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Abstract 

Background:  The breathing disorder obstructive sleep apnea syndrome (OSAS) only occurs while asleep. While poly-
somnography (PSG) represents the premiere standard for diagnosing OSAS, it is quite costly, complicated to use, and 
carries a significant delay between testing and diagnosis.

Methods:  This work describes a novel architecture and algorithm designed to efficiently diagnose OSAS via the 
use of smart phones. In our algorithm, features are extracted from the data, specifically blood oxygen saturation as 
represented by SpO2. These features are used by a support vector machine (SVM) based strategy to create a clas-
sification model. The resultant SVM classification model can then be employed to diagnose OSAS. To allow remote 
diagnosis, we have combined a simple monitoring system with our algorithm. The system allows physiological data 
to be obtained from a smart phone, the data to be uploaded to the cloud for processing, and finally population of a 
diagnostic report sent back to the smart phone in real-time.

Results:  Our initial evaluation of this algorithm utilizing actual patient data finds its sensitivity, accuracy, and specific-
ity to be 87.6%, 90.2%, and 94.1%, respectively.

Discussion:  Our architecture can monitor human physiological readings in real time and give early warning of 
abnormal physiological parameters. Moreover, after our evaluation, we find 5G technology offers higher bandwidth 
with lower delays ensuring more effective monitoring. In addition, we evaluate our algorithm utilizing real-world 
data; the proposed approach has high accuracy, sensitivity, and specific, demonstrating that our approach is very 
promising.
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Background
People in high intensity positions generally develop 
more sleep disorders [1]. Furthermore, sleep disorders 
often result in additional health problems since sleep is 
essential for our overall mental and physical health. Sleep 
apnea syndrome (SAS) is a wide spread, common sleep 
disorder affecting over 4% of men and 2% of women 
worldwide [2]. Notably, only 20% of people with SAS are 
actually aware they present this disorder [3].

The current tool for diagnosing SAS is polysomnogra-
phy (PSG). PSG monitors breathing airflow [4], breathing 
events [5], snoring [6], blood oxygen saturation (SpO2) 
[7], electrooculography (EOG) [8], electroencephalog-
raphy (EEG) [9], and electrocardiography (ECG) [10]. 
While effective in diagnosis, PSG carries several limita-
tions. First, PSG is quite labor intensive as it requires a 
specific series of recording systems [11]. Second, PSG 
requires continual, hands-on supervision as patients 
must wear numerous body sensors. And third, PSG 
equipment carry significant costs with the core PSG 
Machines costing ~ $6000 [12–14].

Furthermore, the construction of a diagnosis model 
for SAS is non-trivial. The default employment of all fea-
tures generally results in less than desirable performance, 
due to several features typically being irrelevant and/
or redundant; additionally, poor feature selection can 
similarly also result in suboptimal performance. As such, 
finding an optimal set of features, without undue burden 
on the analysis, is essential.

SpO2 and ECG are the two features most widely stud-
ied in physiological signals collected by PSG. SpO2 
represents the percentage of hemoglobin in the blood. 
In hypopneas status, the reduction of airflow causes 
a reduction in oxygen saturation. Typically, classifiers 
employ time frequency domain and time domain SpO2 
features for apnea detection, and this strategy is the 
most widely accepted in the field [5]. However, there are 
a number of issues with existing solutions; they require 
the use of expensive equipment to collect the day and/or 
they require some offline processing in order to perform 
a diagnosis.

In order to detect apnea, a pulse oximeter, which is a 
kind of portable sensor, is utilized to record SpO2. The 
use of pulse oximeters carries several advantages. First, 
pulse oximeters produce clearer record details than ECGs 

for evaluating hypopnea status [6]. Second, a regular 
pulse oximeter costs ~ $100 dollars, which is dramatically 
less expensive than a PSG machine. Third, combined 
with our proposed classification method and our smart 
phone-based system, it allows both on-line diagnosis 
and addresses many PSG-based issues with diagnosing 
obstructive sleep apnea syndrome (OSAS) (e.g. labor 
costs, computing resources, and time).

Internet of Things (IoT) strategies are widely utilized 
in an array of areas including sensor related applica-
tions [15–17] and detection systems [18–20]. Further-
more, combining IoT, cloud computing, and machine 
learning has previously proven effective for precise, real-
time sleep apnea detection and diagnosis [21]. Cloud 
computing reduces the cost on servers, hardware,  soft-
ware licenses, and safety maintenance [22]. For instance, 
a sleep apnea monitoring system was proposed by Bsoul 
et  al. [23]. The system, which utilized ECG readings, 
allowed for real-time monitoring; however, the diagnosis 
requires the processing to be done on the mobile phones, 
which could be problematic.

Recently, major research efforts in sleep apnea detec-
tion have focused on reducing costs through automa-
tion. One major focus of automation has been the use of 
preprocessing algorithms, which can be carried out on 
acquiring both testing and training data to improve diag-
nostic model accuracy and to reduce the complexity of 
the classification algorithms as well. The monitoring and 
diagnosis of SAS often include three major stages: feature 
extraction, feature selection, and pattern classification 
[24]. Publicly available physical databases are widely uti-
lized for evaluating the efficiency of preprocessing opera-
tions [25–28].

In terms of prediction, Oliver and Flores-Mangas 
developed a detection algorithm in oximetry [29] that 
operated in real-time; however, they did not provide a 
comparison to standard PSG methodologies in terms 
of performance. Another approach, implemented by 
Heneghan et al. [30], used linear discriminative analysis 
to classify apnea using eight ECG and five SpO2 features. 
The sensitivity and specificity of their classifications 
were 51.4% and 87.3%, respectively; they noted that if 
either the ECG or SpO2 feature sets were missing, their 
model could still work, although at reduced performance. 
McNames and Fraser [25] and Raymond et al. [26] both 

Conclusions:  Experimental results on the apnea data in University College Dublin (UCD) Database have proven the 
efficiency and effectiveness of our methodology. This work is a pilot project and still under development. There is no 
clinical validation and no support. In addition, the Internet of Things (IoT) architecture enables real-time monitoring of 
human physiological parameters, combined with diagnostic algorithms to provide early warning of abnormal data.
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achieved accuracies of over 90% based on one-minute 
basis and one-minute segment analyses of the Apnea-
ECG Database [31]. Notably, however, both methods 
required manual activities. McNames and Fraser used 
manual inspections to identify apneic episodes [25], 
while Raymond et al. relied on manual editing to improve 
performance [26].

Machine learning has been applied to many areas, 
such as medical diagnosis [32] and fault detection [33]. 
Importantly, unlike previously developed algorithms, 
we propose a Support Vector Machine (SVM) based, 
IoT framework embedded scheme for diagnosing sleep 
apnea. SVM methods have become a standard means 
for data classification primarily due to their simplis-
tic numerical comparisons and optimal solution deter-
mination ease for a specific context [25]. It has been 
extensively used in biomedical signal classification appli-
cations, such as electromyography (EMG) [34], electro-
encephalogram (EEG) [35], and electrocardiogram (ECG) 
[36]. In addition, several approaches have also recently 
been developed for determining the optimal hyperplane 
of kernel-based, non-linear SVMs [37] in which a hyper-
plane is constructed that separates data representing two 
different groups (classes).

In our algorithm, the values of SpO2 are divided into 
one-minute segments as a main subset of characteris-
tic data,  and the characteristics, including maximum, 
minimum and other features (shown in Table  1) of this 
SpO2 segment are utilized to diagnose apnea. From the 
aspect of IoT framework for monitoring and diagnosing 
sleep apnea, researchers have developed some frame-
works. Rofouei et al. [38] presented a non-invasive, wear-
able neck-cuff IoT system for monitoring the sleep of 
people. Kumar et al. [39] proposed a framework to help 
patients with OSA. The framework used sensors within 
the patient environment as well as wearable devices to 
monitor and collected a variety of data. Data collected 

included, but was not limited to, room temperature, 
room humidity, patient blood pressure, heart rate, body 
temperature, and blood oxygenation. The collected data 
by the sensors were sent to the cloud layer via a mobile 
phone or similar device; the data then could be used for 
analysis. However, there is a lack of automatic diagno-
sis in current studies. Thus, we combine the IoT frame-
work based sleep monitoring system with our algorithm 
for automatic diagnosis and remote warning. Finally, our 
utilization and preprocessing of SpO2 data for diagnosis 
improves the accuracy of detection and reduces the false 
positive.

This article is a significant extension of our previous 
work [40] with all sections markedly extended in this 
report. Substantial extensions (excluding minor modifi-
cations) include: (1) Background: expanded the introduc-
tion of PSG along with six additional references; added 
more explanations on SpO2 and oximeter; added more 
explanations on IoT along with four references; added 
more elaborations on recent research on sleep apnea 
monitor and detection along with nine references; added 
more about the application of machine learning along 
with two references. (2) Materials and Methods: added 
four citations to describe SVM; expanded the description 
of the SVM models, especially the detailed explanation 
of the ten features used in SVM; added more details of 
our IoT architecture including the introduction of three 
main components. (3) Results and Discussion: added 
more explanations of sensitivity, specificity, and accu-
racy; added a table to show the True Negative (TN), True 
Positive (TP), False Negative (FN), False Positive (FP); 
and False added more detailed explanations of the struc-
ture of our data, along with three figures containing par-
ticipant amounts categorized by age, Body Mass Indexes 
(BMIs), and Apnea Hypopnea Indexes (AHIs); com-
pared our algorithm with Deep Belief Network (DBN) 
and Adaptive Boosting (AdaBoost) using the same data 

Table 1  SpO2 statistical features

Feature Name Description

Smax Maximum SpO2 in 1 min

Smin Minimum SpO2 in 1 min

Smean Average SpO2 in 1 min

Svari SpO2 Variance in 1 min

CorreC Correlation coefficient of 1 min SpO2 sample data

ZCount The count of the number of zero crossing points within a segment where Smean is the baseline

SpSlope Slope of the regression line in 1 min

AbSlope Absolute slope

Bias Bias of the regression line of SpO2 in 1 min

Dmean Delta index: 1 min average of the absolute differences between two successive mean values 
of SpO2 signal over 12 s intervals
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features along with one table and one figure to show the 
better performance of our algorithm; simulated and com-
pared the packet loss and packet retransmission of both 
4G and 5G network along with two figures.

The most significant innovations in this work are the 
IoT architecture and the diagnosis algorithm of sleep 
apnea based on SVM. Importantly, we proposed to use 
the SpO2 as the feature data for training and testing on 
SVM, DBN and AdaBoost respectively. Therefore, the 
best algorithm is selected as the diagnosis algorithm of 
sleep apnea.

The rest of this article is structured as follows. The 
Methods section introduces SVM, presents our IoT 
architecture, and describes our algorithm. The Results 
section reports experimental findings, and the Discus-
sion section discusses our results and concludes with 
proposed future directions.

Methods
In this study, we utilized data curated by St. Vincent’s 
University Hospital at University College Dublin; we enti-
tle this Sleep Apnea Database as the UCD Database [41]. 
SpO2 features were obtained from the database after pre-
processing and then a SVM is used for diagnosing SAS. 
The general process is depicted in Fig. 1.

Purpose and overview of our method
The method presented in this work provides a novel 
means of detecting likely apnea events through analyzing 
SpO2 data. To achieve this, SpO2 data are preprocessed 
and divided into single minute intervals (segments). Each 

segment is then classified as either an apnea event, which 
is defined as an at least ten second cessation of breath-
ing [42] or as an non-apnea event. Smaller interval seg-
ments (e.g. 30 s) were not employed due to the increased 
likelihood of interrupting an apnea event. As such, 
1 min intervals were selected to label data in this study. 
We utilize MATLAB R2014b for preprocessing and find 
this preprocessing step reduces complexity and greatly 
enhances overall performance.

In addition, SpO2 signals are individually down sam-
pled to one Hertz (Hz). SpO2 values < 50 are regarded as 
noise [43] (as recommended by domain experts). Next, 
ten features are computed from each segment which is 
showed in Table 1. To start, the SpO2 maximum, mini-
mum, variance, mean, and correlation coefficient are 
computed; these are correspondingly designed as Smax, 
Smin, Svari, Smean, and CorreC. Smean, for each segment, is 
used as a baseline to calculate ZCount, which is the num-
ber of times a zero crossing occurs. In addition, each 
segment employs linear regression to construct a repre-
sentative line from which three features: the regression 
line slope (SpSlope), the bias (Bias), and the absolute 
value (AbSlope). Finally, a delta index, Dmean is used 
as another Sleep Apnea–Hypopnea Syndrome (SAHS) 
detecting parameter; this requires two steps. The first 
step requires that the mean of SpO2 signal be calculated 
for every 12 s interval within a segment. The second step 
requires that the absolute differences between consecu-
tive mean within the segment be averaged; this is the 
Dmean. Once all the features for each segment is calcu-
lated, a classifier can be constructed.

Fig. 1  Process of our method
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Our SVM classifier, which uses the Radial Basis Func-
tion (RBF) kernel, requires two principal user-provided 
parameter settings. The two user-provided param-
eters are C, which is set to 1,000, and σ, which is set to 
five. In our experiment, they are set by using trial and 
error. In addition, every feature is scaled to the range of 
0–1 because SVMs, in general, are sensitive to feature 
dynamic ranges. We use an freely available Python pack-
age scikit-learn (version 0.19.0) to create the SVM and to 
test it; it is executed in the cloud in order to evaluate fea-
ture set performance with ten-fold cross-validation being 
used to train and then validate our methods.

IoT system architecture
We now propose a sleep apnea diagnosing scheme using 
the framework of the IoT (Fig.  2). This scheme is com-
prised of three primary components: a smart phone 
monitoring system, a portable device, and a medi-
cal cloud monitoring center. SpO2 data are read by the 
portable device from the human body surface, which is 
then transmitted to a mobile phone via a low-power con-
sumption Bluetooth module. After data are uploaded, 
our smart phone monitoring system preprocesses physi-
ological data then uploads this data into a medical cloud-
based monitoring center which carries out three tasks: 
long-term patient data storage, analysis, and visualiza-
tion. It also provides relevant analysis to help medical 
staff with their diagnoses allowing medical staff to more 
efficiently provide effective treatment for patients with 
sleep apnea.

(1)	 Portable device design As SpO2 signals must be 
directly collected for data analysis, a portable medi-
cal oximeter was used to monitor SpO2. Using a 
portable medical oximeter brought us the follow-
ing benefits. First, this device is simple to operate 

and convenient to wear. The patient only needs to 
wear a fingertip blood oxygen probe. Second, the 
device is seamlessly integrated with four functional 
modules: (a) single chip microcomputer module, 
(b) multiple sensors, signal processing module, 
(c) power management module and (d) wireless 
communication module. And also, it can measure 
SpO2, breathing rate, and pulse rate in real-time 
while the patient is sleeping.

(2)	 Smart phone monitoring system We also designed 
an application to help monitor the status of the 
patient. The application was implemented in Java 
using the Android Studio 3.0 environment. It was 
debugged on a smart phone (Huawei version 10) 
using the Android operating system (version 8.0). 
The two interfaces of the application correspond to 
two functions. The first function is to monitor and 
display the history data including the waveform and 
digital form of physiological signal. Another func-
tion is to provide users with real-time diagnose. 
Note that in the backend, the smart phone handles 
the storage, upload, and download of data. Also 
note that the application realizes data acquisition 
and preprocessing, including format conversion 
and related calculation.

(3)	 Cloud monitoring center Specifically, the center 
manages the following tasks: (a) storage, (b) analy-
sis, and (c) visualization. By using the center, the 
following advantages are obtained. First, in terms 
of database scalability, the platform allows mul-
tiple medical devices to simultaneously connect 
and ensures the stability and reliability of two-way 
communication between devices and the cloud. 
Second, it provides different network device access 
schemes such as 2G, 3G, 4G, 5G and Wi-Fi, as well 
as device side Software Development Kit (SDK) of 

Fig. 2  IoT system architecture
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Message Queuing Telemetry Transport (MQTT), 
Constrained Application Protocol (CoAP), Hyper-
text Transfer Protocol (HTTP)/Hypertext Transfer 
Protocol Secure (HTTPS) and other protocols. The 
ability to handle multiple network schemes and pro-
tocols not only meets the real-time demand of long 
connection, but also meets the low power demand 
of short connection. Finally, in terms of security, it 
supports the custom data symmetric encryption 
channel on Transmission Control Protocol (TCP)/
User Datagram Protocol (UDP), which is suitable 
for power-sensitive and resource-constrained medi-
cal devices.

Support vector machine learning
SVM learning is a widely utilized method of binary 
classification [44]. To create the model, an SVM 
exploits the information found within the training set. 
Once created, the model is later used to classify indi-
vidual instances within the test data. During training, 
an SVM identifies hyperplane that best separates two 
classes:

In particular, an SVM assumes the “best” hyperplane 
is a maximum margin hyperplane, which can be treated 
as an optimization problem. Given a training dataset 
X = (X1,X2, . . . ,XT ) , with associated class yi ∈ {−1, 1} , 
1 for normal and − 1 for abnormal, for i ∈ (1, . . . ,T ) , a 
hyperplane is obtained through the following mathemati-
cal constraints:

Margin distance equals 2
/

‖w‖ , and structural risk 
minimization involves a slack variable ξi to be introduced 
in order to reduce overfitting while C is a user-defined 
invariant. The nearest coordinate in the training data 
is used to calculate the distance to the hyperplane. The 
larger the distance, the better the classification effect 
with these specific data points referred to as support vec-
tors that satisfy the rule:

where w represents the hyperplane’s normal vector, and 
w0 hyperplane’s function bias of the. After which, normal 
vector w can be calculated using the training dataset:

wTXi + w0 = 0

Minimize
w,w0

1
2
�w�2 + C

m
∑

i=1

ξi

Subject to wTXi + w0 ≥ 1− ξi if Xi ∈ y1
wTXi + w0 ≥ −1+ ξi if Xi ∈ y2
ξ ≥ 0

yi(w
T · Xi + w0) = 1

where αi is the optimizing Lagrange multiplier. If αi 
does not equal zero, a set of sample coordinates represent 
a support vector. Notably, αi equaling zero will not dis-
rupt the training model. In addition, the classification of 
Xi is based on the function h(Xi):

Results and discussion
We have evaluated the specificity, sensitivity, and accu-
racy of our SVM classifier in terms of diagnosing SAS. 
We have also analyzed efficiency of the system when 
built upon IoT structure. The experimental environment 
employed was MATLAB R2014b, Intel (R) Core (TM) 
i7-6700 CPU @ 3.40 GHz.

Metrics
We have used sensitivity, specificity, and accuracy as 
metrics to evaluate classification performance. They are 
defined as follows:

where TP and TN represent the number of detected 
apneic segments and normal segments, respectively. FN 
and FP stand for the number of misidentified normal and 
apneic segments, respectively. Negative (N) and Positive 
(P) are the number of segments without and with apneic 
events. Sensitivity refers to the percentage of correctly 
classified apnea epochs, specificity as normal epoch per-
centage correctly classified, and accuracy as percentage 
of total segments correctly classified.

Datasets
To evaluate our algorithm, we, as mentioned earlier, 
utilized the UCD Database that contains overnight, 
Jaeger-Toennies system-collected polysomnograms (in 
their entirety) obtained from 25 participants believed 
to exhibit disordered breathing during their sleep [41]. 
The Jaeger-Toennies system monitors all sleep related 
data including EEG, EOG, EMG, ECG, SpO2, etc. In our 
experiment, we only utilize the SpO2 data of these 25 

w =

n
∑

i=1

αiyiXi

yi = sign(h(Xi)) = sign(wT · Xi + w0)

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuary =
TP + TN

P + N
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participants. All participants were adults that consented 
to have their SpO2 monitored by fingertip pulse oxime-
try. The participant physiological properties are shown in 
Table 2.

There were 21 males and four females with ages rang-
ing from 28 to 68. As shown in Fig. 3, we find people with 
37–54  years of age typically had more SAS. Similarly, 
the BMIs range from 25.1 to 42.5 kg/m2, the majority of 
which seem to have high BMIs. While high BMIs appear 
to associate with a high risk of sleep apnea, this could be 
just co-incidence based on the data distribution. Details 
of the BMI are provided in Fig. 4. Moreover, patient AHIs 
range from 1.7 to 90.9 as shown in Fig.  5. In addition, 
all diagnostic information was annotated by experts to 
facilitate the classification of training data. With the help 
of domain experts, we treat every minute as a segment 
and assign each segment with a label, which is apnea or 
non-apnea.

In our experiment, we used the ten statistical features 
of SpO2 in order to learn and train. It allows us to verify 
that these features of SpO2 data can be used for the diag-
nosis of SAS. In all, the dataset has 1457 apnea events 
and 2278 non-apnea events.

Performance comparison between DBN and AdaBoost
We also tried DBN and AdaBoost using the same data set 
and features. Table 3 and Fig. 6 show the performance of 
the classification. We tried the DBN by using the default 
setting of it in TensorFlow (version 1.6), an open-sourced 
machine learning package. We used scikit-learn (ver-
sion 0.19.0) to try AdaBoost. By using trial and error, the 

Table 2  Physiological properties of  subjects in  UCD 
database

Mean value Range

Age (years) 50 ± 10 28–68

Body Mass Index (kg/m2) 31.6 ± 4 25.1–42.5

AHI 24.1 ± 20.3 1.7–90.9

Fig. 3  Age distribution of the 25 participants

Fig. 4  BMI distribution of the 25 participants
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number of weak classifiers of AdaBoost was set to 10, 20, 
30, and 40. Among them, 30 weak classifiers obtained 
the best experimental results. The performance using 30 
weak classifiers was used to compare with our algorithm. 
The sensitivity, specificity, and accuracy of our SVM 
algorithm is 87.6%, 94.1%, and 90.2%, separately, which 
all surpass the DBN and AdaBoost. Based on sensitiv-
ity, specificity, and accuracy, which are common metrics 

Fig. 5  AHI distribution of the 25 participants

Table 3  Performance comparison of  SVM, DBM, 
and AdaBoost

Table 3 corresponds to Fig. 6

Classifier % Sensitivity % Specificity % Accuracy

SVM 87.6 94.1 90.2

DBN 60.36 91.71 85.26

AdaBoost 72.64 87.18 83.64

Fig. 6  Performance comparison of SVM, DBM, and AdaBoost
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to evaluate algorithm performance, it appears that the 
SVM algorithm is more suitable to diagnose SAS than 
deep learning algorithm like DBN and AdaBoost. With 
respect to DBN, we believe part of the reason the SVM 
performs better is that deep learning networks typically 
require large amount of data; the problem domain used 
is rather small, in terms of instances, for deep learning. 
It also should be noted we used the default parameters 
for DBN; tuning DBNs tends to be time-consuming com-
pared to SVMs. With respect to AdaBoost, the use of 
multiple weak classifiers does not guarantee an optimal 
solution. In case, it can be the tree approach of divide 
and conquer does not result in the best approximations 
for the problem; it can also be that the default parameters 
for the AdaBoost algorithm could be better optimized. 
That said, Radial Basis SVMs tend to be a good choice for 
many problems, giving good results.

5G and 4G network simulation result
To evaluate the performances of different networks when 
user numbers increase, we simulated the data  transmis-
sion between the server and the client using 4G and 5G 
network. In the 4G network simulation, we set the band-
width, delay variation, and packet loss rate to 20 Mbps, 
two to forty milliseconds, and 0.1%, separately. In the 
5G network simulation, we set the bandwidth, delay 
variation, and packet loss rate to 1000 Mbps, one to five 
milliseconds, and 0.1%, separately. The packet loss com-
parison result is shown in Fig. 7. It shows that the range 
of 5G packet loss is lower than the range of 4G packet 
loss. We also simulated the number of packets retrans-
mitted when a mobile user transmits data in 4G and 5G 
Network. Results are shown in Fig. 8. As shown in the fig-
ure, the number of packets retransmitted in 4G network 

is higher than that in 5G network. Therefore, the 5G 
technology can effectively provide much larger data capa-
bilities, and lower delays guarantee bandwidth availabil-
ity for all users. We recommend users to use 5G network 
when using our application to ensure the transmission 
of data. Moreover, next generation 5G mobile networks 
are better able to provide IoT service and cloud comput-
ing service in streaming applications to mobile users and 
guarantee a higher Quality of Service (QoS) with signifi-
cantly increased bandwidth.

Apnea versus non‑apnea
An illustration of the normal and apnea conditions is 
shown in Fig. 9. As can be seen, apnea has a larger effect 
on oxygen saturation in the blood, which significantly 
impacts SpO2 levels; the minimum, mean, and variance 
statistical features derived from SpO2 for apnea and 

Fig. 7  Packet loss rate in 4G and 5G Network

Fig. 8  Packet retransmission in 4G and 5G

Fig. 9  1 min of SpO2 data from both a normal and an OSAS patient
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normal patients are shown in Fig.  10. In addition, our 
analysis clearly indicates our algorithm can accurately 
recognize apnea events occurring during sleep using the 
information derived from SpO2 data.

The system test
The principle functions of our system are the storage of 
the patient physiological data, the preprocessing of the 
data, and the visualization of the data and results. To 
achieve this, the Bluetooth module permits a medical 
device to transmit specific physiological parameters to 
a smart phone. Next, the smart phone performs a vari-
ety of tasks. This includes the adaptive processing of the 
physiological parameters, the filtering out of noise (e.g. 
frequency interference or specious signals), and the col-
lection of several physiological parameters including 
SpO2, breath rate, pulse rate, and End-tidal carbon diox-
ide (ETCO2). Next, the pulse waveform of ETCO2 and 
oxygen are displayed in real-time directly on the phone 
(as shown in Fig.  11). The Bluetooth and mobile phone 
transmission rate during result display is highly stable at 
3.6  KB/s. Resultant data are stored in a cloud database 
allowing better maintenance. Smart phones can access 
diagnostic reports located in the cloud at any time, and 
medical clinicians can monitor patient status remotely. 
Figure  11 shows the statistical analysis and diagnostic 
result display of physiological data from 1  min; these 
include the minimum and maximum values, the mean, 
and the standard deviation. Furthermore, diagnostic 
reports can be obtained at any time; examples for non-
apnea and apnea patients are shown, respectively, in 
Figs. 12 and 13.

Conclusions
OSAS represents a serious breathing disorder that occurs 
while a patient is sleeping. While the premiere method 
of OSAS diagnosis is currently PSG, it is both costly and 
complicated to use. What’s more, PSG requires significant 
turnaround time for obtaining a diagnosis. In light of this, 
we have developed a method to detect apnea in real-time. 
To achieve this, we have developed a system to assess 
SpO2 statistical features using a SVM classifier, deployed 
on an IoT-based architecture and cloud computing. This 
novel methodology confers several advantages over cur-
rent diagnostic tools. Firstly, cloud computing provides 
both a low cost, always accessible source of storage and 

Fig. 10  SpO2 mean, minimum, and variance statistical features 
calculated from SpO2 data obtained from normal and OSAS patients

Fig. 11  Physiological parameters in real-time
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a set of reliable computing resources essential for physi-
ological data analysis. Secondly, our IoT architecture-
based sleep monitoring system provides easy to use, 
remote monitoring facilitating real-time diagnosis. 
Thirdly, our algorithm can be employed for detecting 
significant, potentially serious apnea events before con-
sulting with a medical professional for an initial diagno-
sis. Fourthly, an experimental evaluation of our system’s 
ability to diagnose OSAS using pre-existing, real-world, 
clinical data confirm that our algorithm can efficiently 
diagnose sleep apnea as evidenced by its successfully 
achieving 87.6%, 90.2%, and 94.1% sensitivity, accuracy, 
and specificity rates, respectively. Notably, the sensitivity, 

specificity, and accuracy of our algorithm well surpasses 
the performance of the existing, widely used DBN and 
AdaBoost tools.

Of note, in the near future, 5G networks will allow 
our IoT based application to operate even more effi-
ciently through experiencing less packet loss and higher 
packet retransmission. In addition to this, we also plan 
to explore our tool’s utility in classifying apnea sever-
ity and for predicting future apnea, both by using the 
current features and by utilizing additional features, 
diagnostic record integration, disease histories, and 
more detailed patient profiles. Moreover, in this study, 
our method was applied to a small-scale data in which 

Fig. 12  Non-apnea report Fig. 13  Sleep apnea syndrome report
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the BMIs of the participants are mostly high. In the 
future, we will apply it to large-scale data to optimize 
the performance of our algorithm; we would also like 
to expand the study to include a range of BMI. Also, we 
will compare our algorithm with more algorithms and 
determine the impact on performance as the parame-
ters of the different algorithms change.

Abbreviations
AdaBoost: Adaptive boosting; AHIs: Apnea Hypopnea Indexes; BMIs: Body 
Mass Indexes; CoAP: Constrained application protocol; DBN: Deep belief 
network; ECG: Electrocardiography; EEG: Electroencephalography; EMG: Elec-
tromyography; EOG: Electrooculography; ETCO2: End-tidal carbon dioxide; FN: 
False negative; FP: False positive; Hz: Hertz; HTTP: Hypertext transfer protocol; 
HTTPS: Hypertext transfer protocol secure; IoT: Internet of Things; MQTT: 
Message queuing telemetry transport; N: Negative; OSAS: Obstructive sleep 
apnea syndrome; P: Positive; PSG: Polysomnography; QoS: Quality of service; 
RBF: Radial basis function; SAHS: Sleep apnea–hypopnea syndrome; SAS: Sleep 
apnea syndrome; SDK: Software development kit; SpO2: Blood oxygen satura-
tion; TCP: Transmission control protocol; TN: True negative.

Acknowledgements
We would like to thank the reviewers from the Biomedical and Health Infor-
matics Workshop in the IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM) 2019 for their comments, which were incorporated into 
the present work.

About this supplement
This article has been published as part of BMC Medical Informatics and Deci-
sion Making Volume 20 Supplement 14, 2020: Special Issue on Biomedical and 
Health Informatics. The full contents of the supplement are available online at 
https​://bmcme​dinfo​rmdec​ismak​.biome​dcent​ral.com/artic​les/suppl​ement​s/
volum​e-20-suppl​ement​-14.

Authors’ contributions
BM, SL, and ZW created the system framework and composed the draft of the 
manuscript. CB, DL, GMB, RB, ST, YH, conducted the experiments. DL, JL, MVK, 
MY, RB, ST, and YH also participated in preparation of the manuscript. JH con-
ceived the study and revised the manuscript. All authors read and approved 
the final manuscript.

Funding
The publication of this supplement was funded by National Natural Science 
Foundation of China (Nos: 61872203, 61802212 and 61502241) the Shandong 
Provincial Natural Science Foundation (ZR2019BF017), Major Scientific and 
Technological Innovation Projects of Shandong Province (2019JZZY010127, 
2019JZZY010132, and 2019JZZY010201), Jinan City "20 universities" Funding 
Projects Introducing Innovation Team Program (2019GXRC031), Plan of Youth 
Innovation Team Development of colleges and universities in Shandong Prov-
ince (SD2019-161), and the Project of Shandong Province Higher Educational 
Science and Technology Program (J18KA331). These foundations are not 
involved in study and collection, analysis, and interpretation of data and in 
writing the manuscript.

Availability of data and materials
The apnea related data used in this research can be downloaded at: https​
://physi​onet.org/conte​nt/ucddb​/1.0.0/. St. Vincent’s University Hospital / 
University College Dublin Sleep Apnea Database is an open-access database. 
This database contains 25 full overnight polysomnograms with simultaneous 
three-channel Holter ECG, from adult subjects with suspected sleep-disor-
dered breathing.

Ethics approval and consent to participate
Not applicable. All data have been obtained from publically available sources. 
See “Availability of data and materials” for greater details.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Shandong Provincial Key Laboratory of Computer Networks, Qilu Univer-
sity of Technology (Shandong Academy of Science), Jinan, China. 2 School 
of Computing, University of South Alabama, Mobile, AL 36688, USA. 3 College 
of Allied Health Professions, University of South Alabama, Mobile, AL 36608, 
USA. 4 Ocean School, Fuzhou University, Fuzhou, China. 5 College of Medicine, 
University of South Alabama, Mobile, AL 36688, USA. 

Published: 17 December 2020

References
	1.	 Yacchirema DC, Sarabia-JáCome D, Palau CE, Esteve M. A smart system for 

sleep monitoring by integrating IoT with big data analytics. IEEE Access. 
2018;6:35988–6001.

	2.	 Obstructive sleep apnea (OSA): Practice essentials, background, patho-
physiology. https​://emedi​cine.medsc​ape.com/artic​le/29580​7-overv​iew. 
Accessed 14 Sep 2019.

	3.	 Young T, Evans L, Finn L, Palta M. Estimation of the clinically diagnosed 
proportion of sleep apnea syndrome in middle-aged men and women. 
Sleep. 1997;20(9):705–6.

	4.	 Lloberes P, Sánchez-Vidaurre S, Ferré À, Cruz MJ, Lorente J, Sampol G, 
Morell F, Muñoz X. Effect of continuous positive airway pressure and 
upper airway surgery on exhaled breath condensate and serum biomark-
ers in patients with sleep apnea. Archivos de Bronconeumología (English 
Edition). 2014;50(10):422–8.

	5.	 Dafna E, Tarasiuk A, Zigel Y. Automatic detection of whole night snoring 
events using non-contact microphone. PLoS ONE. 2014;8(12):e84139.

	6.	 Güder F, Ainla A, Redston J, Mosadegh B, Glavan A, Martin TJ, Whitesides 
GM. Paper-based electrical respiration sensor. Angew Chem Int Ed. 
2016;55(19):5727–32.

	7.	 Babbar A, Siddiqi F, Faisal M, Bajwa A, Agarwal A, Patel M, Cury J, Seeram 
V, Jones LM, Louis M, et al. Use of non-invasive mechanical ventilation to 
prevent hypoxia during bronchoscopy in patients with sleep apnea or at 
high risk of sleep apnea. Am J Respir Crit Care Med. 2017;195:A2576.

	8.	 Morselli LL, Temple KA, Leproult R, Ehrmann DA, Van Cauter E, Mokhlesi B. 
Determinants of slow-wave activity in overweight and obese adults: roles 
of sex, obstructive sleep apnea and testosterone levels. Front Endocrinol. 
2018. https​://doi.org/10.3389/fendo​.2018.00377​.

	9.	 Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, 
Harrod CG. Clinical practice guideline for diagnostic testing for adult 
obstructive sleep apnea: an American Academy of sleep medicine clinical 
practice guideline. J Clin Sleep Med. 2017;13(3):479–504.

	10.	 Song C, Liu K, Zhang X, Chen L, Xian X. An obstructive sleep apnea detec-
tion approach using a discriminative hidden Markov model from ECG 
signals. IEEE Trans Biomed Eng. 2016;63(7):1532–42.

	11.	 Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep 
apnea. Am J Respir Crit Care Med. 2002;165(9):1217–39.

	12.	 AlGhanim N, Comondore VR, Fleetham J, Marra CA, Ayas NT. The eco-
nomic impact of obstructive sleep apnea. Lung. 2008;186(1):7–12.

	13.	 Hillman DR, Murphy AS, Antic R, Pezzullo L. The economic cost of sleep 
disorders. Sleep. 2006;29(3):299–305.

	14.	 PSG machine—Google Shopping—find the best prices and places to 
buy. https​://www.googl​e.com/searc​h?newwi​ndow=1&tbm=shop&sxsrf​
=ACYBG​NTmBf​_C_-Jcw1u​7MRq6​e1uWv​IG7fg​%3A158​02830​34432​
&psb=1&x=0&y=0&q=PSG+Machi​ne&oq=PSG+Machi​ne&aqs=produ​
cts-cc. Accessed 14 Sep 2019.

	15.	 Zhang R, Hao F, Sun X. The design of agricultural machinery service 
management system based on Internet of Things. Procedia Comput Sci. 
2017;107:53–7.

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-14
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-14
https://physionet.org/content/ucddb/1.0.0/
https://physionet.org/content/ucddb/1.0.0/
https://emedicine.medscape.com/article/295807-overview
https://doi.org/10.3389/fendo.2018.00377
https://www.google.com/search?newwindow=1&tbm=shop&sxsrf=ACYBGNTmBf_C_-Jcw1u7MRq6e1uWvIG7fg%3A1580283034432&psb=1&x=0&y=0&q=PSG+Machine&oq=PSG+Machine&aqs=products-cc
https://www.google.com/search?newwindow=1&tbm=shop&sxsrf=ACYBGNTmBf_C_-Jcw1u7MRq6e1uWvIG7fg%3A1580283034432&psb=1&x=0&y=0&q=PSG+Machine&oq=PSG+Machine&aqs=products-cc
https://www.google.com/search?newwindow=1&tbm=shop&sxsrf=ACYBGNTmBf_C_-Jcw1u7MRq6e1uWvIG7fg%3A1580283034432&psb=1&x=0&y=0&q=PSG+Machine&oq=PSG+Machine&aqs=products-cc
https://www.google.com/search?newwindow=1&tbm=shop&sxsrf=ACYBGNTmBf_C_-Jcw1u7MRq6e1uWvIG7fg%3A1580283034432&psb=1&x=0&y=0&q=PSG+Machine&oq=PSG+Machine&aqs=products-cc


Page 13 of 13Ma et al. BMC Med Inform Decis Mak 2020, 20(Suppl 14):298

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	16.	 Zhao GX, Qi B. Application of the IOT technology in the intelligent man-
agement of university multimedia classrooms. In: Applied mechanics and 
materials: 2014: Trans Tech Publications Ltd; 2014. p. 2050–3.

	17.	 Ma B, Li C, Wu Z, Huang Y, Zijp-Tan ACvd, Tan S, Li D, Fong A, Basetty C, 
Borchert GM et al. A PWM-based muscle fatigue detection and recovery 
system. In: 2018 IEEE international conference on bioinformatics and 
biomedicine (BIBM): 3–6 Dec 2018; Madrid; 2018. p. 1013–6.

	18.	 Ma B, Li C, Wu Z, Huang Y, van der Zijp-Tan AC, Tan S, Li D, Fong A, Basetty 
C, Borchert GM, et al. Muscle fatigue detection and treatment system 
driven by Internet of Things. BMC Med Inform Decis Mak. 2019;19(7):275.

	19.	 Xu R, Zhang L, Zhao H, Peng Y. Design of network media’s digital rights 
management scheme based on Blockchain technology. In: 2017 IEEE 
13th international symposium on autonomous decentralized system 
(ISADS): 22–24 Mar 2017; Bangkok; 2017. p. 128–33.

	20.	 Baojiang S, Qiaoqiao K. Design and application of Internet of Things 
technology based on WeChat control. In: 2018 IEEE international confer-
ence on Internet of Things (iThings) and IEEE green computing and com-
munications (GreenCom) and IEEE cyber, physical and social computing 
(CPSCom) and IEEE smart data (SmartData): 30 July–3 Aug 2018; Halifax; 
2018. p. 549–53.

	21.	 Yacchirema D, Sarabia-Jácome D, Palau CE, Esteve M. System for monitor-
ing and supporting the treatment of sleep apnea using IoT and big data. 
Pervas Mobile Comput. 2018;50:25–40.

	22.	 Sun T, Wang X. Research of data security model in cloud computing 
platform for SMEs. Int J Secur Appl. 2013;7(6):97–108.

	23.	 Bsoul M, Minn H, Tamil L. Apnea MedAssist: real-time sleep apnea 
monitor using single-lead ECG. IEEE Trans Inf Technol Biomed. 
2011;15(3):416–27.

	24.	 Haoyu L, Jianxing L, Arunkumar N, Hussein AF, Jaber MM. An IoMT 
cloud-based real time sleep apnea detection scheme by using the SpO2 
estimation supported by heart rate variability. Future Gener Comput Syst. 
2019;98:69–77.

	25.	 McNames JN, Fraser AM. Obstructive sleep apnea classification based on 
spectrogram patterns in the electrocardiogram. In: Computers in cardiol-
ogy: 24–27 Sept 2000; Cambridge; 2000. p. 749–52.

	26.	 Raymond B, Cayton RM, Bates RA, Chappell M. Screening for obstructive 
sleep apnoea based on the electrocardiogram-the computers in cardiol-
ogy challenge. In: Computers in cardiology. vol. 27. Cambridge; 2000. p. 
267–70.

	27.	 Burgos A, Goñi A, Illarramendi A, Bermudez J. Real-time detection of 
apneas on a PDA. IEEE Trans Inf Technol Biomed. 2010;14(4):995–1002.

	28.	 Shinar Z, Baharav A, Akselrod S. Obstructive sleep apnea detection based 
on electrocardiogram analysis. In: Computers in cardiology: 24–27 Sept 
2000; Cambridge; 2000. p. 757–60.

	29.	 Oliver N, Flores-Mangas F. HealthGear: a real-time wearable system for 
monitoring and analyzing physiological signals. In: International work-
shop on wearable and implantable body sensor networks (BSN’06): 3–5 
April 2006; Cambridge; 2006. p. 61–4.

	30.	 Heneghan C, Chua C-P, Garvey JF, de Chazal P, Shouldice R, Boyle P, 
McNicholas WT. A portable automated assessment tool for sleep apnea 
using a combined holter-oximeter. Sleep. 2008;31(10):1432–9.

	31.	 Penzel T, Moody GB, Mark RG, Goldberger AL, Peter JH. The apnea-ECG 
database. In: Computers in cardiology: 24–27 Sept 2000; Cambridge; 
2000. p. 255–8.

	32.	 Zhang Y, Balochian S, Bhatnagar V. Emerging trends in soft computing 
models in bioinformatics and biomedicine. Sci World J. 2014. https​://doi.
org/10.1155/2014/68302​9.

	33.	 Tingren TF, Xie L, Wang. Multi-fault diagnosis of pneumatic control valve 
with sparse Bayesian extreme learning machine. 2015.

	34.	 Subasi A. Classification of EMG signals using PSO optimized SVM for diag-
nosis of neuromuscular disorders. Comput Biol Med. 2013;43(5):576–86.

	35.	 Mehta SS, Lingayat NS. Biomedical signal processing using SVM. In: IET 
conference proceedings. Institution of Engineering and Technology; 
2007. p. 527–32.

	36.	 Fu K, Qu J, Chai Y, Dong Y. Classification of seizure based on the time-
frequency image of eeg signals using HHT and SVM. Biomed Signal 
Process Control. 2014;13:15–22.

	37.	 Salem O, Guerassimov A, Mehaoua A, Marcus A, Furht B. Anomaly detec-
tion in medical wireless sensor networks using SVM and linear regression 
models. Int J E-Health Med Commun. 2014;5(1):20–45.

	38.	 Rofouei M, Sinclair M, Bittner R, Blank T, Saw N, DeJean G, Heffron J. A 
non-invasive wearable neck-cuff system for real-time sleep monitoring. 
In: 2011 international conference on body sensor networks: 23–25 May 
2011; 2011. p. 156–61.

	39.	 Kumar KMC. Internet of fitness things—a move towards quantified 
health: concept, sensor-cloud network, protocols and a new methodol-
ogy for OSA patients. In: 2015 IEEE recent advances in intelligent compu-
tational systems (RAICS): 10–12 Dec 2015; 2015. p. 364–9.

	40.	 Ma B, Wu Z, Li S, Benton R, Li D, Huang Y, Kasukurthi MV, Lin J, Borchert 
GM, Tan S et al. A SVM-based algorithm to diagnose sleep apnea. In: 2019 
IEEE international conference on bioinformatics and biomedicine (BIBM-
19): 2019; San Diego; 2019.

	41.	 Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, 
Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and 
PhysioNet: components of a new research resource for complex physi-
ologic signals. Circulation. 2000;101(23):E215–20.

	42.	 Magalang UJ, Dmochowski J, Veeramachaneni S, Draw A, Mador MJ, El-
Solh A, Grant BJ. Prediction of the apnea-hypopnea index from overnight 
pulse oximetry. Chest. 2003;124(5):1694–701.

	43.	 Xie B, Minn H. Real-time sleep apnea detection by classifier combination. 
IEEE Trans Inf Technol Biomed. 2012;16(3):469–77.

	44.	 Ai-mei D. Research and implementation of support vector machine and 
its fast algorithm. Int J Multimed Ubiquit Eng. 2014;9(10):79–90.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1155/2014/683029
https://doi.org/10.1155/2014/683029

	Development of a support vector machine learning and smart phone Internet of Things-based architecture for real-time sleep apnea diagnosis
	Abstract 
	Background: 
	Methods: 
	Results: 
	Discussion: 
	Conclusions: 

	Background
	Methods
	Purpose and overview of our method
	IoT system architecture
	Support vector machine learning

	Results and discussion
	Metrics
	Datasets
	Performance comparison between DBN and AdaBoost
	5G and 4G network simulation result
	Apnea versus non-apnea
	The system test

	Conclusions
	Acknowledgements
	References


