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Abstract: Digital technologies provide the opportunity to analyze gait patterns in patients with
Parkinson’s Disease using wearable sensors in clinical settings and a home environment. Confirming
the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the
clinical application of sensor-based gait analysis. Therefore, the objective of this study was to compare
gait parameters measured by a mobile sensor-based gait analysis system and a motion capture system
as the gold standard. Gait parameters of 37 patients were compared between both systems after
performing a standardized 5 × 10 m walking test by reliability analysis using intra-class correlation
and Bland–Altman plots. Additionally, gait parameters of an age-matched healthy control group
(n = 14) were compared to the Parkinson cohort. Gait parameters representing bradykinesia and
short steps showed excellent reliability (ICC > 0.96). Shuffling gait parameters reached ICC > 0.82. In
a stridewise synchronization, no differences were observed for gait speed, stride length, stride time,
relative stance and swing time (p > 0.05). In contrast, heel strike, toe off and toe clearance significantly
differed between both systems (p < 0.01). Both gait analysis systems distinguish Parkinson patients
from controls. Our results indicate that wearable sensors generate valid gait parameters compared to
the motion capture system and can consequently be used for clinically relevant gait recordings in
flexible environments.

Keywords: Parkinson’s disease; wearables; inertial sensors; three-dimensional gait analysis; machine
learning algorithm; spatiotemporal gait parameters

1. Introduction

Parkinson’s disease (PD) is currently the world’s fastest-growing neurological dis-
order and characterized by motor and non-motor symptoms that worsen with disease
progression [1]. The main symptoms are the presentation of bradykinesia, rigidity, tremor
and postural instability [1]. Gait impairment in PD is often characterized by short steps
and a shuffling gait resulting in an increased risk of falling [2]. Gait impairment plays an
important role for PD patients, as well as affects the quality of life, limits the independence,
and reduces activities of daily living [3]. To determine the severity of gait disorders, an
early and objective gait assessment is important [4,5].
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Motion-capture (MC)-based gait analysis is still the gold standard to provide a param-
eter for kinematics and kinetics of human gait and, thus, provides an ideal confirmation
measure for inertial sensor-based gait analysis [5–7]. Passive reflective markers are placed
on the lower extremities, pelvis and trunk of the participants to standardized protocols [5].
Special high-frequency cameras calculate trajectories of these markers and produce quanti-
fied, reliable, and accurate results over short-distance walking tests. As data acquisition
is time consuming, expensive, and can be performed by specialized personnel solely, a
three-dimensional gait analysis using motion capture systems still requires enormous effort
and is rarely practicable to use in a home-monitoring setting [4].

For a quick and mobile assessment of gait, wearable sensors provide an alternative
measurement technique [8]. Mobile systems have the potential to record gait patterns
over several hours in flexible environments [9,10]. Body-worn inertial sensors comprising
of biosensors such as accelerometers and gyroscopes, combined with signal processing
and machine learning algorithms, measure changes of gait patterns objectively and by
metric [3,10–12]. Moreover, it has already been shown that a sensor-based gait analysis
system was able to distinguish PD patients from controls and allowed automated staging
and symptom monitoring in PD [10]. Previous studies already showed that inertial sensors
complement the clinical workup by measuring clinically relevant data, such as motor
symptoms, risk of falling, or freezing of gait, that cannot be observed by eye, not only in
clinical settings but also in the home environment [3,10]. In the literature, already one study
with a limited number of PD patients and a healthy cohort exists, in which the validity of a
sensor-based gait analysis system were compared with an MC [13].

Therefore, the aim of the study was to technically validate a mobile sensor-based gait
analysis system (MGL) by comparing gait parameters with a gold-standard MC in a larger
PD cohort. The hypothesis of this study was that sensor-based gait parameters describing
Parkinsonian gait are reliable in comparison to gait parameters measured by an MC. For
clinical validation, PD gait parameters of both systems were compared with those of an
age-matched healthy control group.

2. Materials and Methods
2.1. Study Cohort

Thirty-seven patients diagnosed with sporadic PD were recruited at the neurological
clinic, Sana-Hospital Rummelsberg, Schwarzenbruck, Germany, between April 2018 and
March 2019. PD patients enrolled for this study were part of the inpatient “Parkinson’s
Disease Multidisciplinary Complex Treatment” program in which pharmacological treat-
ment is combined with physiotherapy, occupational therapy, speech and language therapy,
specialized balance and gait training and a cognitive behavioral training [14–16]. Sporadic
PD was defined according to the Guidelines of the German Association for Neurology
(DGN), similar to the UK PD Society Brain Bank criteria [17]. Exclusion criteria were cog-
nitive impairment as defined by a Minimal Mental Status (MMST) < 26, as well as motor
fluctuations, dyskinesia, and comorbidities potentially affecting gait (e.g., polyneuropathy,
hydrocephalus, visual problems orthopedic or psychiatric comorbidities). PD patients
with age > 18 years and Hoehn and Yahr disease stage (H&Y) between I–IV were either
able to walk independently or safe with a walking aid (wheeled walker) without external
help of another person. The gait analysis was performed in stable ON medication without
the presence of clinically relevant motor fluctuations during the assessment [18,19]. A
control group consisting of 14 age-matched healthy participants without any neurological
or orthopedic comorbidities was also involved in the study.

Characteristics of the study population are presented in Table 1. This study was
approved by the local ethics committee (reference number: 166_18 B Medical Faculty,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany), and the participants gave
written informed consent according to the Declaration of Helsinki.
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Table 1. Characteristics of PD patients and control group. H&Y: Hoehn and Yahr disease stage;
MMST: Minimal Mental Status; p < 0.05 Mann–Whitney U test; ◦ chi-squared test.

Validation Group
PD (n = 37)

Control Group
(n = 13) p

Age (years) 70.8 ± 9.3 72.2 ± 28.8 0.575

Gender (m:f) 20:17 8:6 0.843 ◦

UPDRS-III (score) 19.9 ± 9.0 na na

H&Y (score) 3.1 ± 0.7 na na

1; 1.5 1 na na
2; 2.5 5 na na
3; 3.5 21 na na

4 12 na na

MMST (score) 28.4 ± 1.8 na na

Gait
(without:with wheeled walker) 25:12 14:0 0.046 ◦

2.2. Study Procedure

PD patients performed a standardized 5 × 10 m walking test with self-selected velocity
using marker-based MC (Simi Reality Motion Systems GmbH: Unterschleißheim, Germany)
consisting of eight high-speed cameras (mvBlueCOUGAR Matrix Vision GmbH: Oppen-
weiler, Germany with 2.0MP@100Hz). In parallel, MGL (Portabiles-HCT GaitLab-System;
Portabiles HealthCare Technologies GmbH: Erlangen, Germany) was used consisting of
inertial sensors (miPod 3 sensors, gyroscopes and accelerometers). The sensors were inte-
grated in the mid-sole of the athletic shoes (Figure 1). Recordings were performed using an
(tri-axial) accelerometer range of ±6 g (sensitivity 300 mV/g), a gyroscope range of ±500◦/s
(sensitivity 2 mV/◦/s), and a sampling rate of 102.4 Hz. Sensor signals were streamed via
Bluetooth® to a tablet computer and stored for subsequent data analysis [10,18,20]. Inertial
sensor data were processed with a pattern recognition algorithm for computing clinically
relevant spatiotemporal gait parameters (gait velocity, stride length, stride time, relative
stance time, relative swing time, heel strike (HS) angle, toe off (TO) angle, and maximum
foot clearance (TC)). The algorithm used for MGL is validated for elderly [19], young
controls [21], and PD patients [13]. Additionally, passive reflecting markers were fixed
based on standardized protocols on the patients’ shoes to calculate the gait parameters with
the MC [22,23]. Gait velocity, stride length, stride time, relative stance time and relative
swing time are used to describe the PD-related symptoms bradykinesia and short steps;
the parameters HS, TO and TC represent shuffling of gait. HS angle is defined as the angle
between the foot and the floor at initial foot contact (beginning of the stance phase). TO
angle is defined as the angle between the foot and the ground during push off at the end
of the stance phase [12,20,24]. Only straight strides were automatically detected and used
for gait parameter calculations as described [19]. The MGL records the patients’ strides
over the total walkway; the arrangement of the cameras limits the measurement volume of
the MC to 3 × 6 m. Due to the different disease stages of the patients, only three left and
three right steps were included for final analysis. For this reason, solely these steps were
additionally calculated for the MGL (MGL-MV) in order to compare the gait parameters
with the MC in the measurement volume (MV).

2.3. Statistical Analysis

Normal distribution of data was tested by the Kolmogorov–Smirnov test, and the
variance homogeneity was assessed by the Levene test. As the gait parameters were
partly not normally distributed, non-parametric analysis was performed for all gait pa-
rameters to compare the results between both measurement systems. Reliability analysis
was performed using inter-class correlation coefficient (ICC). The mean values of the
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gait parameters of both systems were compared by the Wilcoxon rank test. Due to the
fact that MC consists of an image-based camera-technique, 786 left and 783 right strides
of 33 patients could be synchronized via video image between MC and MGL and com-
pared by Bland–Altman plots. The Mann–Whitney U test was used to compare the gait
parameters of PD patients with those of the control group. In order to minimize the
effect of multiple comparisons, the significance level was adapted with the False-Rate-
Discovery test by Benjamini–Hochberg for multiple testing. Values with p < 0.05 after the
Benjamini–Hochberg correction were considered as significant. For interpretation of the
ICCs, the suggestions of Koo and Li who defined values greater than 0.90 as having an ex-
cellent reliability were used [25]. For the interpretation of the Spearman’s rank correlation,
values larger than 0.70 were defined as having strong correlation whereby a correlation of
rhos = 1.00 describes a perfect association. All statistical analyses were performed using
SPSS software package version 25 (IBM Corp. Released 2017. IBM® SPSS® Statistics for
Windows, Armonk, NY, USA: IBM Corp).
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3. Results
3.1. Correlation of MGL and MC Gait Parameters

The gait parameter reflecting bradykinesia and short steps measured by MGL, MGL-
MV, and MC showed an excellent reliability as defined by ICC value > 0.90 (Table 2).
The range between minimum and maximum of the 95% confidence interval presented an
excellent reliability as well. ICCs of the shuffling gait parameters were lower (≥0.822),
whereby the minimum of 95% confidence interval identified low to moderate reliability.

Gait parameters representing bradykinesia and short steps, analyzed with MGL and
MC, did not differ significantly except for the stride time (p = 0.003) between systems,
whereas the shuffling gait parameters differed significantly between both gait analysis
systems (p < 0.001; Table 3).

From the synchronized 786 left and 783 right strides of 33 patients, it is seen that
95% of all values of gait parameters (except TO and TC) were within ±1.96 standard
deviation of the mean difference—limits of agreement (Figure 2). Additionally, the
Bland–Altman plots showed a constant bias between both the gait analysis system for
gait speed (0.02 ± 0.01 m/s; p < 0.001) and the stride length (0.03 ± 0.01 m; p < 0.001),
whereby the MGL showed larger values. For relative stance and swing time, a negative
trend with higher mean values was observed (p = 0.198). The difference of HS (p < 0.001)
and TO (p < 0.001) between the gait analysis systems increased with higher mean values.
The TC also showed a constant bias of 2.25 ± 1.01 cm (p < 0.001) between both systems,
whereby the MGL underestimated the TC.
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Table 2. Inter-class correlation coefficient (ICC); maximum and minimum of 95% confidence interval.

ICC 95% Confidence Interval p αc *
Minimum Maximum

Bradykinesia/short steps

gait speed 0.986 0.975 0.992 <0.001 <0.001

stride length 0.985 0.974 0.992 <0.001 <0.001

stride time 0.966 0.942 0.981 <0.001 <0.001

rel. stance time 0.964 0.938 0.980 <0.001 <0.001

rel. swing time 0.964 0.938 0.980 <0.001 <0.001

Shuffling gait

HS 0.822 0.162 0.943 <0.001 <0.001

TO 0.903 0.505 0.967 <0.001 <0.001

TC 0.900 0.425 0.967 <0.001 <0.001

* Significance level corrected by Benjamini–Hochberg False Rate Discovery (αc) with p < 0.05; significant results
are highlighted in bold.

Table 3. Gait parameters recorded with MGL and MC (mean, standard deviation (std) and signifi-
cance level (p)).

System Group Comparison αc *
Mean std p

Bradykinesia/short steps

gait speed [m/s] MGL 0.98 0.32
0.780 0.780MC 0.98 0.32

stride length [m] MGL 1.14 0.29
0.122 0.195MC 1.13 0.28

stride time [s]
MGL 1.20 0.16

0.003 0.006MC 1.19 0.16

stance time [%]
MGL 65.40 2.47

0.192 0.219MC 65.14 2.68

swing time [%] MGL 34.60 2.47
0.192 0.219MC 34.86 2.68

Shuffling gait

HS [◦]
MGL 8.97 5.52

<0.001 <0.001MC 16.49 7.00

TO [◦]
MGL 61.27 11.84

<0.001 <0.001MC 52.95 9.01

TC [cm]
MGL 5.87 2.77

<0.001 <0.001MC 8.32 2.99

* Significance level corrected by Benjamini–Hochberg False Rate Discovery (αc) with p < 0.05; significant results
are highlighted in bold.

3.2. Clinical Relevance of Gait Analysis Systems—Comparison with Control Group

After correction of the significance level with the Benjamini–Hochberg false-rate-
discovery test, MGL and MC measured significantly different gait parameters between
patient and control group. Post hoc analysis showed that all gait parameters, except rel.
stance and rel. swing phase, were significantly distinguished between patients with H&Y 3
and the control group with both gait analysis systems comparable. Higher disease staging
(H&Y 4) led to strong differences in all gait parameters. In contrast, both systems did not
detect gait parameter differences between patients staged with H&Y 1 + 2 and controls
(Table 4).
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Figure 2. Difference between MGL and MC (bias = bold line) and ±1.96 std (dotted line) presented
with Bland–Altman plots of all measured gait parameters.

Table 4. Group comparison of MGL and MC and effect size (r) compared between patients subdivided in H&Y stage 2, 3
and 4 (II, III, IV) and control group (c).

Group Comparison Effect
Size p (Benjamini–Hochberg Post Hoc Test)

p αc z r c–II αc *
c–II C–III αc *

c–III c–IV αc *
c–IV

Bradykinesia/short steps

gait speed [m/s] MGL 0.002 0.003 3.784 0.53 0.172 0.356 0.007 0.011 <0.001 <0.001
MC 0.001 0.002 3.880 0.54 0.151 0.243 0.005 0.010 <0.001 <0.001

stride length [m] MGL 0.001 0.003 3.917 0.55 0.262 0.356 0.023 0.031 <0.001 * <0.001
MC 0.001 0.002 3.926 0.55 0.247 0.247 0.024 0.024 <0.001 <0.001

stride time [s]
MGL 0.025 0.002 −2.798 0.39 0.267 0.356 0.005 0.001 0.005 0.005
MC 0.008 0.008 −2.958 0.41 0.201 0.247 0.003 0.001 0.003 0.003

stance time [%]
MGL 0.044 0.044 −2.832 0.40 0.464 0.464 0.159 0.159 0.005 0.005
MC 0.002 0.027 −3.766 0.53 0.029 0.116 0.020 0.023 <0.001 <0.001

swing time [%] MGL 0.044 0.044 2.832 0.40 0.464 0.464 0.159 0.159 0.005 0.005
MC 0.002 0.027 3.766 0.53 0.029 0.116 0.020 0.023 <0.001 <0.001

Shuffling gait

HS [◦]
MGL 0.001 0.003 3.740 0.52 0.011 0.088 0.001 0.004 <0.001 <0.001
MC 0.001 0.002 3.856 0.54 0.060 0.158 0.003 0.010 <0.001 <0.001

TO [◦]
MGL 0.002 0.003 3.701 0.52 0.204 0.356 0.004 0.010 <0.001 <0.001
MC 0.003 0.003 3.463 0.48 0.217 0.247 0.005 0.010 0.001 0.001

TC [cm]
MGL <0.001 <0.001 4.370 0.61 0.024 0.096 0.001 0.004 <0.001 <0.001
MC 0.001 0.002 4.209 0.69 0.079 0.158 0.008 0.013 <0.001 <0.001

* Significance level corrected by Benjamini–Hochberg False Rate Discovery (αc) with p < 0.05; significant results are highlighted in bold.
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4. Discussion

The aim of the study was to validate the MGL against an MC. The main findings of the
study were that sensor-based gait parameters representing bradykinesia and short steps of
patients with PD presented excellent reliability in comparison to MC. Additionally, both
systems similarly measure significant differences between the Parkinsonian gait compared
with gait patterns of an age-matched control group. Following these results, the hypothesis
of this study can be confirmed.

4.1. Sensor-Based Gait Analysis System Provides Valid Results in PD Patients

The results of our validation study showed a strong correlation between the mobile
sensor-based and MC gait analysis system. Kluge et al. validated the previous version
of this sensor-based gait analysis system with an image-based MC in PD patients [13].
Compared to this study, they used silhouette tracking instead of passive reflecting markers
for calculating the trajectories and analyzed solely bradykinesia and short-step parameters
in a smaller cohort of PD patients and healthy probands. The results suggested that
both systems can measure gait parameters comparably with good test–retest reliability in
eleven analyzed healthy participants; however, the four analyzed patients with PD can
be considered as a pilot study. The very good consistency of the bradykinesia and short-
step parameters, which is described in the pilot study of Kluge et al., can be confirmed
in this study with a larger sample size consisting of 37 probands. The Bland–Altman
diagram showed a similar bias of a stride length of 2.95 cm and gait velocity of 2.46 cm/s
(Kluge et al.: stride length: 1.4 cm; gait velocity: 1.2 cm/s).

4.2. Shuffling Gait Parameters

For shuffling gait parameters, significant differences between both systems were
identified in this study. The validation of shuffling gait parameters as well as the rel.
stance and rel. swing phase between MGL and MC has not been identified as a central
theme in the literature until now. The Bland–Altman plots presented an increasing average
difference of relative stance and swing phase with increasing duration of relative stance
time and synchronic decreasing duration of relative swing time. Additionally, differences
of the average values of HS and TO are increasing with larger foot angles. A different gait
phase determination such as first floor contact or heel-strike moment of both gait analysis
systems may be a possible explanation. In the MGL, the algorithm defines the gait phases,
whereas in the MC the investigator identifies the gait phases by using the video image as
reference [13,19]. Further studies need to clarify the impact of HS and TO definition on
MGL and MC to evaluate if one of those gait analysis system may define gait phases more
precisely. The comparison of TC between MGL and a MC is already represented in the
literature [21]. As described in this paper, we defined the TC with the MC as the maximal
foot height during the swing phase relative to the height at flat foot in the stance phase of the
toe marker. The Bland–Altman diagram showed a constant bias for TC of 2.25 ± 1.01 cm
in our study and, therefore, a similar result to Kanzler et al. (TC = 1.69 ± 0.70 cm). The
analyzed cohort in Kanzler et al. included 744 strides of 20 probands, which is similar to the
present. Compared with our study, they investigated healthy subjects and did not include
PD patients. Taking into account the presented ICC results, it becomes apparent that
bradykinesia and short-step gait parameters in patients with PD can be reliably compared
between MGL and MC. However, rel. stance and swing time, as well as shuffling gait
parameters, are only comparable with limited extent between both gait analysis systems.

4.3. Clinical Relevance of Sensor-Based Gait Parameters

To investigate if the MGL detects clinically relevant gait impairment, the data of
patients with PD were additionally compared with those of a healthy age-matched control
group. The aim was to evaluate if MGL and MC similarly identify Parkinsonian gait and
differentiate from those of a control group. The results showed that PD patients walked
with a significantly reduced gait speed and stride length, and stride time increased by
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around 11% compared to healthy controls. Additionally, the heel-strike angle and TC
were reduced. Similar results were previously described in Schlachetzki et al. where they
measured a reduced gait speed and stride length of 190 patients with PD compared with a
healthy control group (n = 101). Stride time of the patients was increased by ~5%, HS of the
first floor contact was reduced by ~22%, and TC was limited [12]. Despite a larger study
cohort in the study of Schlachetzki et al., the results of this study demonstrate that both
MGL and MC can comparably differentiate patients with PD from a healthy control group.
In addition, Schlachetzki et al. pointed out that TC differs significantly from a control group
independently from the patient’s disease stage [12]. To evaluate if we can also define one
gait parameter that already differed in an early PD stage from a healthy control group, we
separated the patients by their disease stages and compared the gait results with the control
group. In contrast to the already published results after significance-level correction, we
could not identify one gait parameter that differed in early stages from a healthy control
group. Additionally, Pistacchi et al. realized in early Parkinson’s disease stages (H&Y 2
and 2.5) a significantly reduced gait speed and cadence of 44 patients compared with a
healthy control group [26]. Post hoc analysis in this study showed that all gait parameters,
except rel. stance and rel. swing phase, were significantly distinguished between patients
with H&Y 3 and the control group with both gait analysis systems comparable. Due to
a similar sample size, only the results of Pistacchi et al. are directly comparable with
those in our study. Initiating and deceleration strides, as well as turning angles, were not
included in our study. The focus of this study was the comparison between MGL and
MC; therefore, the measurement volume was restricted to the middle part of the 10 m gait
bout. As Nguyen et al. presented, gait initiation, termination and transitioning predicted
motor impairment in patients with PD better than the straight strides did [27]. This may
be one explanation that both systems could not detect gait parameter differences between
patients staged with H&Y 1 + 2 and controls. Taking this into account, the results already
published in the literature could not be confirmed in this study completely. Since patients
with H&Y 4 use a walking aid, this should be considered for correct interpretation of
sensor signals. Sensor-based and motion-capture gait parameters were distinguished from
a healthy control group solely in an advanced Parkinson’s disease stage (H&Y 3). Gait
speed, stride length, HS and TC showed with r ≥ 0.50 the highest effect size thereby.

4.4. Use Cases for Gold Standard and Mobile Systems

The technical validation of a mobile sensor-based gait analysis system with MC for
patients with PD is the basis for the use of this mobile system in a clinically relevant
context. Motion capture systems are still considered as the gold standard to analyze the
patient’s gait and provide highly accurate results over short-distance standardized walking
tests in the hospital [6,7]. However, a gait analysis with motion capture systems is still
very time consuming, expensive and absolutely limited to the lab environment [4]. In
contrast, mobile systems have the potential to record gait patterns over several hours in
flexible environments, including a patient’s daily life. This is a major benefit for physicians
since clinical diagnostics is mostly limited to a short timeframe in the hospital during the
doctor’s visit. Furthermore, wearable sensors complement clinical scores, as they analyze
gait fluctuations that appear especially in PD patients during the day [8–10,28]. In future
studies, it should be investigated if wearable sensors may be used in other orthopedic,
neuromuscular and neurological diseases to evaluate disease evolution, compliance to
therapies and indication for surgeries.

4.5. Limitations

One limitation of the study is the camera setup, which limits the measurement volume
of the MC to three left and three right steps of the patients. As solely the middle part
of the gait cycle could be compared between the gait analysis systems, gait variability
parameters were not included in this study. Straight strides in the measurement volume
do not completely reflect daily life scenarios. The synchronization was realized by video
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image. Although a stride-by-stride synchronization was conducted, the results must be
interpreted cautiously, since the overlay with the help of the video image was implemented
by the investigator and could not be fully automated. The different sample sizes of the
patient group (PD) compared with the healthy control group may influence the results, as
well as the diverse distribution of the H&Y stages.

5. Conclusions

The results of this study demonstrate that sensor-based gait speed, stride length and
stride time, as well as TC, were accurately captured in comparison with a motion capture
system. These results indicate that robust sensor-based gait parameters were generated
by MGL. Furthermore, both systems similarly measure a significant difference between
patients with PD and a healthy age-matched control group. Compared with previous large
cohort studies, we did not identify a parameter that differed between the control group
and early PD stages. The limitation of the measurement volume due to the camera setup
may be one explanation. In summary, the results show that sensor-based bradykinesia
and short-step parameters are highly comparable with gait parameters of an MC. These
findings indicate that MGL can be used for gait pattern monitoring in flexible environments,
including recordings over several hours in patient’s everyday life. Future studies need to
investigate whether sensor-based gait parameters objectively reflect therapy response and
disease progression in PD.
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