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Visual mirror symmetry is a global feature that is
dependent on specific low-level relationships between
component elements. Initially conceptualized as virtual
lines between paired elements, it has been suggested
that higher-order structure between pairs of symmetric
elements forming virtual four cornered shapes may also
be important for strengthening the percept of mirror
symmetry. We utilize corner elements, formed by joining
two Gabor elements along a central midline creating
vertices with variable internal angles, in a temporal
integration paradigm. This allows us to specifically
manipulate the presence and type of higher-order
versus lower-order structure in patterns with
symmetrically placed elements. We show a significant
contribution of higher-order structure to the salience of
visual symmetries compared with patterns with only
lower-order structures. We also find that although we
are more sensitive to patterns with higher-order
structure, there is no difference in the temporal
processing of higher-order versus lower-order patterns.
These findings have important implications for existing
spatial filter models of symmetry perception that rely on
lower-order structures alone and reinforces the need for
elaborated models that can more readily capture the
complexities of real-world symmetries.

Introduction

Whereas symmetry itself is an inherently global
percept, it is derived from very precise relationships
between local information. In other words, although
symmetry is a descriptor of a higher-level structure

of a pattern or object, it is dependent on low-level
relationships between components. This means that
minor alterations to the positioning or appearance of
individual local features can have a disruptive effect
on the salience of the global symmetry. Changes in
luminance polarity (Bellagarda, Dickinson, Bell, &
Badcock, 2021; Mancini., Sally, & Gurnsey, 2005;
Wenderoth, 1996; Zhang & Gerbino, 1992), element
orientation (Locher & Wagemans, 1993; Saarinen &
Levi, 2000), color (Gheorghiu, Kingdom, Remkes,
Li, & Rainville, 2016; Morales & Pashler, 1999), and
positional skewing (Sawada & Pizlo, 2008; Wagemans,
1993; Wagemans, van Gool, & d’Ydewalle, 1991) have
all been shown to affect the perception of symmetry.
Alterations of global features, such as the orientation
of the symmetric axis (Corballis & Roldan, 1975) or
pattern outline (Wenderoth, 1995), can also change the
way patterns with otherwise identical local symmetry
information are perceived.

Sensitivity to symmetry is thought to have arisen in
the visual system because it often identifies an object,
which is the predominant role of form perception
systems (Locher & Nodine, 1989). Symmetry is
considered a non-accidental property, because it is
highly unlikely to occur in a visual image by chance if
it is not present in the physical object (Barlow, 1985;
Baylis & Driver, 1995). Symmetry is therefore a useful
way of segregating objects from their background
(Driver, Baylis, & Rafal, 1992). It has also been
argued to be a signifier of genetic quality (Jones,
Little, Penton-Voak, Tiddeman, Burt, & Perrett, 2001;
Simmons, Rhodes, Peters, & Koehler, 2004), object
affordance or utility (Treder, 2010), and aesthetics
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Figure 1. Examples of symmetric stimuli with differing higher and lower-order structures including (A) a solid polygon with only
high-order structure, (B) dot patterns with lower-order structure, and (C) patterns from the current study, where corner elements
allow manipulation of both higher- and lower-order structure. Virtual lines dictated by element position are shown with solid lines.
Potential projected lines are shown by solid lines. Lower order structure is defined as pairwise virtual lines spanning the symmetry
axis, shown by broken likes between paired elements. Higher-order structure is highlighted by solid lines on the same side of the axis.
In the A solid polygon stimuli, the higher-order structure may be necessary for symmetry perception as well as there is some
lower-order symmetry information conveyed by the corresponding points on the lines and corners, there is a paucity of discrete
virtual or projected lines. Therefore, symmetry perception based on lower-order processing alone (e.g. spatial filtering) will be
possible but is likely to include more noise. It is also difficult to manipulate higher or lower order structure in isolation; often these
shapes are 100% symmetric or 100% asymmetric. In B, symmetry is defined by virtual lines between dot elements at equivalent
positions over the axis. Although there may be some incidental groupings on the same side of the axis, any one dot is equally likely to
co-align with any other dot and could produce infinite spurious projected lines, shown by the arrows in Figure 1B, meaning that this
incidental higher-order structure is not a useful cue. In C, bother higher and lower-order structure is explicitly manipulated by varying
the coalignment of angled elements. Virtual lines within element pairs (lower-order structure, dotted lines) and projected lines
between element pairs (higher-order-structure, solid lines) are defined to form intermediate structures between individual local dot
pairings and the global symmetric pattern.

(Locher & Nodine, 1989). Further, it has recently been
shown that symmetry specific neural responses are
generated when viewing symmetric real-world stimuli,
such as flowers or landscapes (Makin, Rampone,
Karakashevska, & Bertamini, 2020). The magnitude
of this response scales with the quality of the figural
symmetry, but to a lesser extent for symmetry of
background landscape details (Makin et al., 2020).
Inspired by the idea that symmetry is an object cue,
some researchers have used irregular polygons as
stimuli (see Figure 1A for an example). Generally, these
stimuli are composed of two irregular contours (i.e.
lines with variable type and number of convexities
and/or concavities along their length) joined by two
straight lines forming the top and bottom edge of the
shape (Baylis & Driver, 1995; Baylis & Driver, 2001). By
manipulating the angles at the corners of these contours
and the positioning of the top and bottom lines, the
contours can either be reflected or translated, and can
be made to appear as part of one shape or split across
two shapes (Baylis & Driver, 1995; Bertamini, 2010).
Pashler (1990) argues that the functional purpose of
symmetry stems from its ability to convey information
about the orientation of an object. Therefore, symmetry
is an important reference point in the case of distortion
due to observer viewpoint or image plane. The use
of solid polygons to investigate symmetry perception

appears logical if considering symmetry as signaling a
meaningful figure against a ground (Baylis & Driver,
2001; Bertamini, 2010; Friedenburg & Bertamini, 2000;
Pashler, 1990) and provides important support for
the role of symmetry in structuring the visual world.
However, the utility of solid polygons is restricted to
investigating global features of symmetry, as their local
structural information cannot be readily manipulated in
a manner that changes the global percept (Machilsen,
Pauwels, & Wagemans, 2009).

Although solid polygons have been useful for
considering the role of symmetry as a figural cue, far
more popular in the symmetry perception literature
more broadly are sparse dot patterns or patterns
composed of Gabor patches. Dot and Gabor patterns
allow for the independent manipulation of global
factors, such as symmetry axis orientation, as well
as local factors at the element level (e.g. element
luminance polarity or element orientation). Whereas
sparse element patterns do not appear to readily
permit investigation of structure, early Gestalt theorists
argued that symmetry was a grouping principle,
and is considered an extension of the laws of good
continuation and proximity (Machilsen et al., 2009).
That is, symmetry is dependent on very specific
arrangements of local information that convey an
impression of structure in an otherwise abstract pattern
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(Jenkins, 1983). The component process model of
Jenkins (1983) is an early attempt to operationalize the
lower order structural relationships that lead to the
percept of symmetry. The accompanying model has
three main components; detection of the orientational
uniformity that establishes symmetric pairs, fusion of
these elements into a salient “virtual line,” and detection
of global symmetry from the coalignment of the
midpoint of these pairs/virtual lines along a symmetry
axis. The concept of virtual lines is not unique to
Jenkins’ (1983) model, having been previously referred
to as chords by Moor and Parker (1974) or dipoles by
Julesz (1971). In the case of mirror symmetry, such
virtual lines define pairwise groupings of elements
orthogonally across an axis to create lower-order
structure (see Figure 1B). Virtual lines formed by
elements running orthogonally to a symmetry axis are
fundamental to definitions of mirror symmetry and
are reflected in influential spatial filter models (Cohen
& Zaidi, 2013; Dakin & Hess, 1997; Dakin & Watt,
1994; Rainville & Kingdom, 2000). Virtual lines in this
conceptualization is specific to the line orthogonal to
the symmetry axis between the position of element one
and element two. When elements are symmetrically
positioned, these lines will be uniformly straight and
orthogonal relative to the symmetry axis. Although
pairwise positional groupings along these virtual lines
are generally thought to be necessary for symmetry
perception in dot patterns (Jenkins, 1983). Wagemans
and colleagues (Wagemans, 1993; Wagemans, van Gool,
Swinnen, & Horebeek, 1993; Wagemans, van Gool,
& d’Ydewalle, 1991) point out that this lower order
structure can be augmented by additional information
making it more resistant to noise.

In particular (Wagemans & colleagues, 1993;
Wagemans et al., 1993; Wagemans et al., 1991)
were interested in the idea of skewed symmetry. In
skewed symmetry, lower-order structure according
to Jenkins (1983), specifically midpoint collinearity
and orientational uniformity of the virtual lines
between elements is retained, but the these are not
perfectly orthogonal to the symmetry axis. In this
case, participants find it significantly more difficult to
perceive skewed symmetry compared to non-skewed
symmetric patterns (Wagemans, 1993; Wagemans et
al., 1991). However, Wagemans et al. also observed
that skewing was much less disruptive when patterns
had multiple symmetry axes compared to single axis
patterns (Wagemans et al., 1991). Wagemans and
colleagues postulated that this occurs because of the
presence of high-level structure in these patterns,
and this led them to develop what they termed the
correlational quadrangle or bootstrap model of mirror
symmetry (Wagemans et al., 1993). Here, the concept of
lower-order pairwise grouping of elements is retained,
but this is bolstered by additional structure introduced
by pairs of pairwise groupings. These “pairs of pairs”

form four-sided virtual polygons that can be either
reflected over the axis (two discrete reflected shapes)
or one larger shape spanning the symmetry axis (a
correlational quadrangle). An example of this is shown
in Figure 1C. Symmetry signal is strongest when the
angles formed within these paired virtual lines form
a well-defined symmetric trapezoid or parallelogram.
When these higher-order correlations are present, global
symmetry is more readily apparent from the explicit
lower-order dot pairings (Wagemans et al., 1993). The
propagation of a local reference frame from individual
elements and element pairs (Pashler, 1990) is facilitated
by the additional structure as it provides additional cues
for the most likely, or most informative, direction for
this reference frame to proceed. This process is referred
to as bootstrapping by Wagemans et al. (1993), and is
argued to be the mechanism by which local regularity
and global symmetry is reconciled in the visual system.
This is supported by Wageman et al. (1993) finding that
patterns with global regularity (i.e. where dot elements
were grouped or positioned to form parallelograms or
trapezoids) were more readily detected and less affected
by skewing than patterns defined by lower-order pairs
alone. This model has also been applied to patterns
with multiple axes of symmetry, albeit with varying
results (Treder, van der Vloed, & van der Helm, 2011;
Wagemans et al., 1991).

One limitation to testing (Wagemans et al., 1993;
Wagemans et al., 1991) correlational quadrangle model,
however, is that their stimuli were restricted to dot
patterns. As mentioned previously, local information
in dot patterns is non-oriented and therefore virtual
lines can be drawn in any direction from a given dot
to coincide with any other dot in the array, which
can also occur in the solid polygon stimuli. In their
experiments (Wagemans & colleagues, 1993; Wagemans,
1993; Wagemans et al., 1991) varied the presence
and type of lower- and higher-order structure by
manipulating the placement of each dot relative to the
other dots in an array. For example, this could include
ensuring optimum collinearity among four dots (or
two symmetric pairs) to form quadrangles spanning
the width of the pattern or grouping four elements in
close proximity on one side of the axis and reflecting
this over the axis. Although it is assumed that these
manipulations are sufficient to create or destroy a given
intermediate structure, the non-oriented nature of
dots mean that there is no way to explicitly prevent
or discourage interconnections between elements and
spurious groupings or virtual lines are likely. Gabor
elements with a narrow orientation bandwidth have
been utilized in symmetry perception research (Koeppl
& Morgan, 1993; Locher & Wagemans, 1993; Saarinen
& Levi, 2000; Sharman & Gheorghiu, 2019), but
have similar limitations to dots when attempting to
manipulate higher-order structural relationships. That
is, each Gabor in a symmetric array only conveys
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Figure 2. Examples of the five symmetry conditions used in the current study. In the top row, signal is defined by paired elements,
either (A) horizontal Gabors, (B) mirrored corners, or (C) unmirrored corners where symmetry is identifiable by position only. The two
conditions in the bottom row both have higher-order structure defined by groups of elements, either (E) shapes mirrored across the
axis, or (D) correlational quadrangles. In these two cases, vertices are mirrored across the symmetric axis but the nature of the shape
comparison differs. In D correlational quadrangles, the shapes cross the symmetric axis, whereas in E reflected shapes they do not,
but shape pairs themselves are symmetric. See Figure 6 for examples where the mirrored shapes and correlational quadrangles are
highlighted on the image.

one dominant orientation (e.g. they can be either
horizontal or vertical, but not both), and therefore
promote projected lines continuing along this dominant
orientation only. Where virtual lines are dictated by
element position (Jenkins, 1983), projected lines here
instead refer to the continuation of an implied contour
along the trajectory signaled by the orientation of an
element. For example, in the case of symmetrically
positioned vertical Gabor’s, there are horizontal virtual
lines between paired elements, and vertical projected
lines implied by the orientation of the individual
Gabors. Dot patterns have the same virtual lines as
Gabor patterns, but do not have constrained projected
lines. Based on the principles of good continuation, it
has been shown that Gabor elements sharing a similar
projected line can form continuous contours which, like
symmetric virtual lines, conveys a sense of structure
and readily segments signal from noise (Field, Hayes,
& Hess, 1993; Li & Gilbert, 2002; Tan, Dickinson, &
Badcock, 2016). However, because individual Gabors
can only convey one dominant projected line, and
symmetry is defined by specific arrangements of virtual
lines, inter-connections between elements not falling

along these dominant virtual and projected lines cannot
be easily manipulated.

An alternative element type that is potentially
better suited to this task was recently developed by
(Persike & Meinhardt, 2016; Persike & Meinhardt,
2017) in their investigation of the role of corners in
contour integration. Their corner elements were formed
by joining two Gabor elements and contained two
different orientation components (see Figures 1 and 2
for examples where corners are included in symmetric
arrays, and Figure 3 for discrete examples of the
different corners). In their subsequent experiments,
they found that contours could be formed using corner
elements alone (i.e. without intermediate elements)
without detrimental effect on contour perception.
Contours were formed by grouping several corner
elements such that the orientation component (or leg)
of each element coaligned with the adjacent leg of
the next element, such that they fell on the trajectory
of the same projected line. We suggest (Persike &
Meinhardt, 2016; Persike & Meinhardt, 2017) corner
elements provide a method for nuanced manipulation
of higher- and lower-order structure in visual mirror
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Figure 3. Examples of corner elements with different internal angles. Each one is made of two halves of Gabor elements joined along
the line bisecting the vertex.

symmetry perception. By varying the alignment of
the two component Gabors, legs, of symmetrically
placed corner elements, we can explicitly manipulate
the presence and type of both higher- and lower-order
structure within the pattern by introducing projected
lines in two directions from the same element. This
eliminates the confounding relationships between
elements present in (Wagemans’ & colleagues, 1993;
Wagemans, 1993; Wagemans et al., 1991) earlier
investigations and allows for both virtual lines within-
and projected lines between-element pairs to be made
more explicit and independently manipulated in
multiple directions simultaneously. This introduction
of two projected lines per element therefore allows us to
build on the structure implied by virtual lines between
paired elements alone.

Our experiment has two complimentary aims;
(1) to investigate how corner elements interact
with global mirror symmetry, extending (Periske
& Meinhardt’s, 2016; Periske & Meinhardt, 2017)
contour integration research, and (2) providing a more
controlled exploration of the role of higher-order
structure in mirror symmetry perception to build on
(Wagemans & colleagues, 1993; Wagemans, 1993;
Wagemans et al., 1991) correlational quadrangle model.
We use a temporal integration paradigm to compare
both sensitivity and temporal processing of discrete
symmetric patterns composed of either individual
Gabor elements or corner elements. To do so, we
use the same temporal integration paradigm used
in Bellagarda, Dickinson, Bell, and Badcock (2022)
in which a temporal onset asynchrony is introduced
between the elements of a symmetric pair. This method
allows the consideration of both sensitivity to a
particular stimulus and also the time window over
which it acts as a symmetry signal for the visual system.
Our previous work, particularly Bellagarda et al. (2022),
has shown that symmetric patterns to which we are
equally sensitive can have different visible persistences
(Bellagarda et al., 2021; Niimi, Watanabe, & Yokosawa,
2005), and patterns that have the same estimated

duration of visible persistence can have different
detection thresholds. By considering both sensitivity
(detection thresholds) and temporal processing (visible
persistence), we are better able to consider potential
underlying mechanisms and detect subtle differences
between conditions that could appear equivalent if only
examining sensitivity in isolation. Shown in Figure 2
our conditions are similar to those used byWagemans et
al. (1993), in that symmetry can be defined by horizontal
virtual lines only (lower-order structure), correlational
quadrangles (four sided trapezoids, marked only by
their corners, spanning the entire width of the pattern),
or reflected shapes (groups of four elements reflected
over the axis). However, Wagemans et al. (1993) stimuli
were restricted to manipulation of element position
only, thereby making their higher-order structure
implicit and reliant on grouping elements (specifically
pairs of pairs). Using discrete corner elements allows
for higher-order structure to be made explicit, and the
relationships between elements (and element pairs) to be
precisely defined based on the good continuation of the
projected lines of the coaligned legs, which facilitates
explicitly manipulated interactions between some
elements and not others while maintaining positional
symmetry.

Stimuli for three of our specific conditions contain
only lower-order structure defined by element position
and orientation (e.g. mirrored, see Figure 2B, or
unmirrored corners, see Figure 2C, and horizontal
Gabors, see Figure 2A). A further two conditions
contained higher-order structure through coalignment
of both legs of each element to explicitly create pairs
of paired elements joined by coincident projected
lines, and therefore virtual parallelograms defined by
four coaligned corners (see Figures 2D,E). A detailed
description for each condition in turn is provided below.
We hypothesize that patterns with corner elements
will be as readily perceptible as patterns with Gabor
elements only, as long as the corners are reflected over
the midline. If there is no coalignment of either leg
of an element, symmetry should be less salient as the
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fundamental projected lines are disrupted even though
the element position and therefore the virtual lines
are still symmetric, similar to findings with Gabors
of unmirrored orientations. We also hypothesize that
addition of higher-order structure (virtual polygons)
should improve symmetry perception relative to
patterns with lower-order structure alone, consistent
with findings by Wagemans et al. (1993). By using
corner elements, we can explicitly manipulate type of
higher order structure present by controlling element
alignment for each part of a corner element. More
importantly, we are also able to directly control the
number of correlational quadrangles present, as each
corner can only interact with a finite number of other
elements in a specified manner. In this way we can
more directly test the limits of Wagemans et al. (1993)
hypotheses and provide a systematic comparison from
lower-order structure and Gabors only, through to
different types of higher-order structures. A temporal
integration paradigm allows us to also consider
potential underlying mechanisms, and whether these
may differ between higher- and lower-order structures.

Method

Participants

Four participants (one female, range 24 to 56 years)
completed all experimental conditions. All participants
had normal or corrected to normal visual acuity. One
participant has a divergent squint and viewed the
stimuli monocularly as their left eye was patched. The
research was approved by the Human Research Ethics
committee at the University of Western Australia and
conformed to the tenets of the Declaration of Helsinki.
Informed consent was obtained from all participants.
The participants were experienced observers who have
completed other similar experiments.

Apparatus

All stimuli were generated using Matlab version 7.0
(Mathworks, Natick, MA, USA) and presented on a
Sony Triton G520 monitor (screen resolution 1024
× 768 pixels, refresh rate 100 Hz) via a Cambridge
Research Systems (CRS) ViSaGe (CRS, Kent, UK)
visual stimulus generator. Each pixel subtends two
inches of visual angle at the viewing distance of 65.5 cm
which was stabilized by a chin rest. Participants made
their responses via a CRS, CB6 button box.

General stimulus features

Each stimulus was composed of 64 discrete elements
placed within a circular window of 6.4 degrees radius

on a uniform grey background (luminance 45 cd/m2,
CIE1931xy coordinates 0.327, 0.347). To prevent
overlap, each element was restricted from falling within
30 inches of any other element. The centers were also
restricted from falling within 20 inches of the window’s
border so that their contrast relative to the background
would be imperceptible beyond the window. Elements
also could not fall within 15 inches of the central axis
of the pattern, meaning there was a slight reduction
in density along this region in both symmetric and
non-symmetric patterns. Both signal and reference
stimuli had the same space-averaged element density,
within the window, of 0.49 elements/deg2.

Constructing vertices
Each element in the array was composed of two

spatially coincident Gabor patches, sinusoidal gratings
within a window with a Gaussian contrast profile,
angled to create a vertex, examples of which are
presented in Figure 3. For each individual Gabor, the
standard deviation of the Gaussian window of each
patch was 8 inches of visual angle, with a full width
of the envelope at half maximum of 18.84 inches. The
spatial frequency of the grating was four cycles per
degree of visual angle, and carriers were in cosine phase.
At their maximum luminance point, the Gabors were
twice as bright as the background (Weber contrast 1).
Once the orientation of the edges comprising the vertex
were defined, the Gabor patches were then halved.
These halves were re-joined along the line bisecting the
internal angle of the vertex. The nature of these vertices
and the way their internal angle was defined depended
on the stimulus condition and they were determined by
the shapes required in the stimuli.

The Method of Constant Stimuli (MOCS) was used
to collect data corresponding to a range of signal to
noise ratios for each stimulus. Each symmetric signal
pattern could have four, eight, 12, 16, 20, 24, 28, or 32
pairs of symmetrically positioned vertices out of a total
of 32 possible pairs (in this case, 32 pairs equals 100%
symmetry). In conditions where signal was defined
by symmetric shapes the shapes were comprised of
four vertices each. Positions for half of the total signal
elements on a given trial were selected on one side
of an implied central vertical axis, and then reflected
over this central midline to form a mirror symmetric
pair. The remaining elements were unpaired noise
elements, meaning that no other element was spatially
coincident with them across the axis. In both the noise
elements of the signal stimuli, and the non-symmetric
reference stimuli, the total number of required noise
elements required were positioned on one side of the
axis and then reflected. This means that twice as many
element locations as required were selected. One half
of the noise elements were randomly selected and
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removed, one from each mirrored pair. This means
that the intended signal to noise ratio (or total number
of elements in the case of the asymmetric reference
pattern) was retained, and any accidental symmetry
pairings were precluded. In this manner, an equal
number of signal elements were present on both sides
of the axis in all stimuli. On average, signal and noise
elements were the same distance from the symmetry
axis.

Temporal delay conditions
All stimuli were dynamic and included an intra-pair

temporal delay varying between 0 ms and 60 ms. Each
stimulus was composed of 32 × 10 ms frames, and each
element had a lifetime of 40 ms (or four frames). Each
element in the array was temporally offset relative to
its symmetrically positioned partner, using a similar
paradigm to our previous temporal integration studies
(Bellagarda et al., 2021). The duration of this delay
varied between 0 ms and 60 ms, in 10 ms steps (or one
frame). Previous studies have consistently identified
60 ms as the upper temporal limit over which mirror
symmetry can be integrated and perceived in most cases
(Bellagarda et al., 2021; Hogben, Julesz, & Ross, 1976;
Niimi et al., 2005; Sharman, Gregersen, & Gheorghiu,
2018) so intra-element delays beyond 60 ms were not
considered in this experiment. On each frame, a quarter
of the total elements were removed and replaced with
new elements in a new location. In all conditions other
than 0 ms delay, the generation of signal elements on the
right side of the axis was delayed by a defined number
of frames relative to their partner on the left side of the
axis. The generation of the second element in each pair
via the process described above was therefore delayed
by between zero and six frames relative to their partner.

Lifetimes of positionally symmetric elements
temporally overlapped for a portion of time if the
delay was less than 40 ms because delay durations
are measured from the onset of element one in the
pair to the onset of element two (a stimulus onset
asynchrony, or SOA). This means that a portion of the
symmetrically positioned elements in a pattern will have
a mirrored partner physically present on the screen for
one, two, or three frames. As delay increases, the total
number of signal pairs that can be presented across
the entire stimulus duration changes. Importantly,
however, the total number of possible symmetric pairs
with a single frame does not change outside of the
limits of the delay. For the 0 ms delay condition, where
paired elements were not temporally offset, every frame
contains the anticipated number of signal pairs from
the beginning of the first frame to the end of the 32nd
frame. However, a 40 ms SOA (for example) by necessity
means that the first four frames cannot contain signal
elements, and symmetry can only be presented from
the fifth frame onward. Signal is therefore restricted to

280 ms of the total 320 ms. Control studies conducted
in our previous temporal integration publications using
the same paradigm have shown that the reduction
in the total number of frames containing symmetry
signal is very unlikely to contribute to the effects of
increasing intra-element delay (Bellagarda et al., 2021;
Bellagarda et al., 2022). Although element lifetime,
delay duration, and signal to noise ratio was consistent
across all experimental conditions, the manner in
which temporal delay impacted the overall array
depended on the spatial relationships between pairs
of elements and is explained independently for each
condition.

Stimulus conditions

Five stimulus conditions were included in this
experiment. All conditions had a vertical symmetry axis.
Four of these conditions were composed of the vertices
described above. The relationship of each vertex to the
other vertices in the array was varied to manipulate
the presence and type of higher-order structure in the
array. The fifth condition had no additional higher
order structure and contained individual horizontally
oriented Gabors. Examples of each condition are
shown in Figure 2. These conditions were selected to
permit five key comparisons of interest. First, and most
pertinently, we ask whether higher-order structure in the
form of correlational quadrangles is more salient than
patterns defined by either horizontal Gabors or reflected
corners alone. This was achieved using the horizontal
Gabors, mirrored corners and correlational quadrangles
(see Figures 2A,B,D, respectively). Following this,
we also asked whether corners need to be reflected
across the axis to facilitate perception of the underlying
positional symmetry by comparing our reflected and
unreflected corners (see Figures 2B,C). Finally, we ask
whether the type of higher-order structure in an array is
important (see Figures 2B,D,D,E). Does the structure
need to span the symmetry axis, as in the correlational
quadrangles (see Figures 2B,D), or is reflection of
discrete four cornered shapes (see Figures 2D,E) just as
readily perceived?

Horizontal gabors
Stimuli in this condition were constructed using

individual horizontally oriented Gabor elements
(see Figure 2A), similar to those used previously
in studies of local orientation in mirror symmetry
perception (Bellagarda et al., 2022; Sharman &
Gheorghiu, 2019). The Gabors had the same features
used in all other conditions, the only difference being
that the individual Gabors were not spliced together to
create vertices. This condition was included as a baseline
to identify variation in symmetry detection arising
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Figure 4. Schematic detailing formation of the correlational quadrangle stimuli. (A) Four symmetric positions spanning the symmetry
axis are selected, with the symmetry axis as the centroid. With respect to the centroid, the polar angle for each point was calculated.
Beginning with point with the smallest polar angle, we determine the angle of the Gabor forming the first leg of the vertex. One leg
on each vertex is always oriented horizontally at 90 degrees to the symmetry axis, to align with the horizontal leg of its partner across
the axis. The second leg is variably oriented to align with the second leg of the vertex on the same side of the axis. This process
continues systematically around the second, third, and fourth largest points to form (B) one correlational quadrangle centered on the
symmetry axis.

from the vertex elements and additional structure
provided by the shapes, compared to more standard
Gabor elements containing a narrow orientation range.
Symmetry in this case was thus defined by collinear
pairs of horizontal Gabors falling on a horizontal
virtual line that are independent of all other pairs
in the array, similar to the mirrored and unmirrored
corners conditions, described below. This condition is
identical to our study of local orientation information
in symmetry perception (Bellagarda, Dickinson, Bell,
& Badcock, 2022). Two participants (CB and ED)
completed both studies in parallel, and their data are
used in both this experiment and in Bellagarda et al.
(2022). The other (TM andMF) participants completed
only the conditions of this experiment.

Correlational quadrangles
In the correlational quadrangles condition

(see Figure 2D), signal is defined by a higher structure
created from four vertices forming a four-sided polygon.
In this case, the shape extends across the symmetry axis
such that the centroid is always on the symmetry axis.
As in the mirrored corners condition, each vertex has
one horizontal edge oriented orthogonal to the axis of
symmetry, coaligned with the horizontal edge of the
symmetrically positioned vertex across the axis. The
angle of the second edge within an element varies but
is always oriented at the angle required to co-align with

the second edge of another vertex on the same side of
the axis. This means that trajectory of the virtual lines
created by a vertex is the same as two other vertices
in the array, one orthogonal to the axis and the other
parallel. In essence, each correlational quadrangle is
formed by a “pair of pairs” extending across the axis.
This process is shown in Figure 4. Signal levels of four,
eight, 12, 16, 20, 24, 28, or 32 pairs of symmetrically
positioned vertices correspond to two, four, six, eight,
10, 12, 14, or 16 correlational quadrangles respectively
(Signal level/2).

Mirrored corners
In the mirrored corners condition (see Figure 2B),

symmetry is defined by low-level collinearity where
pairs of vertices are reflected over the central axis.
They are formed from the correlational quadrangles
condition described above, but the alignment of pairs of
elements is disrupted to inhibit higher-order structure.
All vertices in the array contain one horizontal edge
positioned orthogonal to the symmetry axis. The second
edge of each vertex could be at any angle relative to the
horizontal edge. Whereas the angle of the second edge
is mirrored across the axis, it is angled such that no two
vertices are aligned on the same side of the axis. For
paired elements, both vertices have the same position
and internal angle, such that they are mirrored over the
midline. Noise elements are not paired over the axis,
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and the second edge of each vertex is oriented such that
it is not coincident with any other part of the array. The
orientation of the second edge of the vertex is defined
by first forming a correlational quadrangle, as described
above, and then rotating the two collinear edges on the
left side by pi/8 (22.5 degrees anti-clockwise) and those
on the right side by –pi/8 (22.5 degrees clockwise). This
disrupts the correlational quadrangle, but results in the

signal vertices on the left and right being mirror images
of each other. Signal in this case is defined by spatially
coincident pairs of vertices, and all features (including
position, orientation, and internal angle) are maintained
in mirrored form across the axis. Furthermore, the
projected and virtual lines between paired elements are
indicated by the co-aligned horizontal edge of each
angle.

Figure 5. To form the signal shapes, (A) four signal positions are selected on the left side of the symmetry axis. The mean of the
positions of the four points was calculated in the X and Y dimensions to determine the location of the shape’s centroid. (B) With
respect to the centroid, the polar angle for each point was calculated and then ordered by magnitude from smallest to largest.
Beginning with the point with the smallest polar angle, we determined the angle of the Gabor forming the first edge of a vertex. This
was aligned toward the position with the next largest polar angle. The second edge was oriented towards the last position forming
the vertex defining the first corner. The second, third, and fourth corners were treated similarly in turn forming the shape. (C) The
corresponding mirror reflection of this shape was generated in the same manner on the other side of the axis by (D) choosing the
same four positions. Noise shapes were also generated in the same way, but without the corresponding shape across the axis.
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Mirrored shapes
Here, symmetry is defined by the mirror reflection

of an otherwise abstract four-cornered shape over the
axis of symmetry (see Figure 2E). The process by which
the shape stimuli were formed is detailed in Figure 5.
The more shapes that are reflected in this manner, the
stronger the symmetry signal. Signal levels of four,
eight, 12, 16, 20, 24, 28, or 32 pairs of symmetrically
positioned vertices correspond to one, two, three, four,
five, six, seven, or eight shapes respectively (Signal
level/4). Noise is also defined by a four-cornered
polygon, but they are not reflected over the axis; that is,
a congruent shape occurs on the left compared to the
shape on the right.

Delay is implemented in the same manner as
described above by delaying the onset of the elements
on one side of the axis relative to the other. However,
because symmetry signal in this condition was defined
by groups of four elements, all four need to be present
on screen for the same four frame lifetime. The second
group of four elements on the other side of the axis also
appeared together on the delayed frame and existed
on screen for the subsequent four frames. This was
necessary to maintain the intended signal to noise
ratio from frame to frame. As a result, on some frames
no elements would be removed and replaced, but
on others a group of four elements will be replaced
simultaneously. Noise elements change in the same
manner. The signal to noise ratio remains constant
for each frame of a particular stimulus. The sudden
onset of a group of elements may have made the
groups easier to detect (Blake, 1999; Lee & Blake, 2001;
Rideaux, Badcock, Johnston, & Edwards, 2016) but this
effect was the same for both signal and noise stimuli.
Differences between the correlational quadrangle and
mirrored shapes stimuli are illustrated in Figure 6.

Unmirrored corners
In the unmirrored corners signal stimuli (see

Figure 2C), only the position of the apex of the vertices
is symmetrically placed. The orientation of both edges
and the internal angle of each vertex is maintained
both between and within pairs, but the entire corner is
rotated around its own central apex. The stimuli were
constructed by creating a mirrored shapes stimulus
as described above and then rotating all vertices by
pi/8 (22.5 degrees anticlockwise) disrupting the shapes
and ensuring that the signal vertices on the right were
rotated by pi/4 (45 degrees) with respect to the mirror
image of their partner on the left. The same process
was conducted for the noise vertices, except these
elements did not have symmetrically corresponding
apex locations.

Task

Four participants completed all five experimental
conditions. The five experimental conditions were
randomly interleaved in a different order for each
participant, such that all runs were completed for a
given condition before the participant moved to the
next. Each participant completed two runs of 120
trials for each delay duration and shape condition.
Each participant therefore completed 11,200 trials.
Twenty trials were completed for each MOCS step. A
two-interval forced-choice task was used. Trials were
composed of a test stimulus containing a proportion
of symmetric pairs, and an all noise (asymmetric)
reference stimulus. Individual stimuli were presented for
320 ms, with a 700 ms ISI between successive stimuli
(i.e. the required time to generate the next stimulus).

Figure 6. Examples of the different types of higher-order structure used in this experiment. Some of the virtual lines between grouped
elements have been drawn on in this example to highlight difference in structure between the two types of stimuli, but were not
included on the stimuli used in the experiment. In (A) the correlation quadrangles, structure is formed by four symmetrically
positioned corners forming a single shape that spans the symmetry axis. Conversely in (B) the reflected shapes the condition, the
group of four corners is reflected over the axis two form two discrete but mirrored polygons on either side of the array.
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Participants indicated whether the first or second
interval contained the symmetric stimulus using the top
left and right buttons of a CRS, CB6 button box.

Results

The mean proportion of correct responses was
calculated for each combination of the eight MOCS
steps, seven delay durations and five experimental
conditions. Data sets for individual participants were
inspected, and a similar pattern of performance was
identified across all four participants. As a result, we
have elected to average performance prior to further
analyses to maintain consistency with our previous
studies. A Quick function (Quick, 1974) was fit to the
data describing proportion correct versus signal level to
estimate the signal level (proportion of symmetrically

positioned element pairs) required to correctly
identify the symmetric interval on 75% of trials. Note
that thresholds for the two conditions containing
higher-order structure (correlational quadrangles and
reflected shapes) could also be calculated based on
the number of quadrangles or shapes present in a
stimulus. To allow for more straightforward comparison
between patterns with higher- versus lower-order
structure, thresholds will be reported as a percentage
of symmetrically positioned pairs. The percentage
of symmetrically positioned elements was calculated
for the psychometric functions fit to the number of
symmetry pairs in all cases.

As is evident in Figure 7, all five conditions are
observed to have a similar functional form and show
a consistent upper limit to temporal integration.
Although each condition appears to change in a similar
manner with increasing delay, there is a substantial
vertical separation between conditions. This suggests a

Figure 7. Thresholds and model fits for the five stimulus conditions used in this experiment across each of the seven delay durations.
Mean 75% correct thresholds across four participants are plotted for each SOA with accompanying 95% confidence intervals. Each
condition is then fit with the two-parameter fit function. Conditions where higher-order structure are shown with solid lines, whereas
conditions defined by lower-order information only are shown with broken lines. Panel (A) includes all five conditions, and highlights
the significant vertical separation between most conditions. Graphs are then split into our three comparisons of interest which are
discussed in more detail below; (B) horizontal only, reflected corners and correlational quadrangles, (C) reflected versus unreflected
corners, and (D) correlation quadrangles compared to mirrored shapes. In all panels, the axis has been extended to show where
greater than 100% signal is required.
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Horizontal only Mirrored corners Correlational quadrangles Unmirrored corners Mirrored shapes

Threshold (T0) 10.56 (33%) 8.64 (27%) 7.61 (24%) 11.21 (35%) 8.89 (28%)
Threshold (T0) 95% CI 9.75 to 11.42 7.63 to 9.72 6.35 to 9.01 9.8 to 12.74 8.05 to 9.77
Persistence (P) 74.17 62.92 64.14 68.71 67.87
Persistence (P) 95% CI 63.70 to 88.99 52.10 to 80.05 49.40 to 93.15 55.18 to 91.81 57.51 to 83.15
R squared 0.98 0.97 0.93 0.95 0.97

Table 1. Characteristics of integration curves for each condition. *Thresholds = number of symmetric pairs (percent symmetric),
persistence = ms SOA. CI = 95% confidence interval.

difference in sensitivity depending on element type, as
well as the presence and type of higher-order structure
in a given pattern. To obtain a more nuanced analysis
of sensitivity to and processing of mirror symmetry in
each condition, we applied a two-parameter fit model
used in our previous studies of temporal integration
mirror symmetry (Bellagarda et al., 2021). The
two-parameter fit function uses estimated threshold
(T0) and persistence (P) as free parameters, along with
delay duration as an independent variable and the
40 ms element lifetime (L), thus leading to the function;

threshold = T0

(
L + P

L + P − delay

)
.

The function works from the hypothesis that
although all elements are physically presented on the
screen for 40 ms (lifetime, or L), their signal continues
to persist as signal to the visual system for a variable
duration after the end of this physical lifetime (Badcock
& Lovegrove, 1981; Coltheart, 1980; Niimi et al., 2005).
We refer to this as persistence, or P. Therefore, the total
duration over which an element can act as signal to the
visual system is L + P, or the sum of physical lifetime
plus visible persistence. Because L is always fixed at
40 ms, we only report values for P as the estimated
duration after this physical lifetime ends. It should be
noted that P estimates the duration over which signal
can be distributed while still acting as signal to the
visual system. A shorter P indicates lower tolerance of
temporal delay, and a small T0 indicates lower symmetry
detection thresholds. These values are summarized
in Table 1. Examining these results, we can see a high
proportion of the variance across the five conditions is
explained by the model (mean R2 value = 96%). Model
fits were compared across conditions using an extra sum
of squares F test (Motulsky, 2007), showing significant
differences in processing across the five conditions; F(8,
25) = 15.69, p < 0.0001, ηp

2 = 0.83. This is driven by a
significant difference in T0 across conditions; F(4, 25) =
11.04, p < 0.001, ηp

2 = 0.64. There was no significant
difference between P estimates; F(4, 25) = .49, p = 0.74,
ηp

2 = 0.07. As P does not change across conditions, our
subsequent analyses will focus on T0. Conditions are
compared independently with Bonferroni correction;
as seven comparisons are reported here, the significant

level used following correction was 0.007 (0.05/7).
Here, individual extra sums of squares F tests were
used to quantify specific differences between T0 based
on the presence and type of higher-order structure
in relation to our hypotheses. Note that the below
comparisons were planned prior to completion of
the study. However, we will only report comparisons
between T0 estimates, which were identified as driving
the significant differences in the above comparisons.

Is there a role for higher-order structure in
mirror symmetry perception?

In all our conditions, symmetric pairs are defined by
elements falling along the same virtual line oriented
orthogonal to the symmetry axis. Previous work
(Bellagarda et al., 2022; Saarinen & Levi, 2000)
typically shows horizontal elements, that are also
oriented orthogonally to the symmetry axis like the
virtual line they fall on, make a strong contribution
to symmetry detection mechanisms. In the mirrored
corners condition, the horizontal component is
preserved in these elements with the same features as
the horizontal only condition. The difference between
the two conditions is the addition of a second leg in the
mirrored corner elements, which does not fall along this
virtual line and contains an additional projected line. If
the additional orientation information in the mirrored
corners condition is disruptive to mirror symmetry, we
would expect to see higher T0 estimates in the mirrored
corners compared to the horizontal only elements.
T0 was significantly lower in the mirrored corners
condition compared to the horizontal only condition
(F(1, 10) = 13.47, p = 0.002, ηp

2 = 0.57). This indicates
that not only are corner elements containing two
orientation components not disruptive to symmetry
detection, but our participants were more sensitive to
symmetry in this condition than when patterns were
composed of horizontal Gabors.

We turn now to the main question of interest for this
paper; are patterns with higher-order structure more
readily detected than patterns with only lower-order
structure? In the case of the reflected corners condition,
higher-order structure is specifically weakened by
manipulation of the alignment of the vertices so
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that no additional concordant projected lines can
be formed by component elements other than those
defining the bilateral symmetry. Higher-order structure,
introduced by explicit groupings of pairs of elements
into four-cornered shapes spanning the symmetry axis,
should introduce additional structural information
into the symmetry array that cannot be achieved in
non-symmetric reference patterns. The additional
structure in correlational quadrangle stimuli leads
to better symmetry detection performance than for
conditions where symmetry is described by position
alone, indicated by significantly lower T0 in the
correlational quadrangle condition (horizontal only
F(1, 10) = 22.12, p < 0.001, ηp

2 = 0.69; unreflected
corners F(1, 10) = 21.01, p = < 0.001, ηp

2 = 0.68).
However, T0 for the reflected corners condition
does not differ from the correlational quadrangles
condition (F(1, 10) = 2.4, p = 0.08, ηp

2 = 0.19). The
only difference between these two conditions is the
orientation of the second leg of each vertex. In the
correlational quadrangle, this leg is angled to align with
the second leg of another vertex on the same side of the
axis, creating the higher-order structure. In the reflected
corners condition, this leg is oriented such that it does
not align with the second leg of any other vertex in
the array. In both cases, the first leg of a given vertex
is always horizontal, and always aligns with the first
horizontal leg of its symmetrically positioned corner
element across the axis. These horizontal projected lines
will fall along the existing position based horizontal
virtual line across the axis. Patterns where component
elements form correlational quadrangles are more
readily detected than patterns with any variation of
higher-order structure considered thus far. Although
this is small for the reflected corners condition,
the additional structure added by the presence of
correlational quadrangles does make a contribution to
sensitivity here.

Do nonreflected corner elements disrupt
symmetry detection?

In both the horizontal only and mirrored corners
condition, the position and identity of elements are
always reflected over the symmetry axis. Previous
research has shown that when symmetric pairs are
composed of oriented elements that are not reflected
over the axis, such as if one element is horizontal
while the other is vertical, both T0 and P estimates
are significantly higher than when paired elements are
reflected (e.g. two horizontal or two vertical Gabors;
Bellagarda et al., 2022). Other studies have also shown
a significantly disruptive effect of mismatching Gabor
elements within pairs, both in terms of orientation
(Saarinen & Levi, 2000) and other features such as
luminance polarity (Bellagarda et al., 2021; Wenderoth,

1996; Zhang & Gerbino, 1992). Based on these findings,
it is sensible to consider whether a similar effect may
occur if corner elements are not reflected over the axis.
Here, the apex of both corners will fall in mirrored
positions across the axis, however the orientation of
the internal angle of the elements will not be reflected
across the axis. Based on previous studies, it can be
hypothesized that unmirrored corner elements will have
a detrimental effect on symmetry perception compared
to either horizontal Gabor elements, or reflected corner
elements.

Compared to reflected corners, the unreflected
corners have a large significant disruptive effect as
T0 for unreflected corners was significantly higher
(F(1, 10) = 13.03, p = 0.003, ηp

2 = 0.57). However,
this sensitivity cost is quite small when comparing
with horizontal Gabors. There was no significant
difference in T0 between horizontal only and unreflected
corners (F(1,10) = 0.93, p = 0.18, ηp

2 = 0.09). This is
contrary to expectations given the disruptive effects of
mismatching element orientation in previous studies
(Bellagarda et al., 2022). From this, we would expect
a significant detrimental effect of unmirrored corners
compared to both the horizontal only and mirrored
corners conditions as neither should interfere with
low-level positional information as is expected from the
unmirrored corners condition. This result implies that
the visual system can reconcile discordant information
from non-symmetric vertices in symmetric positions,
but it also shows that useful information is added by
the second leg of the mirrored corners additional to
the existing horizontal information present in Gabor
elements. The benefit of additional information from
mirrored corners, which reinforce virtual lines, appears
greater than the cost introduced by unmirrored corners,
which was expected to disrupt symmetry signal. The
most relevant finding for our experiment, however,
is that detection of symmetry in patterns composed
of corners is the same or better than patterns with
traditional Gabor elements containing a very narrow
range of orientations.

Does type of higher-order structure matter in
symmetry detection?

The reflected shapes condition is formed by grouping
four corner elements on one side of the axis, and
reflecting this group of four across the axis to form
two mirror symmetric four cornered polygons. Rather
than spanning the symmetry axis, structure here is
formed from mirror reflection of two separate abstract
shapes on either side. Both types of structure are
embedded in an intrinsically symmetrical array, but can
be conceptualized as a one- versus two-object problem
(Baylis & Driver, 2001; Koning & Wagemans, 2009).
This is highlighted in Figure 6 below. If the benefit of
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corner elements, and the introduction of higher-order
structure spanning the central axis, is that it makes
the symmetry information more readily perceptible
by strengthening lower-order pairwise structure, then
we would expect that our correlational quadrangle
stimuli would be more salient than our reflected
shapes condition. The reflected shapes condition does
introduce additional structural information to the
symmetric pattern. However, it also introduces an
additional computational step of comparing discrete
four cornered shapes over the axis to determine whether
they are symmetric which is shown to negatively impact
symmetry in studies using solid polygons (Baylis &
Driver, 2001; Bertamini, 2010; Koning & Wagemans,
2009).

Directly comparing the two higher order structure
conditions with each other would provide more direct
support for this hypothesis. Reflected shapes was
found to require approximately 4% more symmetry
signal than the correlational quadrangles condition
(see Table 1). When T0 is compared in isolation,
they are not-significantly different (F(1, 10) = 4.21,
p = 0.035, ηp

2 = 0.30). However, this does not negate
the observation of a small benefit of higher-order
structure in symmetry.

Discussion

Taken as a whole, our findings support the role
of higher order structure in strengthening mirror
symmetry perception, replicating, and extending earlier
findings by Wagemans et al. (1993). We also show that
structure throughout the entire pattern makes a small
but meaningful contribution to symmetry detection
compared to the additional of isolated symmetric
sub-components, consistent with previous studies
using solid shapes (Baylis & Driver, 2001; Bertamini,
2010; Koning & Wagemans, 2009). The stimulus
properties leading to the percept of visual mirror
symmetry arguably exist at the intersection of local
element interactions and global pattern recognition.
Although symmetry itself is a high-level feature, it is
strongly dependent on very precise arrangements of
discrete local information, and disruption at either level
can have significant negative effects on the salience
of a given pattern (Jenkins, 1983). Wagemans et al.
(1993) bootstrapping model of symmetry perception
emphasizes the role of higher-order structure in
symmetry perception, and posits that this intersection
of low-level pairs and global symmetry bridges the
gap in conceptualization of symmetry perception at
the intersection of local-global processing. However,
investigation of Wageman’s et al.’s model was restricted
by using dot or Gabor patterns, which limits how
much interaction between- and within-pairs can be

manipulated. Recent research by (Persike & Meinhardt,
2016; Persike & Meinhardt, 2017) introduces concept
of corner elements, composed of two orientation
components joined along a central point to form corners
of varying internal angles. Compared to dot elements,
which are non-oriented, and Gabors or lines, which are
predominately a single orientation, the two orientation
components in each corner creates two projected lines
in different directions and thus relationships between
symmetric pairs can be dictated by features beyond
spatial position alone. The overarching aim of the
current study was to provide a systematic investigation
of the role of higher-order structure in visual mirror
symmetry, as suggested in the bootstrapping model,
using stimuli composed of corner elements where the
presence and type of structure could be manipulated
explicitly, to expand on Wagemans et al. (1993) findings
using dot patterns.

The current study has two complementary main
findings. Expanding on (Persike & Meinhardt, 2016;
Persike & Meinhardt, 2017) contour integration
research, we show that corner elements can make an
important contribution to investigations of mirror
symmetry perception. We show that symmetry is
detectable in patterns solely composed of corner
elements, and that detection thresholds (T0) vary only
slightly from patterns composed solely of horizontal
Gabor elements. Interestingly, this similarity in
processing is retained when comparing mirrored and
unmirrored corners, which seems contrary to research
with Gabor elements where mismatching across the
axis has very large negative consequences for global
pattern perception (Saarinen & Levi, 2000). In this case,
it may be that the visual system is discarding irrelevant
orientation components and using the convergence of
information at the apex. The apex of the corner is in the
same symmetrical position as its partner regardless of
orientation and falls in the same point as the midpoint
of a Gabor element. Some researchers have argued
that this midpoint is the core piece of information used
in symmetry processing, and variations in orientation
components may be largely irrelevant (Koeppl &
Morgan, 1993). However, follow-up research examining
local element orientation has shown quite convincingly
that this is not the case. Variations in local element
orientations significantly impact the salience of the
overall pattern, and positional information is not
sufficient without concordance of other element
features (Bellagarda et al., 2022; Saarinen & Levi, 2000).
Our findings with corner elements similarly contradict
this assertion when directly comparing results for
mirrored versus unmirrored corners conditions. Just as
unmirrored elements are still recognizable as symmetric
but require more symmetry information, the same
is true for corner elements as the mirrored corners
condition had significantly lower detection thresholds
than the unmirrored corners condition. Overall, this
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suggests that while the visual system can reconcile
this conflict, this comes with an additional cost in
terms of reduced sensitivity (higher T0). As (Persike
& Meinhardt, 2016; Persike & Meinhardt, 2017) had
shown previously in their contour integration studies,
corner elements can make an important contribution
to understanding global form processing, but this is
driven by the interaction of these elements rather than
an intrinsic difference in processing at the element level.
At an element level, we show that corner and Gabor
elements produce very similar symmetry detection
thresholds. At the pattern level however, employing
reflected corner elements allows for greater, more
controlled manipulation of inter-element relationships
within and between pairs. This is greater than that
offered by oriented Gabors or non-oriented dots,
particularly for investigating the role of higher-order
structure in mirror symmetry.

Consistent with our hypotheses, and with Wagemans
et al. (1993) findings, participants were more sensitive
to patterns with higher-order structure defined by
correlational quadrangles, compared to patterns
with lower-order structure alone. Structure spanning
the symmetry axis makes a significantly greater
contribution to the detectability of the global symmetry,
even when compared to patterns with reflected
substructures or shapes. This finding is consistent
with that of Wagemans et al. (1993) and suggests that
the proposed bootstrapping process is facilitated in a
“pairs of pairs” arrangement across the symmetry axis.
Arguably, the additional structural information in a
correlational quadrangle arrangement promotes the
pattern as being viewed as a single object. In contrast,
the reflected shapes condition leads to the pattern
being viewed as a collection of reflected sub-shapes.
If we consider research using solid polygons that
consistently shows that mirror symmetry is a one-object
cue, and mirror symmetry is consistently more salient
when present in a single object rather than across two
separate objects (Baylis & Driver, 1995; Baylis & Driver,
2001; Bertamini, 2010), this difference is not surprising.
Our findings here support and strengthen Wagemans
et al. (1993; Wagemans, 1993; Wagemans et al., 1991)
assertion that higher-order structure is important in
mirror symmetry perception, and bolsters detectability
of the global pattern. Higher-order structure might
be considered to be in a similar league to other
important symmetry features that have been previously
identified, such as pattern outline (Wenderoth, 1995)
or the central integration region around the symmetry
axis (Dakin & Herbert, 1998; Kurki, 2019). The
global symmetry of the pattern is still recognizable
when any one of these intermediate features are
disrupted, but there is a significant cost to observer
sensitivity. All of these features can be thought of as
promoting ready axis identification and recognition of
a symmetric pattern as a single discrete object, therefore

strengthening the relationship between local and global
information.

Our evidence for the important role of higher-order
structure in symmetry perception is especially
interesting when considering existing influential models
of symmetry perception. Spatial filter models (Dakin
& Watt, 1994; Rainville & Kingdom, 2000) are the
most commonly accepted model of mirror symmetry
perception. These models are loosely based on Jenkins’
(1983) component process model; spatially symmetric
elements are processed by the same filter, forming
orthogonal blobs stacked along the symmetric axis.
The more blobs that are formed, and the greater the
degree of co-alignment along the axis, the stronger the
symmetry signal. Both first- and second-order filtering
mechanisms are implicated in symmetry perception,
and the overall model is fairly robust to many variations
in local and global symmetry features (Brooks & van
der Zwan, 2002; Dakin & Hess, 1997; Rainville &
Kingdom, 2000; van der Zwan, Badcock, & Parkin,
1999). However, current spatial filtering models cannot
explain the findings of this study. By using a temporal
integration paradigm, we can show that processing
of symmetry in all five conditions has characteristics
of a first-order mechanism; low detection thresholds
(T0) and short persistence (P) values, indicative of a
fast but sensitive system (Bellagarda et al., 2021). This
is further reinforced by the lack of variability in P
estimates across conditions, as this is consistent with
processing at points in the visual system with similar
temporal sensitivity. In our previous work considering
luminance polarity (Bellagarda et al., 2021) and element
orientation (Bellagarda et al., 2022), we suggest that
P is longer to allow for accumulation of information
when the symmetry signal is noisy or disrupted in some
way. In these studies, we showed that when elements
are not concordant across the midline, such opposite
luminance polarities or large orientation variation,
symmetry is more difficult to detect (higher T0 estimate)
and the signal persists for longer in the visual system
(higher P estimate). One possible explanation for this is
that P and T0 covary, such that a significant increase
in T0 necessitates an increase in P. However, in the
current study P does not change significantly, even
though we report significant differences in T0. For
instance, in the unreflected corners condition, where
elements are not symmetric over the midline and T0
significantly increased while P did not. Such results
argue against a linear covariation of T0 and P, and
instead suggests that T0 and P are largely independent
of each other. Of course, multiple mechanisms with
identical time courses could also be proposed at the
cost of parsimony. However, first-order mechanisms are
sensitive to variations in element features and cannot
account for the difference in sensitivity when corners
are reflected or unreflected. As symmetry signal in
spatial filtering is defined as the quantity of coaligned
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horizontal blobs (Dakin & Watt, 1994; Jenkins, 1983),
the formation of higher-order structure is lost. In all
stimuli, all symmetrically paired elements produce
a mid-point on a virtual line that falls on the same
orthogonal virtual line indicating the symmetry axis.
Therefore, all five conditions have the same quantity of
horizontal virtual lines and thus equivalent symmetry
information according to spatial filtering definitions as
in all cases symmetric pairs are positioned to stimulate
the same horizontal filter. This means that the difference
between reflected shapes and correlational quadrangles
is also lost, and cannot be accounted for from the
currently proposed spatial filtering perspectives.

Our study, in conjunction with earlier findings
by Wagemans et al. (1993) cements the importance
of higher-order structure in symmetry perception,
particularly as a potential way of bridging the gap
between local elements and global symmetry. This
cannot be captured by widely used spatial filtering
models of symmetry perception, and suggests the need
for more nuanced, flexible models and stimuli that can
account for symmetry perception including both higher-
and lower-order information. Some attempts have been
made to do this, such as Dry (2008) Voronoi tessellation
model, but testing of these are limited by stimulus
choices much like Wagemans et al. (1993) original
investigations of their bootstrap model using dot
elements. The introduction of stimuli such as (Persike
& Meinhardt, 2016; Persike & Meinhardt, 2017) corner
elements permit a greater level of confidence in the
presence and type of higher order structure present, and
thus inform the development of more flexible models
of symmetry perception capturing a wider range of
real-world features.

Keywords: symmetry, structure, corners
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