolved case counts. 
Further, in states with a large delay from symptom-onset-to-diagnosis 
there was a mismatch between rt estimated using state level decon
volved case counts or raw and national level deconvolved case counts. 
This is significant as using deconvolved case counts at a less granular 
spatial scale can significantly affect the interpretation of the epidemic 
picture. For example, for Roraima state, Brazil (Fig. 6B) using national 
level deconvolved case counts to estimate rt we would predict that 
epidemic stabilisation has occurred even though cases have changed 
significantly throughout time (https://github.com/CSSEGISandData 
/COVID-19). As such, deconvolution is a valuable method, even 
within local epidemiological contexts with low case counts or areas with 
low population, in improving our understanding of state level epide
miological dynamics. 

While our results provide a rigorous underpinning and insight into 
delay distributions and impact of these on epidemiological parameters 
estimation, we acknowledge several limitations. The Global.health 
database which contains line lists that our distributions have been 
estimated from, though extensive, contains typing errors, and the degree 
to which these bias our estimates are unknown. Our data ingestion 
pipeline is mostly automated and only occasionally are we able to 
manually verify the accuracy of the data. Further, when comparing line 
list data between and within countries we note disparities in notification 
systems and differences in case definitions. Further work should eval
uate the demographic biases in these data and how that may affect 
transmission dynamics (longer delays for less severe cases in younger 
age groups may impact transmission substantially). Lastly, there is a low 
testing rate for the countries analysed (Hasell et al., 2020) and hetero
geneities in testing rates in both time and space (Vandenberg et al., 
2021) which can influence the results for both cases and rt. Future 
epidemiological work is needed to compare parameters estimated from 
case data, death data and excess death data across different settings 
(Gostic et al., 2020) and more intensive monitoring and/or the use of 
alternative data sources such as genomic data (Inward et al., 2022) is 
needed to improve the reliability of estimations. 

Few countries report highly detailed epidemiological data limiting 
the ability to perform robust analyses on the impact of delays on 
transmission across the world. One primary concern for limited sharing 
of these data is privacy. Our work demonstrates the ability to perform 
scalable analyses of delay distributions and their impact on case growth 
rates and could be applied across all settings and through time. In the 
future, raw data may not need to be shared publicly: algorithms could 
locally process line list data stored in each country, with only aggregated 
statistics shared globally. 

This work has highlighted the impact that both spatial and temporal 
heterogeneities can have on delay distributions and subsequent esti
mations of the case growth rate. Whilst more epidemiological datasets 
from a variety of countries and regions with different sampling in
tensities are needed to create a more generalisable understanding and to 
identify predictors of these differences, we have shown that accounting 

for delays on both a national and state level can introduce substantial 
differences in the estimation of epidemiological parameters. This finding 
identifies the need for more targeted attempts at performing epidemi
ological surveillance and epidemic analyses particularly in resource- 
poor settings which have limited surveillance systems. 
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