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reveals regulatory effects of indirect
transcription factor-DNA binding
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SUMMARY

Transcription factors (TFs) influence gene expression by binding to DNA, yet
experimental data suggests that they also frequently bind regulatory DNA indi-
rectly by interacting with other DNA-bound proteins. Here, we used a data
modeling approach to test if such indirect binding by TFs plays a significant
role in gene regulation. We first incorporated regulatory function of indirectly
bound TFs into a thermodynamics-based model for predicting enhancer-driven
expression from its sequence. We then fit the new model to a rich data set
comprising hundreds of enhancers and their regulatory activities during meso-
derm specification in Drosophila embryogenesis and showed that the newly
incorporated mechanism results in significantly better agreement with data. In
the process, we derived the first sequence-level model of this extensively charac-
terized regulatory program. We further showed that allowing indirect binding of
a TF explains its localization at enhancers more accurately than with direct bind-
ing only. Our model also provided a simple explanation of how a TF may switch
between activating and repressive roles depending on context.

INTRODUCTION

Development of heterogeneous muscles layers from the mesoderm in a Drosophila embryo involves mul-

tiple transcription factors (TFs) working in tandem to regulate gene expression and control cell differenti-

ation programs. Multiple signals from the ectoderm set up the differentiation process (Azpiazu et al., 1996;

Mbodj et al., 2016), key TFs are then expressed in a successive manner at precise locations, allowing the

mesodermal cells to differentiate into different muscle layers (Azpiazu et al., 1996; Zinzen et al., 2009).

Here we study the formation of visceral muscles (VM) and somatic muscles (SM) from the mesoderm,

focusing on the gene regulatory mechanisms underlying these processes. Our specific goal was to deci-

pher how thosemechanisms are encoded in cis-regulatory sequences associated withmuscle specification.

The TFs Bagpipe (Bap), Biniou (Bin), Myocyte enhancer factor-2 (Mef2), Tinman (Tin), and Twi are key reg-

ulators of mesoderm development (Sandmann et al., 2006,2007; Jakobsen et al., 2007; Bonn and Furlong,

2008; Liu et al., 2009; Zinzen et al., 2009). These TFs act as high-level regulators throughout the mesoderm

and its subsequent differentiated tissues, and their combinatorial regulatory action is known to be highly

predictive of gene expression patterns in the muscle layers (Zinzen et al., 2009; Cusanovich et al., 2018).

Such combinatorial regulation is mediated by sequences called enhancers that act as hubs for TF-DNA

binding. Extensive prior work has resulted in large catalogs of enhancers (Zinzen et al., 2009; Cusanovich

et al., 2018) with annotated regulatory activity in mesoderm, VM or SM. This allowed us to systematically

analyze the TF binding site combinations that distinguish enhancers exhibiting one type of activity versus

others, thus characterizing the cis-regulatory code (Yáñez-Cuna et al., 2013) of mesoderm development.

Our analytical approach was to fit thermodynamics-based models of enhancer function to predict each en-

hancer’s regulatory activity in a muscle layer, based on the strengths of TF binding sites in the enhancer’s

sequence and information about TFs’ expression in that layer. The baseline model of our choice is called

GEMSTAT (He et al., 2010), a statistical thermodynamics-based model that we have previously used to

model enhancers involved in specification of the anterior-posterior axis (Samee et al., 2017) and dorso-

ventral axis (Samee et al., 2015) in early Drosophila embryos. Put simply, the GEMSTAT model considers
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the strength of each TF binding site along with the bound TF’s interaction with the basal transcription ma-

chinery, to calculate the net regulatory output of the assortment of sites in an enhancer.

However, it has been speculated that TFs can exert their regulatory effects without actually binding to the

DNA (Gordân et al., 2009; Shokri et al., 2019). Protein-protein interactions between TFs can help a TF ‘‘pig-

gyback’’ on a DNA-bound TF, thus localizing at enhancers that have weak or no sites for the former. Evi-

dence for such indirect binding of a TF to specific sites in the genome (where binding sites for its partner

TF are present) has been reported previously from ChIP-seq data (Gordân et al., 2009; Author Anonymous,

2019). The possibility of TFs regulating gene expression through indirect (as well as direct) binding to en-

hancers has been discussed in the literature as the ‘‘TF Collective’’ model (Doitsidou et al., 2013; Uhl et al.,

2016; Khoueiry et al., 2017), as a complementary view to the ‘‘billboard’’ and ‘‘enhanceosome’’ models (Ar-

nosti and Kulkarni, 2005) of enhancer organization and function. Junion et al. (2012) provided strong evi-

dence for the TF Collective model in mesoderm development, by examining regulatory activities of

genomic segments bound by a collective of five cardiogenic TFs and noting less stringent sequence (motif)

requirements therein, suggesting a significant role for cooperative as well as indirect TF-DNA binding in

enhancer function. Khoueiry et al. (2017) used evolutionary analysis of TF ChIP peaks and sequence motifs

in mesodermal enhancers to provide further support for the model. Here, we sought to quantify the extent

to which the ‘‘TF Collective’’ phenomenon influences enhancer readout in mesoderm development. For

this, we developed an extension of the GEMSTATmodel that incorporates regulatory action of an indirectly

bound TF, and assessed if this model, called GEMSTAT-TFC, better fits enhancer activity data than the

baseline GEMSTATmodel. This allowed us to determine the significance of the TF Collective phenomenon

in a well-controlled quantitative manner.

We found that allowing indirectly bound TFs to exert regulatory influence leads to significantly more accu-

rate predictions of enhancer activity, under various methods of assessment. For example, the accuracy of

three-way classification into mesoderm, visceral muscle, and somatic muscle activity on a held-out data set

of 69 enhancers increased from 62% to 74%. Accommodating indirect binding also yielded significantly

better prediction of ChIP signal based on sequence, particularly for the TFs Twist and Tinman. Closer ex-

amination of the trained models revealed the possibility of a TF exhibiting ‘‘dual roles’’ (activating and

repressive) (Bauer et al., 2010) in different cis- or trans- contexts without a switch in its biochemical function:

for instance, the complex formed by a DNA-bound activator TF and a repressor TF ‘‘piggybacking’’ on it

may have a net repressive effect mediated by the activator’s binding site. Our models suggest such dual

roles for Tinman in particular. In summary, this study presents the first sequence-to-expression modeling

of mesoderm development enhancers and finds evidence of the TF Collective model and dual-role TFs

in the organization of these enhancers.

RESULTS

A thermodynamics-based sequence-to-expression model that incorporates indirect binding

of transcription factors

The new model proposed here, called GEMSTAT-TFC (TFC abbreviates Transcription Factor Collective

(Doitsidou et al., 2013; Uhl et al., 2016; Khoueiry et al., 2017), is an extension of an existing sequence-to-

expression model called GEMSTAT. GEMSTAT is a mechanistic model that predicts the quantitative

expression driven by an enhancer in a given cellular context described by concentrations of relevant

TFs. It uses motifs (position weight matrices or ‘‘PWM’’s) representing TFs’ binding preferences to estimate

binding strength at every putative site in the enhancer and automatically learns each TF’s regulatory

strength and direction (activator or repressor) from given data. A key premise of GEMSTAT and in other

thermodynamics-based models of enhancer function (He et al., 2010), is that a TF influences gene expres-

sion by direct binding to its cognate sites in enhancer DNA. The main idea behind a ‘‘TF collective’’

formalism is that TFs may also affect a gene’s expression without direct DNA-binding, and thus without

having any binding sites in the enhancer.

The GEMSTAT model considers all possible configurations of binding sites being bound (or not) by their

cognate TFs. Thus, for example, an enhancer with a single binding site SA, for TF ‘‘A’’, has two configura-

tions, with the relative probability of the bound configuration sA being proportional to W(sA) x Q(sA),

where W(sA) mirrors TF-DNA interactions while Q(sA) represents the interaction between a DNA-bound

molecule of TF A and the basal transcriptional machinery (BTM). The termW(sA) depends on concentration

of TF A and on the interaction energy between TF A and its site SA, estimated from the sequence of SA and
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the PWM of TF A. In the GEMSTAT-TFC model, a TF can ‘‘piggyback’’ on another TF that is already bound

to the DNA, through protein-protein interaction (PPI) as shown in Figure 1A. The piggybacking TF can then

modulate the net effect of the DNA-bound TF on a gene’s expression level, as if it were directly bound to

DNA. Thus, in the case of the single-site enhancer noted above, there are three possible configurations

now, with the new configuration (say sAR) having a molecule of TF R bound via PPI to TF A, which in turn

is bound to its site SA. The relative probability of configuration sAR is of the form W(sAR) 3 Q(sAR), as

for sA, but now W(sAR) also depends on the concentration of TF R and the interaction energy between

TF A and TF R, and Q(sAR) also reflects interaction between TF R and the BTM. GEMSTAT models the in-

teractions between BTM and multiple bound TFs by adding their respective interaction energies.

GEMSTAT-TFC inherits this feature and assumes additivity of the BTM-interaction energies of all directly

or indirectly DNA-bound TFs. It allows one or more TFs to piggyback on to a DNA-bound TF but demands

that only one TF may piggyback on a given TF molecule in a particular configuration. Also, we note that

GEMSTAT allows cooperative interactions (via PPI) between two DNA-bound TFs if their respective bound

sites are located proximally. GEMSTAT-TFC retains this feature and uses the same interaction parameter

for a pair of TFs when modeling this scenario (both TFs DNA-bound) or the indirect binding scenario (one

A B

Figure 1. Model schematic

(A) Schematic illustrating difference between GEMSTAT model (upper) and GEMSTAT-TFC model (lower). TFC model

allows for indirect DNA-binding of a TF at the site of another TF, leading to modulation of the latter (directly bound) TF’s

regulatory activity by the former (indirectly bound) TF.

(B) Schematic overview of model training and evaluation. (Left) Genomic regions having ChIP peaks for multiple TFs (from

Bap, Bin, Mef2, Tin and Twi) were marked as CRMs, i.e., putative enhancers. Each CRM was assigned to one of three

‘‘layers’’ (classes) according to their experimentally reported activity in the three muscle layers – mesoderm (Meso),

visceral muscle (VM), and somatic muscle (SM). The resulting activity map was provided to the model along with sequence

of each CRM (top left). Information about relevant TFs was also provided; this includes muscle layer activities (present or

absent) of each of five TFs and known/speculated protein-protein interactions among them (top, right), as well as PWMs

characterizing their DNA-binding preferences (right, middle). The orange color represents the TFs that are known to have

dual roles based on literature whereas green color represents known activators, but the model is not provided any

information about the role of a TF. The model (GEMSTAT or GEMSTAT-TFC) scans each CRM for presence of TF binding

sites using the PWMs and combines this ‘‘cis’’ information with ‘‘trans’’ information (presence of TF) to predict the

expression level driven by the CRM in each muscle layer. DNA accessibility (rank normalized DNase I Hypersensitivity)

scores of CRMs are used to modulate their model-predicted expression. Finally, the CRM is assigned to the layer with

highest predicted expression value for that CRM.
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TF DNA-bound). GEMSTAT trains two free parameters per TF (one representing TF-DNA binding strength

and one for the TF’s regulatory effect), and one free parameter for each pair of interacting TFs. GEMSTAT-

TFC trains the same free parameters and only one additional global free parameter. See STARMethods for

details of the GEMSTAT-TFC model.

In GEMSTAT-TFC, as in GEMSTAT, a TF has a fixed biochemical effect on gene expression, i.e., the

strength and direction (activator or repressor) is fixed, and learnable from data. However, the mathematical

formulation of the GEMSTAT-TFC model implies a binding site for an activator (resp. repressor) may in fact

have a repressive (resp. activating) net effect on gene expression. For example, if A is an activator but a

repressor R can piggyback on a bound molecule of A (as in Figure 1A), then the effect of site SA (of TF

A) on gene expression includes both an activating contribution from the directly bound A and a repressive

contribution from the indirectly bound R. As a result, mutagenizing site SA may increase gene expression if

the repressive contribution was larger in magnitude, making this appear to be a repressive site even though

its cognate TF (A) is an activator in themodel. Furthermore, if the latter condition is true, a knock-out of TFA

not only precludes the activating effect of A but also the repressive effect of R (via the DNA-bound A), and

thus may lead to an increase in gene expression, suggesting a net repressive role for A in this context, even

though its intrinsic effect as an activator is unchanged. This is an illustration of how indirect binding in the

GEMSTAT-TFC model may result in ‘‘dual roles’’ for TFs (See discussion).

GEMSTAT-TFC yields better fits to data on mesoderm specification

We used the GEMSTAT-TFC model to analyze available expression data on the well-studied gene regula-

tory network underlying mesoderm development in Drosophila (Figure 1B). Specifically, we studied a

collection of cis-regulatory modules (CRMs) (Peng et al., 2019) defined based on ChIP-chip data for the ma-

jor TFs of this network – Bap, Bin, Mef2, Tin and Twi – at multiple stages of embryonic development. We

focused on 233 CRMs that are known to drive expression in one of the three muscle layers ‘‘mesoderm’’

(‘‘Meso’’), ‘‘visceral muscle’’ (‘‘VM’’) and ‘‘somatic muscle’’ (‘‘SM’’), according to the CAD4 database (Cusa-

novich et al., 2018). Our modeling also utilized information about the five above-mentioned TFs known to

be important to gene regulation in these three muscle layers: presence or absence of each TF in each mus-

cle layer and known or speculated protein-protein interactions between pairs of TFs (Figure 1B, top right),

as well as PWM motif of each TF (see STAR Methods, Figure S1). The model learns to map each CRM to a

muscle layer. It does so by predicting (numeric) expression level driven by the CRM in each muscle layer,

utilizing information on TF presence/absence in that layer, and assigns the CRM to the layer with highest

predicted expression. This may also be viewed as a 3-way classification task.

We modeled the data with the GEMSTAT-TFC model and the GEMSTAT model separately, seeking to test

the significance of the ‘‘TFC’’ component, which explicitly accounts for indirect TF binding. Recall that the

GEMSTAT-TFCmodel has one additional parameter compared to GEMSTAT (16 versus 15), hence we used

a cross-validation approach for model comparison, partitioning the 233 CRMs randomly into training and

test sets in 4:1 ratio, repeating this process 100 times. (Random partitions were done in a way that retains

the relative proportions of the three classes in training and test sets.) We noted GEMSTAT-TFC to be signif-

icantly more accurate than GEMSTAT overall (Figure 2A,‘‘Total’’), with an accuracy of 0.49 compared to 0.45

(p value 8.9E-11, pairedWilcoxon test). The improved accuracy is especially pronounced for the SM and VM

classes (Figure 2A) whereas the two models have comparable performance for the Meso class.

Examination of hits and misses of models reveals learned mechanisms

For a better understanding of the models, we analyzed motif matches for the five TFs in the collection of

CRMs. First, we counted motif presence (estimated number of binding sites) in CRMs of the three classes

separately (Figure 2C) and observed statistically significant differences for somemotifs. For example, CRMs

of the VM class are enriched in the presence of the Bin motif compared to those of Meso and SM classes.

This agrees with Bin being present exclusively in the VM layer, and both models utilizing it as an activator in

this layer (Table S4). The Mef2 motif is enriched in CRMs of the SM class, but we did not notice any signif-

icant class enrichment for the other three TF motifs.

We next focused on CRMs that the models consistently succeeded or failed in classifying into their respec-

tive muscle layers, across the 100 iterations of random partitioning into training and test sets. We called a

CRM a ‘‘hit’’ for the GEMSTAT (or-TFC) model if its activity class was correctly predicted by the model in at

least 1/3 of the iterations where it appeared in the test set; otherwise, it was designated as a ‘‘miss’’. (The
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Figure 2. Model performance and features

(A and B) Performance comparison between the two models – GEMSTAT and GEMSTAT-TFC. CRMs were randomly

partitioned into training set (80%) and test set (20%). Y-axis shows the test accuracy of the models, averaged across 100

repeats of random partitioning, training and testing, on the task of classifying CRM activity into one muscle layer versus

the others. Total accuracy for the three-way classification task is also shown (‘‘Total’’). The two panels show accuracy

comparisons for predictions without (A) and with (B) use of accessibility data. In both cases, the accuracy of GEMSTAT-

TFC models (blue boxes) generally tends to be better than the GEMSTAT models (red boxes), as shown by p values of a

paired Wilcoxon test applied to each pair of distributions.

(C) TFs exhibit enrichment of predicted binding sites in specific CRM classes. Each panel shows average binding site

presence (LR scores after rank normalization) of a TF in CRMs assigned to each muscle layer – mesoderm (‘‘Meso’’),

visceral muscle (‘‘VM’’) and somatic muscle (‘‘SM’’). The TF Bin is known to be a key TF in visceral muscle and its binding

sites are enriched in VM enhancers (blue box).

(D) Motifs of select TFs distinguish CRMs that are amenable to model-based activity prediction. CRMs were designated as

‘‘hits’’ or ‘‘misses’’ based on how frequently they were predicted correctly as test examples in the 100 repeats of random

partitioning, training and testing of GEMSTAT or GEMSTAT-TFC models. Each TF’s motif presence (rank normalized LR

score) was recorded in CRMs of either class (‘‘hits’’ and ‘‘misses’’) and compared between classes. The comparisons are

shown separately for CRMs with known activity in each muscle layer (label at top of each plot) and for each model (label on

right of each row of panels). The TFs that have significant differences inmotif presence between ‘‘hit’’ and ‘‘miss’’ CRMs for

a model are marked with a star for eachmuscle layer. For example, Bin is the key TF for the visceral muscle (VM), and CRMs

that are not correctly predicted by the models have significantly lower motif presence of Bin than those that are correctly

predicted. (This was observed with either model).
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threshold of 1/3 was used because the random chance of a prediction being correct is 1/3 because there

are 3 possible predictions out of which only one could be correct.) Comparing motif presence in hits versus

misses (Figure 2D) revealed additional insights into the trained models. For instance, ‘‘hit’’ CRMs of the VM

class are significantly enriched for Bin motif presence compared to ‘‘miss’’ CRMs of this class. This is true for

either of the models and is in agreement with the observation made above (Figure 2C) about Bin being uti-

lized as an activator for the VM layer. Interestingly, the opposite trend is seen in Meso CRMs – the Bin motif

is depleted in ‘‘hits’’ versus ‘‘misses’’ of this class. This suggests that the presence of Bin binding sites mis-

leads the model to predict expression of true mesodermal CRMs in the VM layer, where that TF is present,

rather than the Meso layer where the TF is absent.

As another example, the ‘‘hit’’ CRMs of the Meso class are enriched for Twi motif matches compared to

‘‘misses’’ of this class, for both models (Figure 2D). Indeed, the TF Twi is present in the mesoderm layer

and both models learned an activating role for this TF (Supplement); that the models tend to fail on

CRMs lacking Twi motif matches suggests an important role for Twi for this class. On the other hand,

the Twi motif is relatively enriched in the ‘‘misses’’ of the SM class for the GEMSTAT model (Figure 2D);

this suggests that the presence of this motif contributes to misclassification of certain SM CRMs into the

Meso class. These observations remind us of the combinatorial and quantitative nature of the modeling

challenge: The TF Twi is present in Meso as well as SM and its (putative) binding sites are present in

CRMs of both layers, meaning that without consideration of the strength of Twi binding sites and the pres-

ence of other TFs’ sites in a CRM it would be impossible to classify CRMs between these two layers.

Comparison of sequence-based predictions to those based on epigenomic data

Our next set of model evaluations relied on a ‘‘leave-one-out cross-validation’’ (LOOCV), where each iter-

ation designates one CRM as test data and all remaining CRMs are used for model training. Once again,

GEMSTAT-TFC exhibited higher predictive accuracy (0.49 versus 0.45, Table 1) than GEMSTAT, the

improvement being most prominent on the SM and VM classes (the two smaller classes), and both models

performing equally on the Meso class. Its accuracy was clearly greater than that of a random predictor that

predicts each class with 1/3 probability (0.49 versus 0.33) or one that predicts each class with probability

proportional to the class size in the data set (0.49 versus 0.35).

We next examinedmodel performance in comparison with predictions based on epigenomic data. First, we

utilized whole-embryo DNA accessibility data from stages 5–7 (‘‘early’’) and 13–15 (‘‘late’’) [9], using early

accessibility data to predict mesoderm activity and late accessibility data to predict VM/SM activity. The

available data do not allow us to discern between VM and SM classes (both muscle layers are formed in

the later developmental stage), but they allowed accurate classification of Meso CRMs versus VM/SM

CRMs (accuracy of 0.82, Table 1 and it achieves accuracies of 0.69 and 0.67 in VM vs Rest and SM versus

Rest classification tasks respectively). Encouraged by this observation, and motivated by previous reports

(Peng et al., 2015), we utilized the accessibility data to adjust thepredictions of our sequence-basedmodels.

We adopted a simple heuristic, whereby themodel-predicted expression in a layer is multiplied by the rank-

normalized accessibility of theCRM in the appropriate stage (early forMeso and late for VMor SM).We refer

Table 1. Comparison of the predictive accuracy of different models, in leave-one-out cross-validation

Layer Random

Size-aware

Random GEMSTAT GEMSTAT-TFC Accessibility GEMSTAT(A) GEMSTAT-TFC(A)

ChIP-based

XGBoost

Meso vs Rest 0.52 0.51 0.56 0.57 0.82 0.79 0.76 0.81

VM vs Rest 0.57 0.60 0.64 0.67 0.69 0.71 0.75 0.81

SM vs Rest 0.57 0.59 0.69 0.73 0.67 0.75 0.77 0.83

3-way 0.33 0.35 0.45 0.49 0.59 0.62 0.64 –

Accuracy is shown separately for eachmuscle layer –mesoderm (‘‘Meso’’), visceral muscle (‘‘VM’’), and somaticmuscle (‘‘SM’’) – for the task of predicting if a CRM is

active in that layer or not. Accuracy for the 3-way classification task is also shown (‘‘3-way’’). (Note that the data set only includes CRMs that are active in exactly one

of the three muscle layers.) Two different randommodels were evaluated as baselines, one that predicts each class with 1/3 probability (‘‘Random’’) and one that

predicts classes with probability proportional to their representation in the data (‘‘Size-aware random’’). Listed accuracies for the randommodels are theoretical

expectations. GEMSTAT and GEMSTAT-TFC models were evaluated without and with (denoted by ‘‘(A)’’) accessibility information. Predictions based on acces-

sibility alone were also evaluated, for the task of classifying Meso CRMs versus VM/SM CRMs. A machine learning model that uses ChIP data for multiple TFs at

multiple stages of development was also evaluated (‘‘ChIP-based XGBoost’’). This model is trained separately for the binary classification task for each layer, while

GEMSTAT and GEMSTAT-TFC were trained globally (a single model for all layers).
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to these prediction schemes as GEMSTAT(A) and GEMSTAT-TFC(A), indicating that the sequence-based

model’s prediction has been augmented with accessibility data (‘A’). Note that accessibility data was not

utilized during training of the GEMSTAT/TFC models. Thus, we adopted an admittedly simplistic scheme

for incorporating accessibility data at a coarse resolution, and while more sophisticated approaches exist

(Peng et al., 2015), we eschewed those here to make model training and comparisons easier. Despite their

simplicity, these schemes were substantially more accurate than without accessibility data (Table 1). For

instance, GEMSTAT-TFC(A) had an accuracy of 0.76 for in discerning Meso CRMs versus others, compared

to 0.57 when not using accessibility data. It had a high accuracy (0.75, 0.77) in classifying VM (versus others)

and SM (versus others) as well, even though accessibility data by itself cannot discern between these two

classes.We also noted that the accuracy gap betweenGEMSTAT-TFC andGEMSTAT narrowed (0.64 versus

0.62 in 3-way classification) when bothmodels were augmented with accessibility data. As accessibility data

by itself cannot discern between the two differentiated classes, i.e., SM and VM, it achieves a 3-way classi-

fication accuracy of 0.59, lower than the 0.64 accuracy of GEMSTAT-TFC(A).

The mesoderm specification system has been extensively studied using TF-DNA binding profiles and pre-

vious work (Zinzen et al., 2009; Peng et al., 2019) utilized ChIP-chip data for the key TFs of this system (Twi,

Bin, Bap, Tin, Mef2) at five temporal stages to classify CRMs into the three muscle layers. We therefore

compared the predictive accuracy of the sequence-based models (augmented with accessibility data) to

the high standard set by ChIP-based models. Table 1 (second last column) shows the accuracy of a

state-of-the-art XGBoost model for the same set of CRMs and classes as in our study, as reported by

(Peng et al., 2019). It is worth noting that these ChIP-based XGBoost predictions were made by three sepa-

rate models, one trained for each layer, whereas our sequence-based predictions were based on a single

model (augmented with early and late accessibility information). Despite this, GEMSTAT-TFC(A) accuracy

was close to that of ChIP-based XGBoost predictions for the binary classification task of each muscle layer.

Finally, we evaluated (Table 2) the sequence-based models on a held-out set of 69 enhancers from the

CAD4 database. The models were trained using the entire set of CRMs, and we ensured that no enhancer

in the held-out set overlapped with any of the training CRMs. GEMSTAT-TFC(A) exhibited an accuracy of

0.74, slightly better than that seen in LOOCV cross-validation reported above, and substantially better than

GEMSTAT(A) on the held-out enhancers.

Model learns context-specific activating or repressive roles of transcription factors

In a section above, we studiedmotif presence in CRMs whose activities were correctly predicted (hits versus

misses) to gain insights about mechanisms learned by the two GEMSTAT models, including GEMSTAT-

TFC (Figure 2D). One of the most useful aspects of a mechanistic model is the assignment of regulatory

roles (activating or repressive) to TFs. The models have a free parameter per TF that reflects the biochem-

ical effect of a bound molecule of that TF and can be used to infer the TF’s regulatory role. This parameter

(called ‘‘alpha’’) captures the energy of interaction between the bound TF and the BTM; a value greater

than 1 (resp. less than 1) is equivalent to an activating (resp. repressive) effect. The learned values of the

alpha parameter of all TFs are shown in Table S4. However, in the GEMSTAT-TFC model this does not

reveal the full picture. Because of the indirect binding of TFs, the net effect of a TF on a particular CRM

in a specific muscle layer may be contrary to its biochemical effect. Our next goal was to catalog the extent

of this phenomenon.

Table 2. Model accuracy on held-out data (69 unseen enhancers from CAD4 database, not overlapping with

training CRMs)

Layer GEMSTAT(A) GEMSTAT-TFC(A)

Meso(33) vs. Rest(36) 0.75 0.78

VM(16) vs. Rest(53) 0.75 0.86

SM(20) vs. Rest(49) 0.73 0.84

3-way 0.62 0.74

Accuracy values are shown for the binary classification task for eachmuscle layer (‘‘Meso’’,‘‘VM’’,‘‘SM’’) versus the other two, as

well as overall (‘‘3-way’’) accuracy. GEMSTAT-TFC correctly predicts the activity of 8 additional CRMs compared to GEMSTAT

(51 true positives versus 43, out of a maximum of 69), and also makes 8 fewer false positive errors (18 compared to 26). The

number in the brackets in the first column denotes the number of enhancers in the class.
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GEMSTAT and GEMSTAT-TFC were trained on the entire set of 233 CRMs, and used to predict the expres-

sion of each of those CRMs after an ‘‘in silico knockdown’’ where a single TF’s concentration was set to zero

in a muscle layer. CRMs whose expression decrease (resp. increase) after a TF’s knockdown were deemed

as receiving a net activating (resp. repressive) input from that TF in the particular muscle layer and are

shown as points below (resp. above) the diagonal in panels of Figure 3A). These plots reveal that the

same TF may have ‘‘dual roles’’ in the GEMSTAT-TFC framework, i.e., an activating effect on one CRM in

one layer and a repressive effect on another CRM in the same or different muscle layer. Tin and Mef2 pro-

vide examples of this ‘‘dual role’’ phenomenon: Mef2 has an activating role in the SM layer (Figure 3A, left)

and a repressive role in the VM layer (Figure 3A, middle), whereas Tin has an activating role on some CRMs

and represses other CRMs in the Mesoderm layer (Figure 3A, right). We examine this phenomenon in

greater detail in a later section. Roles of each TF on all CRMs across all three muscle layers are shown in

aggregate in Figure 3B, with green and red indicating relative frequencies of activation and repression,

and yellow representing cases where a TF’s knockdown made little or no difference to predicted expres-

sion. We note that Twi and Bin have activating roles in every (or nearly every) case where they have a sig-

nificant effect on a CRM. These observations are consistent between GEMSTAT and GEMSTAT-TFC. How-

ever, the latter assigns dual roles to Tin and Mef2 (as seen in Figure 3A) and to a lesser extent to Bap,

whereas GEMSTAT assigns a single role (activating for Tin and Mef2, and repressive for Bap). (It is notable

that GEMSTAT assigns a dual role for Mef2, with a small fraction of CRMs receiving repressive input from

this activator; this arises from cooperative DNA binding by Mef2 and Tin, see Figure S2).

We surveyed the literature for published evidence of regulatory roles learned by the models, cataloging

eight cases where there is a direct evidence of regulation of a gene by a TF, in several cases via character-

ized enhancers (Table S5). We used in silico knockdowns as above to characterize the TF’s role for each of

these cases. For instance, both models assign an activating role for Bin on dpp enhancers (in VM) and Twi

onmef2 enhancers (in SM) (Figure 3C), consistent with the literature (Cripps et al., 1998; Zaffran et al., 2001).

Themodels disagree regarding the role of Tin on mef2 enhancers (in VM), with GEMSTAT assigning an acti-

vating role to the TF, consistent with the literature (Cripps et al., 1999).

In three other cases examined (Mef2 /b3-tubulin in SM (Damm et al., 1998), Tin / Tin in Meso (Xu et al.,

1998), Twi/ Tin in Meso (Yin et al., 1997)), the role assigned to the TF by the models was in agreement with

the literature (Figure S3). In two cases, the GEMSTAT-TFC model does not predict a significant role for the

TF for the gene, despite literature evidence for such a role. In these cases (Bap/b3-tubulin in VM (Zaffran

and Frasch, 2002), Mef2 / Act57B in VM (Kelly et al., 2002)), the mediating enhancer was not precisely

delineated in the literature, so it is possible that our in-silico knockdowns were not performed with the cor-

rect enhancer or its correct region. In summary, regulatory roles predicted by GEMSTAT and GEMSTAT-

TFC were consistent with the literature for 7 and 5 of the 8 cases respectively, with the only discordant pre-

diction being the assignment (by GEMSTAT-TFC) of a repressive role to Tin on themef2 enhancer in the VM

layer, where the literature suggests an activating role (Cripps et al., 1998). We discuss this misprediction in

detail in a later section, as it points to an intriguing new insight.

Modeling of indirect binding improves fits to experimental TF-DNA binding data

The results above (Table 1) indicated that explicit modeling of indirect binding improves the prediction of

CRM readout. We therefore asked if the same principle leads to improved prediction of TF localization on

DNA, an important open challenge in bioinformatics (Cheng et al., 2013; Ghandi et al., 2014; Zhou and

Troyanskaya, 2015; Xie et al., 2019). We tested this idea using ChIP data on genome-wide TF-DNA binding

of five TFs – Bap, Bin, Mef2, Tin, and Twi – that are known to be key regulators of the mesoderm specifica-

tion system. (These experimental profiles were also used above in the XGBoost-based scheme to predict

expression.) ChIP peaks are commonly used markers of TF-DNA binding and are also believed to

frequently represent indirect binding (Gordân et al., 2009; Shokri et al., 2019).

As a baseline method, we used each TF’s position weight matrix (PWM) to score each of the 233 CRMs

analyzed above, by adding the strength of every putative TF binding site in the CRM (following (He

et al., 2012), and compared these scores to the ChIP signal at the enhancer using the Spearman’s correla-

tion coefficient. We incorporated DNA accessibility data into predictions, adjusting each CRM’s PWM

score by the rank-normalized accessibility score of the CRM (as above) in stage 10-11; the ChIP data

were obtained from the same developmental stage. In contrast to the baseline prediction method, the

‘‘TFC’’ method additionally included ‘‘indirect sites’’ (Figure 4A) in estimating the TF-binding score of a
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A

B

C

Figure 3. Predicted regulatory roles of TFs

(A) Scatterplots show CRM expression in a muscle layer, as predicted by the GEMSTAT-TFC model, under wild-type

conditions (‘‘WT’’, x axis) and upon in silico knockdown of a TF (‘‘TF knockdown’’, y axis). Each point denotes a CRM and is

color-coded according to the muscle layer where it is known to be active. Points above (respectively, below) diagonal

indicate a repressive (respectively, activating) role for the TF. Predictions are shown for CRM expression in somatic muscle

upon knockdown of Mef2 (‘‘Mef2_SM’’), in visceral muscle upon knockdown of Mef2 (‘‘Mef2_VM’’) and in mesoderm upon

knockdown of Tin (‘‘Tin_Meso’’).

(B) For each TF, shown are the relative proportions of CRMs where the TF has an activating, repressive or neither role, as

inferred by in silico knockdown of the TF, under the GEMSTAT and GEMSTAT-TFC models. Although some TFs, e.g., Bin,

are predicted to have a predominantly activating role, there are also TFs, e.g., Mef2 and Tin, that are inferred to have dual

roles – activating for some CRMs and repressive for others.

(C) Examples of activating and repressive roles of TFs in specific muscle layers. Each scatterplot shows the predicted

effect of a TF (Bin, Tin, Twi) in a particular muscle layer (VM, VM and SM respectively), based on comparison of the CRM’s

model-predicted expression in wild-type condition and upon in-silico knockdown of the TF in that muscle layer. For each

TF, results are shown for one or more CRMs associated with a gene that is reported in the literature as being regulated by

that TF. Results are shown for both models (GEMSTAT-TFC in blue and GEMSTAT in red).
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Figure 4. Model-based evidence of indirect binding

(A) In the GEMSTAT-TFCmodel, a TFmay directly or indirectly (via another TF) bind DNA to regulate the associated gene.

Thus, motif presence from this model’s perspective (the ‘‘TFC method’’) is calculated as a sum of direct and indirect site

strengths. Motif presence in the baseline method is simply the sum of direct site strengths.

(B) Spearman correlation between ChIP signal and motif presence in CRMs, for each of five TFs for which ChIP data are

available, with motif presence being calculated as per either method (baseline and TFC). Each CRM’s sequence-based

motif presence score (rank normalized) was multiplied with its rank normalized accessibility score to get the final motif

presence score of that CRM.

(C) TF binding strength as measured by ChIP data (left) and motif presence (right), for four different TFs, in CRMs divided

into three classes based on GEMSTAT-TFC predictions: activated, repressed, or not regulated ("unaffected") by Tin in

mesoderm. Box width represents size of (number of CRMs in) each class. For instance, CRMs predicted to be repressed by

Tin have a significantly higher binding strength for Mef2, based on ChIP data and motif presence. On the other hand,

CRMs activated by Tin have greater motif presence of Tin.

(D and E) A schematic that suggests how Tinman can have a dual role in Mesoderm, in a manner consistent with

observations in (C).D: Tin can ‘‘piggyback’’ on to Mef2 through a protein-protein interaction learnt by the model, and thus

indirectly bind DNA atMef2 sites. It is also learnt to exert stronger repressive influence thanMef2’s activating influence, so

that the configuration shown results in overall repression, consistent with greater Mef2 presence in CRMs repressed by

Tin. E: The model learns strong cooperative interaction between Twi and Tin, and Twi exerts stronger activating influence
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CRM. In case of a typical binding site, the binding strength is estimated based only on the quality of match

(likelihood score) between the TF’s PWM and the putative site. Indirect sites, on the other hand, are puta-

tive sites of a partner TF and are scored based on (a) the match between the partner TF’s PWM and the

putative site and (b) the model-estimated strength of interaction between the partner TF and the TF as-

sayed by ChIP. The TFC method scores a CRM by adding strengths of direct as well as indirect sites,

and also incorporates DNA accessibility score, as in the baseline method. We found that the correlation

between predicted scores and ChIP signal is conspicuously higher with the TFCmethod of predicting bind-

ing, for the TFs Twi and Tin (Figure 4B). The same trend was observed to a lesser extent for the TF Bap, and

the two methods had comparable correlations with ChIP signal for the remaining two TFs. An example of

why the TFCmethod is more accurate is that it predicts indirect Tin binding, via Mef2, to CRMs that lack Tin

motif matches but harbor Mef2 binding sites, and if such indirect binding is indeed captured in the ChIP

data. We further examine this possibility below.

The peculiar case of Tinman: a case study with GEMSTAT-TFC

The unique feature of the GEMSTAT-TFC model is that it allows for a TF to modulate the regulatory effect

of a partner TF that is directly bound to DNA. This is also the basis of certain TFs exhibiting ‘‘dual roles’’

according to the model. The TF Tin provides an example of this phenomenon. In Figure 3A, we saw the

dual role predicted for Tin in the mesoderm layer: it activates a subset of CRMs and represses other

CRMs in the same layer. To understand this behavior in greater mechanistic detail, we partitioned the

CRMs into three classes based on the net regulatory input from Tin –‘‘Tin-activated’’ (expression reduced

by at least 5% upon Tin knockdown in mesoderm), ‘‘Tin-repressed’’ (expression increased by at least 5%

upon Tin knockdown in mesoderm) and the ‘‘Unaffected’’ class. We then examined the ChIP signal and

motif presence of four TFs – Twi, Mef2, Bap and Tin itself – in these classes of CRMs (Figure 4C).

First, we noticed that the Tin-repressed class is enriched for Mef2 binding (ChIP) (p value 9.4E-8) as well as

motif presence (p value 1.2E-29) compared to the Unaffected class; the enrichment is seen compared to the

Tin-activated class as well. However, we did not see an enrichment of Tin binding in Tin-repressed versus

Tin-activated CRMs, and the Tinmotif is relatively under-represented (p value 6.2E-7) in the repressed class.

This was surprising to us because themodel learned Tin to have a repressive effect on its own (alpha param-

eter < 1, Table S4) and we expected Tin binding to be the most prominent feature of Tin-repressed CRMs.

The enrichment we did see in Tin-repressed CRMs was that for Mef2 binding, even though Mef2 is learned

to be a weak activator (alpha > 1) by the model (Table S4). Putting these observations together, we hypoth-

esized that Tin’s repressive role is mediated primarily by its indirect binding via (piggybacking on) Mef2

(Figure 4D) at the latter’s binding sites. We suggest that the Tin-Mef2 complex has an overall repressive

role because of Tin being stronger than that of Mef2, according to the model.

On the other hand, we found the Tin-activated class of CRMs to be enriched for present of the Tin motif (as

noted above), which was unexpected for the same reason as above – that the model assigns a repressive

biochemical role to this TF. This suggested that Tin forms a complex with a strong activator to exert its net

activating role on these CRMs as per the model. Indeed, we observed the class to have relatively higher

levels of Twi motif presence, and themodel learned a strong activating role for Twi (Table S4), in agreement

with the literature (Yin et al., 1997). We interpret these observations as suggesting that Tin exerts its acti-

vating effect (within the model) due to Twi piggybacking on the DNA-bound Tin and the Twi-Tin complex

exhibiting a net activating role (Figure 4E).

To test the above hypotheses regarding mechanisms of Tin repression and activation in the trained

GEMSTAT-TFC model, we nullified the parameter representing Tin-Mef2 interaction or Tin-Twi interaction

respectively. Indeed, upon removal of Tin-Mef2 interaction the predicted expression of the Tin-repressed

CRMs in mesoderm increases and on removing Tin-Twi interaction the Tin-activated CRMs exhibit lower

Figure 4. Continued

than Tin’s repressive influence. Thus, the shown configuration of Twi piggybacking on to a bound Tin molecule results

in overall activating contribution, which is consistent with the greater motif presence of Tin in Tin-activated CRMs,

even though this is counter-intuitive in light of Tin’s repressive role learnt by the model.

(F) Effect of removal of Tin-Mef2 interaction on expression in mesoderm. Scatterplot shows model-predicted expression

for each CRM in wild-type conditions (WT) versus upon removing the Tin-Mef2 interaction parameter in the model (Tin-

Mef2 interaction removed).

(G) Effect of removal of Tin-Twi on expression in mesoderm.
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expression (Figures 4F and 4G), supporting the mechanistic hypotheses regarding Tin’s dual role illus-

trated in Figures 4C and 4D. The hypotheses also explain why the Tin-repressed class has relatively low

Tin motif presence compared to the Tin-activated class (noted above) even though the two classes have

similar ChIP signal on average: despite the lack of Tin motif matches, this TF binds (indirectly) to CRMs

of the Tin-repressed class via Mef2, whosemotif is enriched in the class. Such indirect binding also suggests

an explanation of the improved prediction of Tin binding (ChIP) by the TFC method (Figure 4B) that ac-

counts for indirect binding sites.

DISCUSSION

The phenomenon of indirect binding between TF and DNA, mediated by a DNA-bound TF, has been dis-

cussed in various contexts in the literature (Gordân et al., 2009). Commonly, TF ChIP peaks are found to be

lacking in footprints of the TF’s direct binding in the form of motif matches (Guo and Gifford, 2017).

Possible reasons for this may include inaccurate characterization of the TF’s motif, presence of weak bind-

ing sites that fall below detection thresholds of motif matches but yield strong ChIP signal because of

cooperative DNA binding, or indirect binding. There is also prior evidence that indirectly bound TFs within

enhancers can contribute to gene regulation, especially if it is part of a ‘‘TF collective’’ that co-localizes on

enhancers with loosely defined requirements on binding site content on those enhancers. These consider-

ations motivated us to try to quantify the extent to which indirect TF-DNA binding influences expression

levels driven by enhancers.

Our choice of themesoderm development regulatory programwas in part because of prior evidence of the

TF collective phenomenon in this context (Junion et al., 2012; Khoueiry et al., 2017), and in part because

spatio-temporal activity of enhancer in this program has been successfully predicted from TF-DNA binding

profiles (Zinzen et al., 2009). Our work is, to the best of our knowledge, the first attempt at modeling those

activities directly from enhancer sequences. We showed that the thermodynamics-based model

GEMSTAT, along with a simple means to incorporate DNA accessibility information, can achieve an accu-

racy of 62% (Table 1) for 3-way classification of enhancer class (mesoderm, visceral muscle, or somatic mus-

cle), a task for which the random baseline is an accuracy of�33%. Furthermore, we implemented an impor-

tant mechanistic extension to GEMSTAT by allowing indirectly bound TFs to exert regulatory influence, and

the resulting GEMSTAT-TFC model improved the accuracy significantly, e.g., from 62% to 74% (Table 2)

for the same 3-way classification task on held-out enhancers. The improvements were more pronounced

for the VM and SM classes compared to that for the Mesoderm class. This is in part because GEMSTAT

incorrectly assigns mesodermal expression to several VM/SM CRMs (due to Mef2 activation) whereas

GEMSTAT-TFC avoids predicting such ectopic expression by utilizing Tin as a repressor in mesoderm.

Notably, our cross validation-based evaluations of a 2-way classification task (each muscle layer versus the

other two, Table 1) revealed that GEMSTAT-TFC, based on sequence and accessibility data alone, can

achieve accuracies in the range of 75%–77%, which is close to the 81%–83% accuracy achievable with a ma-

chine learning predictor using experimental (ChIP) data on the five TFs. The five TFs used in our models are

the major (though not the only (Mbodj et al., 2016)) regulators of the studied enhancers, so the ChIP-based

predictor using the same five TFs provides an important comparison point or upper bound for the

sequence-based models.

It is worth noting that the difference between the performances of the two models becomes less pro-

nounced once accessibility data is incorporated. This is in part because accessibility and TF-DNA binding

are mutually influencing factors (Zaret and Carroll, 2011; Tsompana and Buck, 2014) and including exper-

imental data on accessibility is expected to capture some of the regulatory events that a sequence-based

model such as GEMSTAT or GEMSTAT-TFC aims to model; as such any advantage of a more mechanisti-

cally accurate model will be partly reduced when including accessibility data for both models. At the same

time, we found the performance of GEMSTAT-TFC(A) to be better than that of GEMSTAT(A) on the held-

out dataset of 69 enhancers from the CAD4 database (Table 2, 0.74 vs 0.62 3-way classification accuracy),

supporting the advantage of the TFC model.

Examination of the GEMSTAT-TFCmodels revealed that regulation via indirect binding is a possible expla-

nation of a TF may act as an activator at some enhancers while repressing others, without switching its un-

derlying biochemical role. (In our models the biochemical role of a TF is captured by the alpha parameter,

which is trained to a single value for each TF.) Such role-switching behavior has been reported in the
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literature for some TFs, and mechanisms proposed have included structural alterations (Mo et al., 2004),

binding site differences (Scully et al., 2000), separate protein domains for activation and repression, recruit-

ment of co-activators or co-repressors, etcetera (Bauer et al., 2010; Boyle and Després, 2010). TF-TF inter-

actions have also been suggested as a possible mechanism for dual role TFs, e.g., the activator Dorsal in

Drosophila. melanogaster can act as a repressor for the gene zen because of physical interactions with a

proximally bound repressor (Capicua) (Papagianni et al., 2018). Our analysis here suggests that TF-TF inter-

actionsmay underlie dual roles of a TF even if both TFs are notDNA-bound. From themodelingperspective,

this provides a simple andparsimonious explanation for dual roles, compared to a previous approachwhere

each TF is accorded two tunable parameters, one for each direction of regulatory effect (Bauer et al., 2010).

Themodel’s prediction of dual roles for Tin was intriguing to us. Specifically, the GEMSTAT-TFCmodel pre-

dicts Tin to activatemesodermal enhancers and inhibit SMenhancers in themesoderm. Tin is well known for

its activating role in the mesoderm (Xu et al., 1998; Cripps et al., 1999), but various reports of its repressive

roles have also emerged (Zaffran andFrasch, 2005), without clear explanationof theirmechanism.Moreover,

the importanceof Tin in regulating SMenhancers has also beendocumented (Liu et al., 2009). Closer inspec-

tion of the enhancers predicted to be activated by Tin revealed an important role for Twi in such activation

whereas Tin-mediated repressionwas owed to indirect Tin-DNAbinding viaMef2 rather than Tin repressing

directly. This latter observation was also supported by ChIP data, asMef2 binding was significantly enriched

in (putative) Tin-repressed enhancers whereas the Tin motif was relatively infrequent in this class.

Our work represents a first step towards including the widely reported phenomenon of indirect TF-DNA

binding into sequence-dependent models of gene regulation. This is a challenging task since sequence-

dependence of the phenomenon is not characterized a priori through the TF’s binding motif and must

be discovered through the footprints of partner TFs (Guo and Gifford, 2017). At the same time, it is an

important task because accurate understanding of the effects of indirect binding is necessary for mecha-

nistic interpretation of non-coding polymorphisms. There are several interesting directions of future work

that canmake our proposedmodel more accurate without anymajor changes. Themodel currently allows a

single TF to ‘‘piggyback’’ on a single DNA-bound TF in any given configuration. It should be worth

exploring if relaxing this assumption and allowing larger complexes of interacting TFs to assemble at

the binding site of any one of those TFs leads to greater explanatory power. Secondly, the current model

assumes bidirectionality of indirect binding: if TF ‘A’ can exert regulatory influence through indirect bind-

ing via TF ‘B’ then ‘B’ can also regulate expression through indirect binding via ‘A’. This assumptionmay not

be true in practice, and future models can be used to test the assumption. Finally, it goes without saying

that computational modeling of the nature presented here is meant only to generate plausible mechanistic

hypotheses from the available data, and careful experimental validations are required for us to truly learn

the subtle rules of cis-regulatory encoding.

Limitations of the study

This study is limited by insufficient knowledge and data availability for the regulatory network of interest.

Themodels utilize information about themajor regulators of the network, but not all known regulators. This

choice was necessitated by data availability. The new model is designed to be a parsimonious implemen-

tation of the transcription factor collective phenomenon, motivated by statistical reasons rather than

biochemical correctness. Evaluations of predicted transcription factor-enhancer relationships are limited

by sparse direct knowledge of such relationships.
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Lead contact

Further information and requests for data should be directed to and will be fulfilled by the lead contact, Dr.

Saurabh Sinha (sinhas@illinois.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All original code has been deposited at Github and is publicly available at https://github.com/

shounakbhogale/GEMSTAT-TFC as of the date of publication.

METHOD DETAILS

Data collection

The set of 233 CRMs was collected from a previous study (Peng et al., 2019). These were based on ChIP-chip

data on genome-wide TF binding for Bap, Bin, Mef2, Tin and Twi at multiple timepoints inD. melanogaster

embryonic development (Zinzen et al., 2009), with CRMs being defined as the genomic regions where a

cluster of multiple TF ChIP peaks was observed. The CRMs were classified into three classes – Mesoderm

(Meso), Visceral Muscle (VM), and Somatic Muscle (SM) based on their activity cataloged in the CAD4 data-

base (Cusanovich et al., 2018). (The CAD4 database compiles information from CAD (Bonn et al., 2012),

RedFly enhancer database (Release 5) (Gallo et al., 2011), and data from Vienna tiling project (Kvon

et al., 2014).) We also generated a subset of enhancers from CAD4 database that were active in exactly

one of the 3 classes and did not overlap with the 233 CRMs. This subset was used as unseen test data

for the models. Accessibility data at three different timepoints – stages 5–7, stages 10–11, and stages

13–15 – were also obtained from (Peng et al., 2019). Flybase Assembly 5 (dm3) was used to generate

enhancer sequences. Each enhancer/CRM was assigned a unique accessibility score per timepoint, ob-

tained by taking the maximum DNAse signal over the entire enhancer in the given timepoint. Information

on each TF’s presence (expression) or absence a layer was obtained from (Mbodj et al., 2016). A previous

study (Khoueiry et al., 2017) suggests existence of protein-protein interactions involving Bap-Bin, Bap-Tin,

Mef2-Tin, and Tin-Tw; we limited cooperative interactions to these TF pairs in training GEMSTAT and

GEMSTAT-TFC models.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Drosophila Genome Flybase Assembly 5 (dm3) The FlyBase Consortium/Berkeley Drosophila

Genome Project/Celera Genomics

https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001215.2/

Software and algorithms

GEMSTAT-TFC and GEMSTAT This paper, He et al., (2010) https://github.com/shounakbhogale/

GEMSTAT-TFC

XGBOOST Chen and He, n.d. https://cran.r-project.org/web/packages/

xgboost/vignettes/xgboost.pdf

Other

CAD4 database Cusanovich et al., 2018 https://doi.org/10.1038/nature25981

Collection of 233 putative CRMs Peng et al., 2019 https://doi.org/10.1093/gbe/evz103

Transcription Factor Expression Profile Mbodj et al., 2016 https://doi.org/10.1371/journal.pcbi.1005073
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GEMSTAT

GEMSTAT (He et al., 2010) is a thermodynamics-based sequence-to-expressionmodel based on ideas pro-

posed by Shea and Ackers (1985). The model considers TF interactions with their cognate binding sites in

an enhancer, with the transcription machinery, and with each other to predict the expression level driven by

an enhancer. Its basic premise is that all regulation-related processes including TF-DNA binding, pro-

moter-BTM (Basal Transcription Machinery) binding, and TF-BTM interaction occur under thermodynamic

equilibrium. Further, it assumes that mRNA levels are directly proportional to the probability of the BTM

being bound to the promoter. The model calculates this probability by considering every possible config-

uration of DNA-bound TFs and BTM and then calculates the total equilibrium probability of BTM-bound

configurations. It further assumes that the equilibrium probability of a configuration s, denoted by pðsÞ fol-
lows the Boltzmann distribution. Thus, pðsÞ=expð�bEðsÞÞ=Z where b= 1=kBT (kB is the Boltzmann constant

and T is the temperature), EðsÞ denotes the energy of the configuration s and Z is the partition function.

EðsÞis calculated by adding the energies of individual interactions that occur in s, which include the TF-

DNA interactions and TF-BTM interactions. BecausepðsÞ involves exponentiation of EðsÞ, the additivity

of energy terms amounts to a product of contributions from the interactions. The contribution of each

TF-bound site S is given by qðSÞ = n ,½TF� ,kðSoptÞ , expð�b ,DEðSÞÞ where ½TF� is the concentration of

the TF relative to some reference level n, kðSoptÞ is a free parameter representing the contribution of an

optimal bound site Sopt and DEðSÞ denotes the mismatch energy of site S relative to Sopt. According to

the theory by Berg and von Hippel (Berg and von Hippel, 1987), the mismatch energy of site S is

related to the sequence of the site and the binding preferences of the TF by the equation b, DEðSÞ=
LLRðSoptÞ � LLRðSÞ where LLRð ,Þ is computed from the known position weight matrix (PWM) of the TF

that binds at S and the background distribution of the nucleotides. For a given configuration s, the unnor-

malized probability of the configuration when the BTM is absent is calculated by the taking the product of

qðSÞ overall occupied sites S in s. When the BTM is present, the contribution of an individual site is

augmented with TF-BTM interaction energy. Thus, qðSÞ becomes qðSÞ,a where a is the strength of inter-

action between BTM and the TF that binds at site S. (a>1for an activator and a<1 for a repressor, i.e.,

the bound TF makes the configuration more or less probable respectively.) If a TF pair A, B is pre-specified

as exhibiting protein-protein interaction, a free parameter uAB > 0 is introduced in the calculations, and

pðsÞ is multiplied by this parameter uAB for every configuration s where A and B are DNA-bound at prox-

imally located sites. (uAB > 1 indicates cooperative interaction and uAB < 1 indicates antagonistic interac-

tion; the model may learn uAB � 1 if the data do not support such interaction.) In summary, the free param-

eters of the model include a TF-specific parameter for DNA-binding (equal to nkðSoptÞ), a TF-specific

parameter for TF-BTM interaction (a), a TF-TF interaction parameter uAB for each TF pair (A, B) specified

as interacting, and one additional parameter representing the basal rate of transcription. See (He et al.,

2010) for further details.

GEMSTAT-TFC

In the GEMSTAT model, the cooperative interaction between two TFs occurs only when both the TFs are

bound to DNA and the bound sites are located proximally. GEMSTAT-TFC model allows such TF-TF inter-

action even if only one of the TFs is bound to DNA and the other TF interacts with DNA indirectly through

PPI with its DNA-bound partner. Specifically, we allow only one TF to ‘‘piggyback’’ on the DNA bound TF at

a time (in a given configuration). Thus, qðSÞwill also include terms representing interactions between the TF

bound at site S and its partner TFs. So, qtfcðSÞ=qðSÞ$ð1 +
P

TFi
n $½TFi �$uiÞwhere TFi is a partner TF and ui is

the strength of PPI between the bound TF and TFi . Note that the parameters used in defining the additional

interactions, nand ui, are already part of the GEMSTAT model outlined above. However, in GEMSTAT, the

concentration scaling factor n is coupled with kðSoptÞ; so that nkðSoptÞ is treated as a single free parameter. In

GEMSTAT-TFC, on the other hand, we treat the concentration scaling factor n as a separate trainable

parameter (same for every TF), and kðSoptÞ as the TF-specific parameter for DNA binding strength. Hence,

the TFC model has one additional parameter compared to GEMSTAT.

Model training

Because our analysis includes five TFs and four cooperative interactions (Bap:Bin, Bap:Tin, Mef2-Tin, and

Tin-Twi), GEMSTAT has 15 trainable parameters (53 2 + 4 + 1) and GEMSTAT-TFC has 16 trainable param-

eters. The model uses TF-specific position weight matrix (PWM) motifs to find cognate sites of the TF in an

enhancer. We allow PWM matches in an enhancer with LLR score at least 0.5 times the LLR of the optimal

site to be considered as binding sites. Model parameters were trained to minimize the Sum of Squared Er-

rors (SSE) between model predictions and ground truth. Ground truth consisted of three values per
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enhancer where the functional class of the enhancer had value 1 whereas the other two classes had value 0.

(Note that all enhancers modeled were selected to be active in exactly one of the three classes.) The

average time to train the model on 233 CRMs is about 5 min on a MacBook Air (2017) with 16gb RAM.

XGBoost model

In Peng et al. (2019), an XGBoost model in the mode logistic regression for binary classification was trained

for each activity class (Meso, SM, and VM), where the positive set consists of CRMs of that particular class

and the negative set comprises CRMs of the other two classes. Because we tackle a 3-way classification

problem, we used prediction scores (continuous values) from the 3 models and assigned the CRM to the

class with the maximum score. (This was done in a LOOCV setting.)

Model performance

GEMSTAT andGEMSTAT-TFC both predict continuous expression values. Our goal here was to classify the

enhancers into one of the three classes (Meso, VM, SM). So, we assigned an enhancer to the class where it

has themaximumpredicted expression value. In case of a tie in predicted expression, we split the enhancer

equally between the tied classes for the purpose of evaluation. For models that incorporate DNA accessi-

bility, i.e., GEMSTAT(A) and GEMSTAT-TFC(A), predictions of expression class were made as follows. First,

we multiplied the GEMSTAT or GEMSTAT-TFC prediction of expression value of the enhancer in a given

muscle layer with the accessibility score of that enhancer in the layer. For this, we used early time point

accessibility data for Meso and late time point accessibility for VM and SM classes; the accessibility score

of an enhancer is the average accessibility of the entire enhancer in the appropriate time point, followed by

a rank-normalization across all enhancers. Next, we assigned the enhancer to the class for which the acces-

sibility-weighted expression value was the greatest among the three classes. Note that accessibility scores

are class dependent (early timepoint accessibility for Meso and late timepoint accessibility for VM and SM

class). The accuracy was then calculated by constructing a confusion matrix. It is worth noting that we did

not use accessibility data during the training of GEMSTAT/TFC models, instead choosing to use enhancer-

specific accessibility scores to up- or down-weight the predictions made by those models. A more integra-

tive use of accessibility in the GEMSTAT framework was previously reported in (Peng et al., 2015), but we

decided not to adopt that approach so as to simplify the training of GEMSTAT-TFC models and allow

easier interpretations of model comparisons.

LR calculations

We used likelihood ratio (LR) score to estimate binding site strength for a TF in a DNA segment, following

ChIP peaks (He et al., 2012). LR score of any segment, e.g., CRM or ChIP peak, for a particular TF is calcu-

lated by taking the sum of LR scores of all putative sites of the TF in that segment. The LR score of a site S is

given by expðLLRðSÞ�LLRðSoptÞÞ where Sopt is the consensus site of the TF that binds at site S, and LLRðsÞ
denotes the commonly used log-likelihood ratio score of any site s. (Note: the sum is over putative sites

defined by GEMSTAT, i.e., sites Swith LLRðSÞR0:5$LLRðSoptÞ.) The LR score of a segment was rank-normal-

ized for presentation purposes. Because the TFC model allows indirect binding of TFs, we modified

the formula of a site’s LR score to include the sites of partner TFs as well. Consider a TF A that

piggybacks on TF B. Then the contribution of a TF B0s site to the LR score for TF A will be given by

expðLLRðSBÞ�LLRðSB; optÞÞ$ kðSB; optÞ$ n$uðA; BÞ where uðA; BÞ is the cooperative strength between TFs

Aand B, SB denotes the binding site of TF B. Thus, the final score for TF A for enhancer e will be,

LRðe; AÞ =
X
SA

exp
�
LLRðSAÞ� LLR

�
SA; opt

��

+ n$
X
B

k
�
SB; opt

�
$ uðA; BÞ$

 X
SB

exp
�
LLRðSBÞ� LLR

�
SB; opt

��!

whereB denotes all the partner TFs of A and Stf denote all the sites of tf in the enhancer e.

Themodel dependent parameters in the above equation were obtained by training themodel on the entire

set of 233 putative CRMs. Further, we removed the contribution of a TF (direct or otherwise) in an enhancer

if the said TF was absent in the functional class of that enhancer.
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