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Task demands evoke an intrinsic functional network and flexibly engage multiple distributed networks. However, it is unclear how
functional topologies dynamically reconfigure during task performance. Here, we selected the resting- and task-state (emotion and
working-memory) functional connectivity data of 81 health subjects from the high-quality HCP data. We used the network-based
statistic (NBS) toolbox and the Brain Connectivity Toolbox (BCT) to compute the topological features of functional networks for
the resting and task states. Graph-theoretic analysis indicated that under high threshold, a small number of long-distance
connections dominated functional networks of emotion and working memory that exhibit distinct long connectivity patterns.
Correspondently, task-relevant functional nodes shifted their roles from within-module to between-module: the number of
connector hubs (mainly in emotional networks) and kinless hubs (mainly in working-memory networks) increased while
provincial hubs disappeared. Moreover, the global properties of assortativity, global efficiency, and transitivity decreased,
suggesting that task demands break the intrinsic balance between local and global couplings among brain regions and cause
functional networks which tend to be more separated than the resting state. These results characterize dynamic reconfiguration
of large-scale distributed networks from resting state to task state and provide evidence for the understanding of the
organization principle behind the functional architecture of task-state networks.

1. Introduction

Understanding how the brain shapes mind, such as cognition
and emotion, ultimately relies on the knowledge of large-
scale brain networks [1]. The Human Connectome Project
(HCP) used high-quality neuroimaging to map the structural
and functional connectivity of the normal human brain [2],
which provides new opportunity to understand general topo-
logical principles of brain network organization. Graph
theory-based connectivity research has shown that a brain
network is composed of functionally separate subnetworks
or modules [3]. As a complex system, the brain flexibly pro-
cesses multiple incoming information through interplaying
between distributed subsystems [4, 5]. Moreover, the intrin-
sic functional network during resting state primarily shapes
a standard architecture of task-based functional brain organi-

zation and is secondarily evoked by task-relevant networks
[6]. However, little is known about how the functional topol-
ogy dynamically reconfigures for task performance.

In graph-theoretic research, a function network is
described as a graph with a collection of nodes representing
brain regions and edges representing functional interactions
in the brain [7, 8]. Nodes are further grouped into module
or community with highly connected within-group links
and a minimally possible number of between-group links
[9]. Human brain networks have complex local and global
topological properties (e.g., hub nodes, modules, transitivity
measuring functional separation, and global efficiency mea-
suring functional integration) [8]. When task demands
change from resting state to task state, metabolic energy is
necessarily redistributed to support the reorganized func-
tional architecture [10] and the functional network is
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dynamically reorganized according to the specific cognitive
demands of the task [11]. Correspondently, functional topol-
ogies such as connections between/within modules, nodal
features, and global features (e.g., transitivity and global effi-
ciency) are reconfigured [12–14]. However, there are still the
following three unsolved questions.

First, there is lack of enough evidences to determine how
long connections switch from resting state to task states, e.g.,
emotion and working memory (WM). The functional con-
nectivity refers to some forms of statistical dependency
between nodes, and short-distance links are distributed
mainly within communities while long-distance links are dis-
tributed between communities [15, 16]. During tasks, short
connections within communities decrease while long con-
nections between communities increase [6, 17]. A recent
meta-analysis indicated that the coactivation networks elic-
ited by a wide range of tasks have more long-range connec-
tions [18]. Particularly, the default mode network (DMN)
actively contributes to function integration [19]: intra-
DMN connectivity decreased while inter-DMN connectivity
increased during a 2-back versus a 1-back working memory
(WM) task [13]. Moreover, emotion processing (e.g., reap-
praisal) produces distributed alterations in functional con-
nections involving visual, dorsal attention, frontoparietal,
and DMN modules [20]. Long connections between
communities are particularly important for brain function
because they are responsible for intermodular communica-
tion [12, 21]. However, performing statistical testing on con-
nectivity values for large networks suffers from multiple
comparison problem so that long-links are easily ignored
because of their weak connectivity values [7, 22]. The
network-based statistic (NBS) has greater power to detect a
whole cluster of regions spanning multiple connections and
makes it possible to find a set of connections forming a sub-
network associated with an experimental effect [23]. Here, we
used the NBS to further clarify how long connections change
during the WM and emotional task versus the resting state.

Second, it is unclear how functional hubs dynamically
change their nodal roles during theWM and emotional tasks.
Resting-state fMRI research has demonstrated functional
hubs distributing in the heteromodal association cortex
(e.g., the precuneus, posterior and anterior cingulate gyrus,
ventromedial frontal cortex, and inferior parietal regions)
[3, 24]. Hubs flexibly process multiple information and rap-
idly update their connectivity pattern according to task
demands [25, 26]. Hub nodes are generally divided into three
different roles: provincial hubs with the vast majority of links
within their module, connector hubs with many links to most
of the other modules, and kinless hubs with links homoge-
neously distributed among all modules [27]. Finc et al. [13]
found that the number of connector hubs increased whereas
the number of provincial hubs decreased when the WM task
became more demanding. Moreover, task-relevant nodes
within auditory, visual, salience, and context community
become activated in the WM task while subcortical regions
(e.g., amygdala and putamen) take an important role in emo-
tional tasks [20, 26, 28–30]. However, the previous studies
ignored the shifting of nonhubs to hubs and rarely men-
tioned kinless hubs.

Third, it is unclear whether intrinsic functional networks
become more integrated or separated during the shift from
resting state to task state. A number of structural and
resting-state fMRI studies have indicated that brain networks
exhibit economical small-world topology [31–33], balancing
integration and segregation between brain regions [34, 35].
To satisfy ever changing task demands, the global properties
(e.g., clustering and modularity) of brain network organiza-
tion are responsive to the changing task contexts [12]. Some
studies have found that functional networks tend to be of
higher global network integration at task state: for example,
the performance of cognitive tasks (including WM) is associ-
ated with increased global efficiency and less segregation of
processing relative to resting state [36, 37]. Other studies
have proposed that the global topological properties are
largely invariant in order to continually maintaining the bal-
ance of efficient local and global processing [38, 39]. Another
studies demonstrated that functional networks tend to be
highly separated (e.g., negative assortativity coefficients)
and exhibit a more random configuration at higher levels of
task difficulty (e.g., emotional task) [8, 30, 40]. This inconsis-
tency might be because of multiple factors such as different
tasks, different signal natures of fMRI and EEG, or different
ways to constructing function networks. More high-quality
researches are pressed to clarify the consistency.

To address the three questions, we selected the resting-
state denoised by FIX (FMRIB’s ICA-based X-noiseifier)
and task-state (EMOTION and WM) fMRI data from the
HCP data with 500 subjects (see Methods for details). Then,
we used Pearson’s correlation to separately construct three
functional networks (FIX, EMOTION, and WM) for each
subject. Next, we performed connectivity analysis for EMO-
TION and WM versus FIX using the NBS toolbox [23] to
determine how long connections change during task states
versus resting state. We also used the Brain Connectivity
Toolbox (BCT) to compute nodal features of participant
index (PI) and within-module Z-score and global properties
(assortativity, global efficiency, and transitivity) and then
performed one-way ANOVA with 3 conditions (FIX, EMO-
TION, and WM) for global and nodal properties at each
threshold of 5-15%. Considering that functional networks
at task state need to exchange multiple information between
different communities, we firstly predicted that although
long connections are of a small proportion, they would
become more significant relative to resting state because they
are responsible for intermodular communication [12, 21].
We also predicted that with the increase of task demands,
the number of task-relevant connector and kinless hubs
would increase while the number of provincial hubs would
decrease [13]. Finally, we predicted that under the distur-
bance of active tasks, the balance between integration and
segregation at resting state would be disrupted and functional
networks would tend to be more separated and randomized
[8, 30, 40].

2. Methods

2.1. Participants. After registering an account at Connecto-
meDB and agreeing to the Open and Restricted Access Data
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Use Terms (http://www.humanconnectome.org/), we were
approved to download the HCP data with 500 subjects. After
matching age with gender and excluding twins, we selected
81 right-handed healthy adults (age 22-30 years old; 40 males
and 41 females). These participants had no prior history of
neurological or psychiatric disorders.

2.2. fMRI Data Selection and Processing. The detailed data
acquisition and experimental procedure were described at
the HCP website [2]. For structural imaging, T1w was
acquired using a 32-channel head coil and 3T Siemens
product (MPRAGE and SPACE) sequences (TR = 2400ms,
TE = 2:14ms, flip angle = 8 degrees, FOV = 224 × 224mm,
voxel size = 0:7mm isotropic). The selected HCP data
included the resting-state and task-state fMRI image datasets.
The resting-state fMRI data were acquired in four runs of
approximately 15 minutes each, two runs in one session
and two in another session, with eyes open with relaxed fixa-
tion on a projected bright cross hair on a dark background
(and presented in a darkened room) (TR = 720ms, TE =
33:1ms, flip angle = 52 degrees, FOV = 208 × 108, matrix =
104 × 90, slice thickness = 2mm isotropic). Following com-
pletion of resting-state fMRI in each of the two fMRI scan-
ning sessions, the task-state data were acquired with the
same EPI pulse sequence parameters as the resting-state
fMRI. These subject-specific images had been preprocessed
through the HCP Minimal Processing Pipelines (MPP): (1)
to remove spatial artifacts and distortions; (2) to generate
cortical surfaces, segmentations, and myelin maps; (3) to
make the data easily viewable in the Connectome Work-
bench visualization software; (4) to generate precise within-
subject cross-modal registrations; (5) to handle surface and
volume cross-subject registrations to standard volume and
surface spaces; and (6) to make the data available in the
CIFTI format in a standard grayordinate space (see [41] for
details).

The task-state fMRI data included an emotion processing
task and a WM task. The emotion processing task is a Hariri
matching task [42], in which the participants were asked to
decide which of the two faces presented at the bottom of
the screen matched the face at the top of the screen or which
of two shapes presented at the bottom of the screen matched
the shape at the top of the screen [43]. The faces have either
angry or fearful expressions and simple geometric shapes
(circles, vertical, and horizontal ellipses) were used as control
stimuli. The WM task is an n-back task in which 4 different
stimulus types (face, places, tools, and body parts) are pre-
sented in separate blocks within each run. Within each run,
1/2 of the blocks use a 2-back WM task and 1/2 of the blocks
use a 0-back WM task. Each of the two runs contains 8 task
blocks (10 trials of 2.5 s each, for 25 s) and 4 fixation blocks
(15 s each).

Following Cao et al. [44], the mean average of all task-
related signal fluctuations was removed by regression with
separate regressors for each experimental condition in order
to only account for condition-specific effects, prior to graph
construction. The parcellation with 333 parcels developed
by Gordon et al. [45] was combined with subcortical areas
(bilateral amygdala, hippocampus, accumbens, caudate, pal-

lidum, putamen, thalamus, ventral diencephalon, cerebel-
lum, and the whole brain stem) into a new parcellation
with the 352 functional parcels (downloading from https://
sites.wustl.edu/petersenschlaggarlab/resources/). Then, we
used Connectome Workbench developed by the HCP
(http://www.humanconnectome.org/software/connectome-
workbench.html) to extract the 352 parcels’ time series from
the residual task-fMRI data and merged the time series of two
scanning orders. Next, we computed the pairwise Pearson’s
correlation matrices of all these parcel time series for each
task. Finally, we removed the rows and columns correspond-
ing to 47 parcels with no original labels in the parcellation
developed by Gordon et al. [45] and thus obtained the func-
tional networks with the size 305 × 305.

The resting-state fMRI data contained the FIX data. Dur-
ing the preprocessing, the FIX data had been cleaned of struc-
tured noise by a new approach that combines ICA with a
more complex automated component classifier referred to
as FIX [41]. Similar to the task state, we obtained Pearson’s
correlation matrices with 305 functional nodes for the FIX
data.

2.3. Network Connection Analysis. To identify network con-
nections that varied with the task demand, we used the
NBS approach [23]. Full-linking connectivity matrices were
entered as repeated measure-dependent variables into the
NBS toolbox (freely downloaded from http://www.nitrc
.org/projects/nbs/), with the contrast of EMOTION or WM
versus FIX. According to Figure 1, the inflection points sepa-
rately occur at the threshold of t = 4:6 for EMOTION versus
FIX (i.e., the number of connected edges decreases more
sharply when t < 4:6; the curve nearly parallels with t-axis
when t > 4:6) and at the threshold of t = 6:4 for WM versus
FIX (i.e., the curve nearly parallels with t-axis when t > 6:4).
Moreover, the networks for EMOTION and WM versus
FIX hold comparable edges at these inflection points. There-
fore, an individual-connection-level threshold of t = 4:6 and
6.4, respectively, for EMOTION versus FIX and WM versus
FIX was used with extent-based correction for multiple
comparisons, 5000 permutations, and an overall corrected
p < 0:0001.

2.4. Graph-Theoretic Processing. After these correlation net-
works were Fisher-Z transformed, their diagonal elements
and negative connections were set to zero. We used the
BCT (http://www.brain-connectivity-toolbox.net) to sparse
functional networks in 1% interval from the threshold 5%
to 15%. For each threshold, we constructed weighted net-
works for the FIX, EMOTION, and WM condition. In these
weighted networks, inter/intramodal connections below the
threshold were assigned to 0 while the connections above
the threshold remained unchanged because weak and non-
significant links may represent spurious connections that
tend to obscure the topology of strong and significant con-
nections and as a result are often discarded [8].

The graph analyses included nodal and global topological
features for each threshold. First, to explore how the hubs
change in the different task conditions, we computed the
nodal PI (or participation coefficients) and within-module
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degree Z-score for each threshold. PI measures the diversity
of intermodular connections of individual nodes while
within-module degree Z-score measures the extent to which
a node is connected to other nodes within its module [46].
Following Guimera et al. [27] and Finc et al. [13], we first
classified nodes as hubs (Zi > 1) and nonhubs (Zi < 1). Then,
the hubs were further divided into three classes: (1) provin-
cial hubs with Zi > 1 and PIi < 0:3; (2) connector hubs with
Zi > 1 and 0:3 < PIi < 0:75; and (3) kinless hubs with Zi > 1
and PIi > 0:75.

Second, we analyzed the following global network prop-
erties to determine functional networks that become inte-
grated or separated from resting to task states. (1)
Assortativity is a correlation coefficient between the degrees
of all nodes on two opposite ends of a link. A positive assor-
tativity coefficient indicates that nodes tend to link to other
nodes with the same or similar degrees. (2) Global efficiency
is the inverse of the average shortest path length. (3) Transi-
tivity is the ratio of triangles to triplets in the network and is
an alternative to the clustering coefficient.
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Figure 1: The number of connected edges varies with the threshold of the t-value from the network-based statistic method. (a) The inflection
point occurs at the threshold of t = 4:6 for EMOTION versus resting state. (b) The inflection point occurs at the threshold of t = 6:4 for
working memory versus resting state.
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Figure 2: Two-dimension and three-dimension depictions of connectivity analysis result in the EMOTION versus FIX condition. The nodal
color denotes affiliative community; the nodal size represents the magnitude of nodal betweenness centrality; the edge depicts binarized edge.
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We wrote the custom Matlab scripts to perform one-way
ANOVA with 3 conditions (FIX, EMOTION, and WM) for
global and nodal properties separately in weighted networks
at each threshold. The Bonferroni methodwas used for all post
hoc analyses. Significant effects of p < 0:001 were reported.

3. Results

3.1. Connectivity-Based Analysis

3.1.1. EMOTION versus FIX Contrast. The NBS analysis
revealed that a single connected network with 18 nodes and
18 edges was altered (t = 4:60, p < 0:0001, corrected)
(Figure 2). Table 1 shows the nodes of the connected net-
work. The involved nodal regions included Default_6, two
FrontoParietal nodes (3 and 20), three CinguloOperc nodes
(7, 17, and 40), PERN_2, two DorsalAttn nodes (6 and 8),
one VentralAttn node (11), two Visual nodes (11, 29, and
34), two SMHand nodes (1 and 35), three SMmouth nodes
(6, 7, and 8), and one Auditory node (2). All of the connec-

tions exhibited increased values in the EMOTION condition
compared with the FIX condition. However, there were no
significant connections between Context/Salience/Subcorti-
cal nodes and other nodes.

3.1.2. WM versus FIX Contrast. The NBS analysis showed a
significant increase of connectivity in the WM condition
compared with the FIX condition in a single brain network
formed by 20 nodes and 23 edges (t = 6:40, p < 0:0001, cor-
rected) (Figure 3). The involved nodal regions included two
Default nodes (40 and 41), two Context nodes (2 and 7),
three CinguloOperc nodes (7, 13, and 14), PERN_2, two Dor-
salAttn nodes (6 and 8), four Visual nodes (28, 31, 32, and
34), SMHand_35, three SMMouth nodes (6, 7, and 8), and
two Auditory nodes (1 and 2). There were no significant con-
nections between FrontoParietal/Salience/VentralAttn/Sub-
cortical nodes and other nodes.

3.2. Nodal Feature Analysis. Figures 4(a)–4(f) show the dis-
tribution of the hubs within 305 nodes for 81 subjects at the

Table 1: The nodes of connected network in the emotion and working-memory versus the resting-state condition during the network-based
statistical analysis.

ID Parcel label AAL
Centroid MNI

Role∗
x y z

6 Default_6 Frontal_Sup_L -19.5 30.1 45.5 P

40 Default_40 Frontal_Mid_R 30.6 18.9 48.7 P

41 Default_41 Temporal_Sup_R 54.4 1.1 -12.9 Nonhub

43 Context_2 Calcarine_L -8.8 -49.8 4.2 Nonhub

48 Context_7 Fusiform_R 34.6 -23.9 -20.4 Nonhub

52 FrontoParietal_3 Frontal_Sup_Media -5.5 29.3 44 Nonhub

69 FrontoParietal_20 Frontal_Mid_Orb_R 28.4 57 -5.1 Nonhub

84 CinguloOperc_7 SupraMarginal_L -57.7 -40.6 35.8 P/C

90 CinguloOperc_13 Insula_L -28.8 23.7 8.4 P/C

91 CinguloOperc_14 Rolandic_Oper_L -59.8 -4.1 8.8 P/C

94 CinguloOperc_17 Rolandic_Oper_L -51.8 -0.6 5 P/C

117 CinguloOperc_40 SupraMarginal_R 54.9 -27 29.6 P/C

119 PERN_2 Precuneus_L -12.7 -64.9 31.8 C

128 DorsalAttn_6 Parietal_Inf_L -42.9 -45 43 P/C

130 DorsalAttn_8 Frontal_Inf_Tri_L -43.6 36.3 8.5 P

165 VentralAttn_11 Temporal_Mid_L -59 -18 -3 P

205 Visual_28 Occipital_Mid_R 31.7 -85.7 2.4 Nonhub

206 Visual_29 Lingual_R 43.8 -67.2 2 C

208 Visual_31 Temporal_Mid_R 49 -54.5 8.8 Nonhub

209 Visual_32 Lingual_R 31.2 -45.6 -5.8 Nonhub

211 Visual_34 Fusiform_R 34.9 -44 -20 Nonhub

217 SMhand_1 Cuneus_R -18.8 -48.7 65 P/C

251 SMhand_35 Postcentral_R 39.2 -34.6 57.5 P

260 SMmouth_6 Precentral_R 42.3 -11 47.3 Nonhub

261 SMmouth_7 Postcentral_R 53.9 -8.3 26.1 P/C

262 SMmouth_8 Precentral_R 47.8 -15.1 49.3 P/C

263 Auditory_1 Heschl_L -32 -29.3 15.6 Nonhub

264 Auditory_2 SupraMarginal_L -46.3 -41.4 25.9 Nonhub

Note. P: provincial hub; C: connector hub. ∗Nodal role at the resting state.
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threshold of 10%, and Figure 4(g) shows the mean ratio of the
hubs across all 305 nodes at the 5-10% threshold. Across each
threshold, the number of the nonhubs was approximately 83%
while the number of the hubs was approximately 17% in the
FIX, EMOTION, and WM networks (Figure 4(g)). On the
one hand, FIX networks only included provincial
(12:42% ± 0:76%) and connector (4:63% ± 1:08%) hubs
(Figures 4(a) and 4(b)) but no kinless hubs; EMOTION net-
works mainly included connector (12:59% ± 1:08%) and kin-
less hubs (4:11% ± 1:19%) (Figures 4(c) and 4(d)) but no
provincial hubs; WM networks mainly covered kinless
(13:72% ± 2:15%) and connector (1:90% ± 2:17%) hubs but
no provincial hubs (Figures 4(e) and 4(f)). On the other hand,
the ratio of the connector hubs increased with thresholds in
FIX networks while the ratio of the kinless hubs increased with
thresholds in EMOTION and WM networks. Moreover,
ANOVA analyses indicated that the ratio of the connector
hubs significantly increased in EMOTION networks relative
to FIX and WM networks (p < 0:001) while the ratio of the
kinless hubs significantly increased in WM networks com-
pared to FIX and EMOTION networks (p < 0:001).

When we ignored the hubs whose subject ratio was less
than 5%, we found that the Context, Salience, and Subcortical
communities did not include any hubs in the FIX condition.
The most nodes of these communities shifted from nonhubs
in the FIX condition to connector hubs in the EMOTION
condition or to kinless hubs in the WM condition. However,
Amygdala_1/2, Putamen_1, and Brain Stem became connec-
tor hubs only in the EMOTION condition. Additionally,
when we considered the nodes as ROIs in Table 1, we found
that Default_41, Context_2/7, FrontoParietal_3/20, Visual_
28/31/32/34, SMmouth_6, and Auditory_1/2 in the FIX con-
dition shifted from nonhubs of a single role to connector
hubs in the EMOTION condition or to kinless hubs in the

WM condition (Figure 5). Similarly, Default_6/40, Ventra-
lAttn_11, DorsalAttn_8, and SMhand_35 in the FIX condi-
tion switched from provincial hubs of a single role to
connector hubs in the EMOTION condition or to kinless
hubs in the WM condition. PERN_2 and Visual_29 in the
FIX and EMOTION condition changed their single role of
connector hubs into kinless hubs in the WM condition.
However, CinguloOperc_7/13/14/17/40, DorsalAttn_6,
SMhand_1, and SMmouth_7/8 in the FIX condition turned
their dual roles of provincial/connector hubs into connector
hubs in the EMOTION condition or into kinless hubs in
the WM condition.

3.3. Global Property Analysis. For FIX, EMOTION, andWM,
ANOVA analyses on the global network properties showed
significant task effects in global efficiency, transitivity, and
assortativity (p < 0:0001) (Figure 6). Post hoc comparisons
indicated that under the threshold of 5-15%, FIX networks
contained greater assortativity values than EMOTION net-
works while EMOTION networks showed greater assortativ-
ity values than WM networks (p < 0:001) (Figure 6(a)).
Moreover, FIX networks exhibited greater global efficiency
than EMOTION networks (p < 0:001) while EMOTION net-
works exhibited greater global efficiency than WM networks
(p < 0:0001) (Figures 6(b) and 6(d)). Finally, FIX networks
had greater transitivity values than EMOTION andWM net-
works (p < 0:0001) while WM networks included greater
transitivity values than EMOTION networks (p < 0:001)
(Figures 6(c) and 6(e)).

4. Discussion

In the present study, we used graph-theoretic approach to
analyze the resting-state and task-state (WM and
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Figure 3: Two-dimension and three-dimension depictions of connectivity analysis result in theWM versus FIX condition.WM: working memory.
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Figure 4: Continued.
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EMOTION) fMRI scans of 81 subjects from the HCP to
determine how the topological properties of functional net-
works dynamically change according to task demands.
Results indicated that relative to resting state, task demands
significantly increase the strength of long-distance connec-
tions between modules but not within modules; the number
of connector and kinless hubs significantly increases in
EMOTION and WM networks while provincial hubs disap-
peared. Moreover, EMOTION and WM networks seem to
become separated: their assortativity is close to zero and both
the global efficiency and transitivity decreased. These results
suggest that task demands change the architecture of intrin-
sic functional networks and cause local and global topologi-
cal properties of functional networks at resting state to
redistribute.

4.1. Long-Distance Connections Dominate Intermodular
Communication at Task States. The NBS results indicated
that the significant increase in connectivity strength occurred
between different communities but not within modules at
task state versus resting state. Long-distance connections
occupy a relatively small ratio in functional networks [18].
However, a small quantity of long-distance connections is
necessary to maintain intermodular information communi-

cation because long-distance connection shorten the path-
way of information transfer but does not significantly
increase the wiring cost [3, 20, 47]. Consist with our results,
previous MEEG studies also found that task demands (WM
and motor performance) promote synchronization between
brain networks through long-distance links [34, 40].

Moreover, WM and EMOTION networks show different
connectivity patterns. Particularly, the long connection
between Defualt_6 (Frontal_Sup_L) and VentralAttn_11
(Temporal_Mid_L) in EMOTION networks significantly
increased while the long connections between Default_40/41
(Frontal_Mid_R and Temporal_Sup_R) and Visual_32/34
(Lingual_R and Fusiform_R) significantly increased in WM
networks, which is consistent with the flexible reconfiguration
in the interactions of DMN with other subnetworks [19].
However, there were no long connections between Subcortical
nodes and other modular nodes. This may be partly attributed
to very high threshold during the NBS analysis of fully linking
networks. Taken together, long-distance connectivity patterns
between modules have decisive significance for decoding mul-
tiple task-relevant information.

4.2. Connector and Kinless Hubs Dominate Task-State
Functional Networks. Consistent with Finc et al. [13], we
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found that the number of connector hubs that have many
links to most of the other modules increased in the EMO-
TION and WM networks relative to the FIX network. To
be noted, kinless hubs that have links homogeneously distrib-
uting among all modules also increased, particularly in WM
networks. However, kinless hubs did not appear in FIX net-
works, which might explain why kinless hubs were almost
ignored in the literature related to functional networks. In
addition, provincial hubs that have the vast majority of links
within their own module mainly appeared in FIX networks
but disappeared in EMOTION and WM networks. The pre-
vious MEG research also found that the motor tapping task
causes the shift from resting-state networks dominated by
provincial hubs to motor networks with a larger number of
connector hubs [38]. Thus, consistent with the flexible hub
theory [25], task demands need more between-module infor-

mation communication so that connector and kinless hubs
dominate task-state functional networks.

When we neglected the hubs whose subject ratios were
less than 5%, the hubs in EMOTION networks mainly con-
sisted of connector hubs while the hubs in WM networks
mainly belonged to kinless hubs. This might be attributed
to the fact that PI values in WM networks were higher than
those in EMOTION networks. This is also consistent with
previous results indicating that more task demands need a
more globally synchronized system to involve in [40]. More-
over, bilateral Amygdala, the left Putamen, and Brain Stem
became connector hubs only in EMOTION networks, con-
sistent with previous results [20, 26, 28–30], which implies
that these hubs take a critical role in decoding emotional
information. To be noted, in FIX networks, nonhubs (e.g.,
Defualt_41, Context_2/7, FrontoParietal_3/20, Visual_
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28/31/32/34, SMmouth_6, and Auditory_1/2) switch to con-
nector hubs in EMOTION networks or kinless hubs in WM
networks. These results suggest that task-relevant functional
nodes dynamically reconfigure and shift their network roles
from within-module to between-module.

4.3. Functional Networks at Task State Tend to Be More
Separated Than Those at Resting State. Intrinsic functional
networks at resting state represent a standard architecture and
maintain the balance between integration and separation, which
is evoked by task-relevant network changes [6, 14]. Although
less than 24 long-distance connections appeared and less than
17% functional nodes switched their roles in EMOTION and
WM as discussed above, the global properties changed signifi-
cantly. The global efficiency and transitivity significantly
decreased in EMOTION and WM versus FIX, which means
that task demands cause increase in pathway lengths (e.g., long
connections appear) and decrease in clustering coefficients.
This is inconsistent with increases in task demands leading to
more integrated brain networks [36, 37]. The previous study
used a binary network to compute global properties [36] while
our study used weighted networks. Undoubtedly, weighted cor-
relation networks occupied more accurate representation than
the binary networks.

What is more, the assortativity values reflecting a correla-
tion coefficient between the degrees of all nodes significantly
decreased and were close to zero at task state. Similarly, pre-
vious results also found that affective networks have negative
assortativity and lower global efficiency and exhibit weaker
small-worldness [30]. These results suggest that task
demands break the balance between local and distant func-
tional couplings at resting state [16] and cause functional
networks to reconfigure their topologies. As a result, func-
tional networks at task state tend to become more separated
or random, a shift of network architecture to a more random
configuration at higher levels of task difficulty [8, 30, 40]. Our
result showing that more kinless hubs appeared in WM than
in EMOTION networks to some degree provide direct evi-
dence for this opinion. However, functional brain network
topology was never completely randomized because of the

constraint of structural network [8]. These explanations are
not in agreement with previous MEG/EEG results that the
clustering coefficient was conserved over a wide range of fre-
quencies and increasing memory load increased clustering
coefficient [38, 39]. One possibility is because of the difference
in signal measurement nature between fMRI and MEEG.
Another possible interpretation is because the previous research
absolutized the correlation between wavelet coefficients for each
pair of sensors [38] or used EEG phase synchronization (posi-
tive and negative value) as a functional connectivity index
[39], while the present study only contained positive connec-
tions. To clarify these inconsistencies, future studies necessarily
combine fMRI with MEEG and select hard- and soft-
thresholding approach of functional networks [48].

In summary, task demands break the balance between
local and global coupling among brain regions in intrinsic
functional networks. Long-distance functional connections
dominated intermodular communication of functional net-
works at task states under high threshold. Correspondently,
task-relevant connector or kinless hubs betweenmodules were
flexibly redistributed to promote task performance while pro-
vincial hubs within modules disappeared.Moreover, task-state
networks significantly change their global topologies and tend
to become more random. These observations provide impor-
tant and direct evidences for the understanding of the organi-
zation principle behind the functional architecture of task-
state networks. To be cautious, it is unclear whether our results
can be generalized to other task-state network. Future studies
should use more other tasks with other network properties to
further confirm our observations.
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