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Sensory experiences, such as sound, often result from our motor actions. Over
time, repeated sound-producing performance can generate sensorimotor associations.
However, it is not clear how sensory and motor information are associated. Here,
we explore if sensory prediction is associated with the formation of sensorimotor
associations during a learning task. We recorded event-related potentials (ERPs) while
participants produced index and little finger-swipes on a bespoke device, generating
novel sounds. ERPs were also obtained as participants heard those sounds played back.
Peak suppression was compared to assess sensory prediction. Additionally, transcranial
magnetic stimulation (TMS) was used during listening to generate finger-motor evoked
potentials (MEPs). MEPs were recorded before and after training upon hearing these
sounds, and then compared to reveal sensorimotor associations. Finally, we explored
the relationship between these components. Results demonstrated that an increased
positive-going peak (e.g., P2) and a suppressed negative-going peak (e.g., N2) were
recorded during action, revealing some sensory prediction outcomes (P2: p = 0.050,
η2

p = 0.208; N2: p = 0.001, η2
p = 0.474). Increased MEPs were also observed upon

hearing congruent sounds compared with incongruent sounds (i.e., associated to a
finger), demonstrating precise sensorimotor associations that were not present before
learning (Index finger: p < 0.001, η2

p = 0.614; Little finger: p < 0.001, η2
p = 0.529).

Consistent with our broad hypotheses, a negative association between the MEPs in one
finger during listening and ERPs during performance of the other was observed (Index
finger MEPs and Fz N1 action ERPs; r = −0.655, p = 0.003). Overall, data suggest that
predictive mechanisms are associated with the fine-tuning of sensorimotor associations.

Keywords: sensory prediction, sensorimotor association, predictive comparison, TMS, EEG

INTRODUCTION

Typically, sounds are produced by our motor actions. Through performance, the cause
and effect relationship between motor and sound information can become evident. Over
time, repeated experience can generate sensorimotor associations and the innervation of
motor and sensory data. It is proposed that these sensorimotor associations assist with
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precise motor control (Shadmehr et al., 2010). For instance,
when learning to press a key on the piano, a student will begin
to recognize that sounds are aligned with keys, and these are
(typically) activated by specific finger movements. Thus, should
one desire to hear those sounds, the known finger movements
should be executed.

In humans, evidence of sensorimotor association is usually
demonstrated during sensory processing and activation of
motor-brain regions. This can be achieved with transcranial
magnetic stimulation (TMS) to the primary motor cortex (M1).
TMS can be applied when listening to sounds that are associated
with a particular action, such as clicking one’s fingers (for review,
see Aglioti and Pazzaglia, 2010). Upon stimulation, hearing the
sound activates the motor program that formerly produced it,
and heightened M1 excitability is revealed. Subsequently, larger
motor evoked potentials (MEPs) are measured at the peripheral
muscle involved in the action when compared to a baseline
condition. The response, where known sounds activate motor
regions and specific corticospinal tracts, is called auditory-motor
resonance (AMR; for review, see Burgess et al., 2017).

AMR has been demonstrated extensively. Hearing piano
sounds increases MEPs in finger muscles of pianists when
compared to non-pianists (Furukawa et al., 2017), highlighting
the importance of experience. Similarly, MEPs in tongue
muscles are facilitated in response to speech listening (D’Ausilio
et al., 2014; Nuttall et al., 2017). Sensorimotor training has
even produced novel MEP disassociations (Ticini et al., 2011,
2019). That is, an index or little finger button-press can be
associated with distinct sounds during training. Afterwards,
hearing the index-congruent sound generates larger MEPs in
the index muscle than hearing the incongruent little-finger
sound. Together, these disassociations highlight the precision of
the AMR networks.

However, how sensory and motor systems integrate to
produce a sensorimotor association is unclear. Associating a
sound with a motor action must overcome inherent time delays
that are met during sensory processing. For example, the action
that generated this sound occurred in the past. Thus, in the first
instance, there is a temporal disconnect between the motor and
sensory aspects that might seem to work against the formation
of an experience-dependent association. To overcome this issue
(and others), it is suggested the central nervous system (CNS)
predicts impending sensory changes during action (Shadmehr
et al., 2010; Burgess et al., 2017).

Sensory predictions are critical for effective and fluid behavior
(for review, see Sawtell, 2017; Schneider and Mooney, 2018;
Straka et al., 2018). From a prediction perspective, smooth
movement is achieved over time via a comparison between
desired (predicted) and produced (actual) sensory consequences.
When predicted and actual stimuli are compared, expected
sensory consequences are attenuated or suppressed (Aliu et al.,
2009; Kilteni and Ehrsson, 2017). Unexpected or novel stimuli,
however, are not (Knolle et al., 2013;Mathias et al., 2015). In turn,
the feedback generated by this process helps make the movement
more efficient and accurate.

In humans, electroencephalography (EEG) and event-related
potentials (ERPs) can be used to indicate the sensory prediction

processes during action (for reviews, see Woodman, 2010;
Bendixen et al., 2012; Joos et al., 2014; Horváth, 2015).
When individuals produce sounds (e.g., speaking, arm, leg, or
finger-press generated sounds), which are presumably highly
predictable, the suppression of a negative-going peak around
100 ms is often demonstrated when compared to the same
audition-obtained peak (Ford et al., 2007; Baess et al., 2011; Van
Elk et al., 2014). This suppression represents attenuation of those
expected sensory consequences during action. Alternatively, the
accentuation of the ERP peak recorded during listening is
thought to represent the absence of sensory prediction. For
the CNS, it indicates that the incoming sounds are unexpected
and important or might even be produced by someone else
(Haggard, 2017).

Beyond the attenuation of the incoming sounds during a
performance, as indexed by N1 peak suppression, modulation of
other peaks during an action have also been discussed in terms
of sensory prediction. While it is not well understood (Crowley
and Colrain, 2004; Tong et al., 2009) and relatively unclear what
sensory prediction outcomes they could represent (Horváth,
2015; Pinheiro et al., 2018), modulation of the positive-going
P2 peak around 200 ms is also reported during action (Chen
et al., 2012; Knolle et al., 2013; Timm et al., 2014; Ghio et al.,
2018). Effects include decreased suppression for delayed stimulus
onsets (Behroozmand et al., 2011; Pereira et al., 2014), pitch-
shifted sounds (Behroozmand et al., 2014), or trained sounds
(Reinke et al., 2003; Tong et al., 2009). Enhancement of an
earlier P1 component (Boutonnet and Lupyan, 2015), and also
suppression of latent N2 peaks (Knolle et al., 2013; Mathias
et al., 2015) or related (Horváth et al., 2008) mismatch negativity
(MMN) is also reported (for review, see Näätänen et al., 2007;
Winkler, 2007; Garrido et al., 2009; Bartha-Doering et al., 2015).
Altogether, changes in negative and positive-going ERP peaks
across action and audition recordings are considered to reflect
the sensory prediction mechanisms and their outcomes.

In sum, there is reliable evidence for sensory prediction and
sensorimotor associations. However, few reports investigate how
they interact. Outside of studies exploring the cerebellum’s role
in sensory prediction during visually perturbed actions (Miall
et al., 2007; Izawa et al., 2012; Yavari et al., 2016), very few studies
show the interaction between auditory predictions and audio-
motor associations following a learning task. Here, we explore
for the first time, from an auditory perspective in humans, how
motor behavior, sensory prediction markers, and sensorimotor
associations are correlated within a single paradigm.

To investigate, an auditory-motor task was designed. This
required participants to make an index or little finger-swipe
movement on a bespoke device. Activation of one of two switches
would result in playback of a sound via in-ear headphones.
The sensory prediction mechanisms were assessed via ERPs, as
demonstrated by changes in ERP suppression across action and
audition stages. The sensorimotor associations, however, were
assessed via TMS-induced MEPs during listening, before and
after the training period. Finally, we explored the relationship
between sensory prediction, sensorimotor association, and
motor behavior [e.g., electromyography (EMG) recordings
during swipes].
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We hypothesize that sensory prediction will be evident.
That is, increases in ERP suppression for a negative-going
peak such as the N1 (e.g., Van Elk et al., 2014) or a later
N2 peak are expected to be present during action (e.g., Mathias
et al., 2015; i.e., given the novelty of the action and relatively
long swipe duration, we investigated three broad ERP peak
windows). Despite the conflicting evidence regarding a positive
peak usually around 200 ms, we hypothesized that a decrease
in suppression of the first positive-going peak (e.g., P2) will
be observed during the performance, reflecting a signal to
maintain perceptual gaps during sensory prediction processes
(e.g., Wang et al., 2014). AMR was also expected to be
revealed. Specifically, we hypothesized that congruent sounds
will generate larger MEPs when compared with those recorded
upon hearing incongruent sounds (e.g., Ticini et al., 2011).
Finally, given the close ties between sensory prediction and
sensorimotor association under theoretical accounts (Wolpert
and Kawato, 1998; Burgess et al., 2017), we hypothesized that
some correlations between the ERP and EMG data during action
with MEPs during listening will be present (see Supplementary
Figure S1 in Supplementary Materials for illustration of the
experimental hypotheses).

MATERIALS AND METHODS

Participants
We recruited 18 healthy adult participants, including eight
females [mean age = 27.33 years (SD = 5.28)]. Participants
did not reveal a history of neurological or psychiatric illnesses
(i.e., self-reported). All participants indicated normal hearing
and reported right-handedness, as confirmed by the Edinburgh
handedness inventory (Oldfield, 1971). Participants were also
screened to ensure they met TMS safety standards (Rossi
et al., 2009, 2011). Participants provided informed written
consent in accordance with the Declaration of Helsinki.
Participants were compensated for their time. The research was
approved by the Deakin University Human Research Ethics
Committee (2015-034).

Experimental Design and Procedure
The experimental paradigm was based on an ERP investigation
(Ford et al., 2010) and a TMS motor-learning study (Ticini
et al., 2011). It consisted of two main stages: (1) Action and
(2) Audition. During the action stage, participants produced
sounds by making finger-swipes on the experimental device,
while EEG and EMG techniques recorded CNS activity. The
audition stage, however, used TMS and EMG to record CNS
activity when participants passively listened to sounds that
were played back via the device. These stages were also
comprised of individual blocks to help minimize issues with
participant attention waning (e.g., Finkbeiner et al., 2016).
Overall, participants produced sounds (i.e., action) or heard them
(i.e., audition) while EEG, EMG, and TMS recorded CNS activity
within separate experimental blocks (see Figure 1 for illustration
of the protocol).

Participants sat comfortably in a chair. The custom-made
device, labeled the AMRJ (outlined below and illustrated

in Figure 2), was placed in front of them. After each
neuroscientific technique setup was completed (described
below), the experiment began with the Baseline stage. This stage
consisted of two blocks (B1 and B2). These blocks and the final
Baseline block (B3) were designed to measure transient-state
influences (Schmidt et al., 2009) and potential cumulative effects
of single-pulse TMS (Pellicciari et al., 2016). Each block had
20 TMS pulses with a 4-s inter-stimulus interval and 5-s inter-
block interval. Each block lasted approximately 2 min.

Following a 1-min break, the Pre-learning stage (Pre-LP)
began. The Pre-LP stage was comprised of two blocks (so-called
Pre-LP 1 and Pre-LP 2). Each block established a baseline ofMEPs
and, therefore, AMR. Participants listened to a quasi-randomized
block of 48 sound samples (i.e., 48 trials in a block; sounds are
described below). During listening, TMS was applied to M1, and
MEPswere recorded from both the index and little fingermuscles
simultaneously. Each block lasted approximately 5 min, and a
1-min break between blocks was provided.

After another 1-min break, the Learning Procedure (LP) stage
began. This stage was intended to associate finger-swipes and
sounds, and participants produced the sounds via finger-swipes.
There were four LP blocks (LP 1, LP 2, LP 3, and LP 4). Each
block required participants to perform 48 swipe movements with
their index or little fingers across the corresponding switch,
which would generate the sounds. Beginning with the inside
switch-edge, each finger would move towards the outer edge
of the device (see Figure 3 for illustration). The index finger-
swipe was toward the left-hand side of the device, while the
little finger generated a swipe towards the right. The starting
position required the middle and ring fingers to be positioned
over the two home plates. This allowed the index and little
fingers to be aligned with the inside edge of the respective
switch. Before testing, the experimenter provided an example
of both finger-swipes. Each swipe needed to be at least 300 ms
in duration for sound playback to occur. Participants were
instructed to modulate their speed to ensure swipe time was a
minimum of 300 ms.

Once sound playback had finished after each swipe,
participants returned to the original starting position. At the
beginning of each LP block, participants were instructed to begin
another swipe only after a self-timed 3-s break had expired. This
break was designed to assuage the concern of fatigue during
sensorimotor learning tasks (Bock et al., 2005; McDonnell and
Ridding, 2006). If the experimenter observed that the participant
began a swipe before the 3-s break had expired, participants were
notified via a shoulder tap before the next swipe. This indicated
they were to increase the rest period between trials.

To help promote motor learning, participants voluntarily
chose which movement to execute (Herwig et al., 2007).
Participants were asked to perform an approximately equivalent
number of index and little finger-swipes (24 each) to mitigate
any potential learning biases. This was observed, and participants
were made aware of the swipe distribution-count between LP
blocks. During testing, 50.51% of swipes were generated with the
index finger while 49.49% were produced using the little finger.
Within an LP block, the minimum index swipe count was 18, and
for the little finger at least 20 swipes were produced. Each block
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FIGURE 1 | Experimental protocol. Top panel: outlined here are the experimental stages, which are made up with blocks of transcranial magnetic stimulation (TMS)
or electroencephalography (EEG) trials. Bottom panel: this panel indicates the order of blocks (within their respective stage) across the experiment.

lasted approximately 5-min, and a 1-min break between each LP
block was used.

Following a 4-min break, the next stage was the post-learning
stage named Post-LP. Like the Pre-LP blocks, these stages
required listening to the 48 sound-trials over separate blocks
(Post-LP 1, Post-LP 2, Post-LP 3, and Post-LP 4). Post-LP
1 and 2 blocks used TMS, while Post-LP 3 and 4 used EEG
separately. TMS and EEG were used independently to minimize
interference across recordings. A 1-min break between all blocks
was added.

Participants then completed the Learning Procedure-control
(LP-C) stage. Here, two LP-C blocks (LP-C 1 and LP-C 2) were
used to isolate the motor component within the ERP trace.
Convention suggests that data associated with movement should
be subtracted from the LP block ERPs. This is thought to improve
the comparison with listening-derived ERPs (Martikainen et al.,
2005; Ford et al., 2007, 2010, 2014; Baess et al., 2011; Van Elk
et al., 2014). Therefore, the LP-C blocks used the same overall
design as the LP but did not produce any sound following a
swipe action. That is, swipe movements were produced; however,
no sounds were played. During testing, 50.77% of swipes were

generated with the index finger while 49.23% were produced
using the little finger.

Lastly, another Baseline stage was completed (block B3). Like
the initial Baseline blocks, four sets of five TMS pulses at the
motor threshold (MT) were applied while MEPs were recorded.

Participants were asked to observe their right hand
throughout the experiment to ensure a degree of uniformity
across experimental stages. Throughout all listening blocks,
participants were asked to pay attention to the sounds and
indicate if they heard a control sound after sound playback
has finished (i.e., no control sound was used during listening
trials, however). In total, the experiment lasted approximately
90–120 min.

The AMRJ
Manufactured by SPLat Controls (SPLat Controls, Seaford,
VIC, Australia) and Maximum Design (Max Designs,
Croydon North, VIC, Australia), the AMRJ consists of the
MS121USB216 controller and MP3 Trigger printed circuit
board. Intended for our experimental protocol, the AMRJ uses
finger movement to activate inbuilt switches. There are two
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FIGURE 2 | The AMRJ. Left panel: during the action stage, the custom-made AMRJ device (abbreviation used as the proper name) uses finger movement to
activate the respective capacitance switch. This activation produces playback of an original sound via the in-ear headphones (i.e., there are two sounds). During the
audition stage, the AMRJ can produce a pseudorandom playback of the sounds without the need for finger switch activation. In either mode, the AMRJ triggers the
respective recording devices via the serial port or BNC connectors. Right panel: swipes are produced by either the (right-hand) index or little fingers. For the index
finger, a swipe is produced upon the touch of the left capacitance switch, from inside-to-outside of the switch (e.g., left direction). For the little finger, a right directed
finger-swipe initiates the respective switch (i.e., over the right-hand side switch from inside-to-outside).

switches; one for the index finger and another for the little finger.
These detect changes in electrical capacitance upon touch. They
are capacitance switches and, therefore, do not require a force
to activate. Mechanical button presses can produce unwanted
sounds and even accentuate tactile information, which can
affect ERP recordings (Horváth, 2014). The use of capacitance
switches reduces the potential confound of tactile and other
sound feedback on ERP recordings.

The device can also bypass switch activation and play a quasi-
randomized sequence of the audio samples. In either mode, the
AMRJ triggers EEG, EMG, and TMS equipment to help record
data when needs require (see Figure 2 for illustration of the
AMRJ, while more details regarding the switches and trigger
design can be found in the Supplementary Materials).

Sounds
Swipe movements were followed by one (of two) complex sounds
at a stimulus onset asynchrony (SOA) of 10 ms. This delay would
ensure all techniques were triggered simultaneously (where
required). The sounds were recorded on Ableton 9.0 software
(Ableton AG, Mitte, BER, Germany) using a Roland Juno
60 synthesizer (Roland Corporation, Hamamatsu, 22, Japan) at
Otologic Studios (Toorak, VIC, Australia). One sound consisted
of an approximate 500 Hz fundamental tone, as well as 250 Hz
and 1,000 Hz overtones. This sound was heard as a low sound.
The other sound, so-heard as the high sound, was comprised
of an approximate 1,800 Hz fundamental tone, as well as
2,100 Hz and 4,000 Hz overtones (for sound spectrograms, see
Supplementary Figure S2 in Supplementary Materials).

Assignment of sounds (low or high) to each switch
(index or little finger) were counterbalanced across participants

(Ticini et al., 2011). For example, some participants produced the
high sound by an index finger-swipe, while others produced
the low sound (by that finger-swipe). For statistical purposes,
however, we refer to the MEPs recorded in the index finger
as the congruent sound or sound associated with the index
finger as the CongruentFDI data. Since these sounds were pinned
for each participant, the CongruentFDI sound then becomes
the incongruent sound for the little finger. Therefore, the
IncongruentADM term refers to the MEPs obtained in the little
finger during playback of the index finger sound. Similarly,
the CongruentADM sound describes the MEPs obtained during
playback of the little finger-congruent sound. Therefore, this
sound becomes the index finger incongruent sound, and reflects
the MEPs recorded in the index finger during the little finger-
swipe sound playback (i.e., IncongruentFDI).

Sounds were played through Etymotic ER3-10 ABR insert
earphones (Compumedics USA, Charlotte, NC, USA), via the
AMRJ 3.5 mm stereo port, and amplified to 75 dB or slightly
lower if individual comfort levels were exceeded (i.e., sound
levels were determined via the inbuilt MP3 Trigger printed
circuit board).

EEG Setup and Data Extraction
During the EEG blocks, data were recorded using 12 Ag-AgCl
sintered electrodes. EEG electrode sites comprised Fz, FCz, Pz,
P3, and P4. Electrodes were also placed on both mastoids, and
a ground electrode was placed on the forehead for off-line
referencing. Both vertical and horizontal electrooculograms
(EOGs) were recorded using electrodes above and below the
left eye, and on the outer canthus of each eye. EEG data
were obtained via a SynAmps RT system (Compumedics USA,
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FIGURE 3 | Grand average event-related potentials (ERPs). Top panel: grand average ERPs were recorded during the experimental stages across both fingers.
Shown here are the traces for the Fz and FCz electrodes (i.e., the action stage data has been corrected for movement-related potentials, and both finger
action-sounds have been combined to illustrate the ERPs). Bottom panel: here, the peak amplitude within each time window are plotted (∗p < 0.05, ∗∗p < 0.001;
error bars represent standard error of the mean).

Charlotte, NC, USA) and Curry 7.07xs (Compumedics USA,
Charlotte, NC, USA). Data were sampled at 10 kHz, and
impedance was kept below 5 k� for each electrode.

EEG and EOG data were analyzed offline in Curry 7.07xs
(Compumedics USA, Charlotte, NC, USA). A 50 Hz notch filter
and a band-pass filter between 0.5 and 15 Hz was applied. Data
were re-referenced to the mean combination of the left and right
mastoids. To minimize the influence of eye blinks on the ERP,
horizontal and vertical EOG data were corrected using Curry’s
covariate analysis tool.

Bad EEG periods exceeding ±75 µV in amplitude were
detected. The 700 ms epochs around these (i.e., 200 ms
prior and 500 ms after trigger) were removed from further
analysis to obtain conservative EEG epochs. Epochs that
exceeded a signal-to-noise ratio below 0.5 and above 2.5 in
a 700 ms window time-locked to triggers were also excluded
from further analysis. From a possible 7114 blocks, 21.9% or
1,556 were removed.

For each participant, epochs were labeled for Sound
(CongruentFDI or CongruentADM), Block [(action or audition)

LP 1, LP 2, LP 3, LP 4, Post-LP 3, Post-LP 4], and LP-C
blocks (LP-C 1 and LP-C 2). Subsequent analyses of the epochs
investigated the peak amplitude of the N1, P2, and N2 ERP
components. These were respectively examined within an epoch
of 50–150 ms (N1), 100–200 ms (P2), and 151–250 ms (N2) for
each participant across each ERP recording.

TMS Setup and Data Extraction
During TMS blocks, focal TMS pulses were delivered to the
scalp over the left M1. A 70 mm figure-of-eight stimulation
coil was used (Magstim Company, Whitland, UK), and the
coil was connected to a Magstim 200 stimulator (Magstim
Company, Whitland, UK). Using self-adhesive Ag-AgCl
electrodes, TMS-induced MEPs were recorded from first dorsal
interosseous (FDI) muscle and abductor minimi digiti muscle
(ADM) muscles simultaneously. A ground electrode was placed
on the dorsal surface of the wrist (i.e., ulna bone). The EMG
signal was amplified by a PowerLab/4SP (ADInstruments,
Colorado Springs, CO, USA), and data were sampled via a
FE135 Dual Bio-amp (ADInstruments, Colorado Springs, CO,
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USA). A band-pass filter between 0.3 and 1,000 Hz was applied,
as well as a mains 50 Hz notch filter.

The site on the scalp that produced the largest median (peak-
to-peak) MEP in five consecutive trials from the right-FDI while
at rest was defined as M1. Stimulation to M1 determined the
MT. MT was defined here as the stimulation intensity that
evoked a median peak-to-peak MEP of approximately 1 mV.
The acceptable range was between 0.8 and 1.3 mV. Once a
suitable stimulator output had been determined (e.g., indicating
MEPs from M1 were within the 0.8–1.3 mV range), recordings
were obtained from 10 trials using the FDI muscle while the
hand was at rest. If the median MT MEP was not found
to fall within the accepted range across those 10 trials, the
MT process began again. The stimulator output ranged from
33% to 60% [M = 46% (SD = 7.6%)] of the maximum
stimulator output. We also used the Baseline blocks (B1,
B2, and B3) to ensure no significant changes in background
corticospinal excitability occurred. Corticospinal excitability
across the paradigm was stable as measured via a mean
of TMS Baseline blocks (see Supplementary Materials for
test details).

Due to the uniqueness and duration of swipe movements, we
opted for a broad range of trigger-points to obtain MEPs during
listening. We were unsure where peak AMR would be recorded
during listening. It was foreseeable the sensorimotor association
might involve an internal mapping that encodes the sound
with either movement commencement, movement transition,
swipe termination, or a variation of each (for related discussion,
see Horváth, 2013). We could not, however, determine swipe
time precisely, which might help calculate a suitable AMR
time-window or trigger point for participants. For example, an
individual might produce slower swipes than another, which
suggests a longer TMS trigger latency is appropriate to assess the
sensorimotor association. Thus, a variety of static TMS-trigger
time points were used to overcome this issue.

Focal-TMS pulses were delivered to M1 at 50, 150, 300,
or 450 ms from SOA in each of the 48 trials (i.e., 12 pulses
at each 50, 150, 300, or 450 ms from SOA). While these
triggers do not consider individual variability, we considered
the AMR time-window suitable for swipes 300+ ms in duration.
Additionally, we considered the time points helpful in exploring
some basics regarding timing during the association process.
Potentially, that is, how the brain overcomes sensory delays while
integrating a present sound with a past action (for discussion on
this point, see Hanuschkin et al., 2013; Giret et al., 2014; Keysers
and Gazzola, 2014; Burgess et al., 2017).

As is recommended for MEP data (Schmidt et al., 2009),
individual median peak-to-peak MEP amplitudes (mV) were
extracted for each TMS block (Pre-LP 1, Pre-LP 2, Post-LP 1,
Post-LP 2, B1, B2, and B3) across Muscle (FDI or ADM), Sound
(CongruentFDI or CongruentADM), and Time point (50, 150,
300, and 450 ms). Approximately 252 MEPs were obtained for
each participant. Missing data points in baseline blocks, due to
faulty TMS-based triggers, were replaced by the median MEPs
of the remaining blocks for those participants (this required the
alteration of two data points or 3.7% of Baseline MEPs collected
across all participants). Also, one participant’s Post-LP 1 block

was corrupt, requiring the (presumably comparable) Post-LP
2 dataset to be used (i.e., alteration of 1.4% of totalMEPs averaged
across all participants).

To minimize the influence on tests of normality, extreme
outliers at a sample level were reduced to one value above the next
highest data point (Tabachnick and Fidell, 2006). From the FDI
muscle, 1.2% of MEP recordings were altered, while 1.9% of the
ADM raw data. Tests of normality, histograms, as well as stem
and leaf plots, were inspected and were considered satisfactory
for parametric data analyses.

Statistical Analyses
Testing Sensory Prediction
To assess if sensory prediction mechanisms are present, we
investigated changes in N1, P2, and N2 peaks across action and
audition stages. We examined each peak component separately
via 2 (Finger: index or little) × 2 (Stage: Action or Audition) × 2
(Electrode: Fz or FCz) ANOVAs. A main effect for Stage
will reveal sensory prediction mechanisms, with post hoc tests
showing that suppression of ERP peaks is modulated by hearing
the sounds across action and audition stages.

Testing Sensorimotor Associations
To assess the development of AMR, a 2 (Finger: Index
or Little) × 4 (Audition block: Pre-LP 1–2 or Post-LP
1–2) × 4 (Time point: 50, 150, 300, or 450) × 2 (Sound:
CongruentFDI/ADM or IncongruentFDI/ADM) repeated-measures
ANOVAwas conducted on the normalized median peak-to-peak
amplitude MEPs. This analysis compares Pre and Post-LPMEPs,
which are recorded upon hearing congruent and incongruent
sounds at a variety of time points. As stated, we were unsure
where the largest AMR recordings would be revealed. Therefore,
to show AMR, we expect the four-way ANOVA to reveal
Audition block × Sound × Time point interactions. Subsequent
post hoc tests should indicate larger MEPs in the Post-LP 1 and
2 blocks when the congruent sounds are heard at some time point
in comparison to the incongruent soundMEPs at that time point.
This effect, though, should not be present with the Pre-LP blocks
(e.g., it is a trained effect).

Testing Sensory Prediction and Sensorimotor
Association
Finally, we were interested in exploring the relationship between
sensory prediction, sensorimotor association, behavioral data.
Therefore, we used a Spearman’s correlation to investigate the
association between: (a) EMG data obtained during the LP
blocks with; (b) N1; (c) P2; (d) N2 ERP components also
recorded during the LP training; (e) MEPs from post-LP blocks
(i.e., we decided to omit pre-learning AMR data for the sake of
clarity); (f) N1; (g) P2; and (h) N2 ERP components recorded
during the audition stage. Here, we expect some correlations
to exist between ERP and EMG data during action with MEPs
during listening. This would indicate close ties between sensory
prediction and sensorimotor association mechanisms.

All statistical analyses were carried out using SPSS 24
(IBM Corporation, Armonk, NY, USA) and analyses used a
criterion of p < 0.05. All significant effects were investigated
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via follow-up ANOVA and pairwise comparisons (PCs) using
a Bonferroni adjustment for multiple comparisons. Partial
eta-squared effect sizes (η2p) were calculated to estimate the
magnitude of an effect. Finally, in an effort towards conciseness,
reporting of statistics is limited. For all test results, see
Supplementary Materials.

RESULTS

Testing Sensory Prediction
First, we investigated changes in sensory prediction. Figure 3
displays the grand-average ERP traces from SOA. Regarding the
N1 peak, a three-way interaction between Finger, Stage, and
Electrode was revealed (F(1,17) = 6.031, p = 0.025, η2p = 0.262)
requiring further investigation (see Supplementary Materials).
However, no main effects were present, suggesting action
and audition peaks did not differ within this time window
(50–150 ms).

Regarding the P2 peak, ANOVA revealed a main effect for
Stage as hypothesized (F(1,17) = 4.471, p = 0.050, η2p = 0.208).
Post hoc PCs, which were Bonferroni corrected, indicated that the
action stage produced larger P2 peaks (M = 2.704, SE = 0.653)
than the audition stage (M = 1.438, SE = 0.486). This suggests
that some sensory prediction outcomes during action are being
reflected in this peak.

As hypothesized, a main effect for Stage was demonstrated
with the N2 peak data (F(1,17) = 15.296, p = 0.001, η2p = 0.474).
PCs (Bonferroni corrected) revealed audition generated larger
(more negative) peaks (M = −9.354, SE = 0.738) in comparison
to action (M =−6.676, SE = 0.435). This suggests that a predictive
process is being undertaken during action which suppresses the
incoming sounds.

Altogether, we found evidence for some sensory prediction
outcomes during finger-swipe movements.

Testing Sensorimotor Association
Next, we determined if AMR developed (i.e., sensorimotor
associations). Comparisons between Pre and Post-LP
MEPs, which were recorded upon hearing congruent
and incongruent sounds using the static time points,
were explored.

The four-way ANOVA revealed a main effect for Time point
(F(3,51) = 4.809, p = 0.005, η2p = 0.220). PCs (Bonferroni corrected)
indicated the MEPs at the 50 ms time point (M = 0.681,
SE = 0.060) were significantly larger than the 150 ms time point
(M = 0.612, SE = 0.051; p = 0.003). This suggests motor-brain
activity is high during the early stages of swipe-sound listening.

ANOVA also revealed a main effect for Audition blocks
(F(3,51) = 3.799, p = 0.016, η2p = 0.183). Although PCs did not
survive Bonferroni corrections, estimated means indicated that
Post-LP 1 MEPs were, unexpectedly, the smallest recorded
[Pre-LP 1: M = 0.708 (SE = 0.076); Pre-LP 2: M = 0.704
(SE = 0.068); Post-LP 1: M = 0.538 (SE = 0.063); Post-LP
2: M = 0.645, SE = 0.060]. When both congruent and
incongruent MEPs are examined, the reduction in MEP
size immediately post-training is in direct contrast with our

expectations. Indeed, it will be difficult to show AMR across
pre- and post-training comparisons if, overall, post-training
MEPs are reduced when compared with baseline measurements
(see Supplementary Materials for discussion of repetition
suppression during the LP blocks, which might explain this
unanticipated finding).

Regarding AMR illustration, no Audition block ×

Sound × Time point interactions were present. This suggests
that AMR did not develop. Trained sounds did not increase
finger-corticospinal networks beyond baseline measures when
all blocks and time points are considered.

However, we were concerned with the use of static TMS
trigger points, which do not consider individual variability and
learning. We suspected these triggers might be censoring the
AMR illustration. If sensorimotor associations are experience
dependent, and a participant learns to complete the swipe in
450 ms, then the largest MEPs for the congruent sounds might
be generated at this 450 ms time point. Another participant,
however, may produce a swipe duration of 300 ms. Thus, the
300 ms time point might be better suited at revealing AMR
for this person. Others still, might encode the swipe initiation
with the sound, which suggests the 50 ms time point might
be suitable. Therefore, examining the MEPs without regard
for individual variability could conceal the AMR illustration.
Add to this the surprising finding regarding the reduced MEPs
immediately post-training, and it perhaps explains whyAMRwas
not revealed.

Accordingly, we examined changes in MEPs across
congruent and incongruent sounds for both fingers via pre
and post-learning blocks separately (for a related examination,
see Ticini et al., 2011, 2019). Furthermore, we selected a single
time point to overcome the stated challenges with individual
variability. We supposed, if (a) individuals learn to associate a
finger movement with a sound (e.g., the index finger with the
CongruentFDI sound), and (b) behavioral learning variabilities
cause changes in the timing of the sensorimotor association
process. Perhaps, then, (c) we should explore the inhibition of
the incongruent sound MEPs relative to maximum congruent
sound MEP at a given TMS time point. In other words, we
were interested in the maximal dissociation of congruent vs.
incongruent sound-generated MEPs across post-blocks within a
time point.

We determined where a participant’s maximal congruent
sound MEP in either Post-LP block was recorded. This time
point then became the guide. We obtained the congruent and
incongruent MEPs for both Post-LP blocks at this time point
only. A 2 (Sound: MAX-congruent and incongruent) × 2
(Block: Post-LP 1 and 2) ANOVA for each muscle was
run. Demonstration of AMR would show that listening to
incongruent sounds generates smaller, perhaps inhibited, MEPs
when compared to congruent, trained sounds.

Provided the AMR illustration is time-locked to maximal
trainedmuscle activity during audition, the index finger ANOVA
with post-learning blocks demonstrated a significant main effect
for Sound (F(1,17) = 26.987, p < 0.001, η2p = 0.614). PCs
(Bonferroni corrected) showed hearing the congruent sound
produced larger MEPs (M = 1.404, SE = 0.143) than the
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incongruent sound within a time point (M = 0.744, SE = 0.101).
This indicates that AMR develops, and trained sounds generate
larger MEPs in corticospinal tracts than those recorded upon
hearing untrained (incongruent) sounds.

There was also a significant main effect for Post-LP block
(F(1,17) = 12.322, p = 0.003, η2p = 0.420). PCs (Bonferroni
corrected) revealed the Post-LP 1 block generated smaller MEPs
(M = 0.847, SE = 0.125) than those recorded within the Post-LP
2 (M = 1.301, SE = 0.123). Perhaps this modulation of MEPs
across blocks reveals a memory consolidation period, which is
facilitated by the TMS pulse and sound playback. Sound playback
during TMS to M1 over the FDI region could aid the formed
sensorimotor association. In other words, Post-LP block 1 might
act like another training block (although see the ‘‘Discussion’’
section for a caveat to this explanation).

The same procedure followed for the little finger. Despite
using the higher threshold muscle to generate the MT, ANOVA
revealed a significant main effect for Sound (F(1,17) = 19.062,
p < 0.001, η2p = 0.529). Bonferroni corrected PCs indicated the
congruent sound produced larger MEPs (M = 0.313, SE = 0.234)
than those recorded when the incongruent sound is played
(M = 0.234, SE = 0.034). This data supports the index finger AMR
illustrations, and suggest sensorimotor associations developed
after training.

To limit concerns with post hoc statistical biases, we used the
respective (i.e., individual’s) congruent time point as the guide
and explored Pre-LPMEPs, too. For a powerful AMR illustration
to exist, we did not expect to find the post-training disassociation
between congruent and incongruent sound-derived MEPs to be
present in Pre-LP blocks.

Indeed, separate ANOVAs for each finger do not reveal
any main effects or interactions when the Pre-LP MEPs are
examined using the guide time point. As shown in Figure 4, a
disassociation between congruent and incongruent sound MEPs
is only present after learning. This indicates that AMR is a trained

effect. Together, this suggests that a bidirectional sensorimotor
association developed.

Testing the Relationship Between Sensory
Prediction and Sensorimotor Association
Having established sensory prediction mechanisms during
action and AMR during audition, we undertook some
nonparametric Spearman correlational analyses to explore
how these mechanisms are associated putatively. First, negative
correlations between the maximum Post-LP 1 MEPs in the
index finger (i.e., audition) and N1 peak data during the little
finger-swipe (i.e., action) are present (Fz, r = −0.655, p = 0.003;
FCz, r = −0.544, p = 0.020). This relationship is mirrored at the
Fz electrode with the Post-LP 2 MEPs (r = −0.598, p = 0.009).
Also, the maximum Post-LP 1 MEPs in the index finger and
the P2 peak during a little finger-swipe are negatively correlated
(Fz, r = −0.544, p = 0.020; FCz, r = −0.610, p = 0.007). These
data suggest that large index finger MEPs during congruent
sound listening are associated with recordings of larger (i.e., less
suppressed and more negative) ERP data during the little
finger-swipe. Together, this highlights the close ties between
a sensorimotor association and sensory prediction during
action learning.

In support of this close relationship, behavioral activity and
sensory prediction markers also demonstrate some correlation.
EMG activity in the index finger during the swipe is negatively
correlated with the N1 peak data during audition of the
incongruent little finger-sound at Fz (r = −0.513, p = 0.030)
and FCz electrodes (r = −0.548, p = 0.019). It would seem that
efficient index-swipe movements are associated with the absence
of early sensory prediction data when hearing the different
(related) sound.

Therefore, negative correlations across sensory prediction,
sensorimotor association, and behavioral data highlight an
interdependent nature of these components. Simply put,

FIGURE 4 | Maximal disassociation of congruent and incongruent sounds across fingers. Left panel: provided the auditory-motor resonance (AMR) illustration is
time-locked to the maximal trained motor evoked potential (MEP) time point, a disassociation between congruent index finger MEPs and the incongruent
sound-derived MEPs is present after training. This effect, indicating congruent sounds generate larger MEPs than incongruent sounds at an individual time point, is
not revealed in the Pre-LP blocks before learning takes place. Right panel: the trained disassociation is also present with MEPs recorded from the little finger
[significance levels for congruency differences are determined by one-way ANOVAs within a block (see Supplementary Materials for test details); ∗p < 0.05,
∗∗p < 0.001; error bars represent standard error of the mean].
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the disassociation of closely related motor control plans
(e.g., sensorimotor associations) might be achieved via sensory
prediction processes, which are learnt during behavior.

DISCUSSION

Few studies have explored how sensorimotor associations
develop by way of sensory predictions within a single paradigm.
Here, we combined a bespoke device with TMS, EMG, and
EEG techniques to explore how these study components were
correlated. As expected, our data show increases in P2 and
suppression of N2 peaks during action, demonstrating some
aspects of sensory prediction outcomes. Also, time-locked
AMR disassociations are present, which show that congruent
sounds generate larger MEPs than hearing incongruent sounds.
These disassociations are considered here to represent precise
sensorimotor associations and only appear after learning. Finally,
novel findings show that negative correlations between MEPs
after learning and ERP data during action are present. Taken
together, these results might suggest that sensory prediction
mechanisms fine-tune sensorimotor associations, perhaps in line
with an internal modeling account of sensorimotor learning.

First, sensory prediction mechanisms are present during
action. The N2 peak-component around 200 ms was suppressed
during action. Typically, modulation of the N2 is thought
to reflect higher-order conflict monitoring (Folstein and Van
Petten, 2008), and it is often shown in response to an
auditory violation (Kujala et al., 2007). For example, larger
N2 components are related to hearing deviant musical notes
embedded in known melodies (Mathias et al., 2015, 2016). Here,
larger N2 peaks were evident in comparison with auditory-
based recordings (i.e., no deviants were heard during sound
playback). To reconcile, some suggest the amount of suppression
of the N2 peak is contingent upon a comparison between a
memory trace and the reafferent information (Näätänen et al.,
2007). So, in the context of conflict monitoring or auditory
violation, the N2 peak could represent feedback from the
reafferent comparison.

Taken further, if the N2 peak represents the amount
of comparative feedback, does this explain why the earlier
P2 peak, approximately 150 ms, was increased during the action?
Conceivably, the relatively long action has been able to draw
out the sensory prediction outcomes. Perhaps, then, the P2 peak
is revealing the comparison or even the prediction itself, rather
than some type of signal to maintain the sensory representation
during and following suppression (Wang et al., 2014). In
doing so, this might explain why the P2 component here was
increased. To clarify, sensory predictions should be generated
first, before comparison with reafferent sensory stimuli. The
comparison should then produce some feedback. Therefore, a
sensory predictionmechanism should have threemain processes:
prediction, comparison, and feedback.

In a practical sense, a swipe movement is made, and an
epoch of EEG activity is recorded. Simultaneously, a prediction
is made (e.g., expect the index swipe-sound). Meanwhile, motor
preparations for the swipe-termination component (e.g., lift-off)
are initialized and executed. When available, this prediction

or a negative image copy (Ramaswami, 2014; Barron et al.,
2017; Enikolopov et al., 2018) is compared with the reafferent
auditory stimuli (e.g., a comparison will determine if that
was the index swipe-sound). Finally, feedback is provided to
motor control areas. We suspect this feedback is in the form
of an N2 peak here. If the N2 represents feedback from the
predictive comparison, we wonder whether the P2 component
might then represent a preceding stage of the prediction process.
This could be either the prediction (centrally located) or even
the comparison with sensory reafference (perhaps located of
auditory-parietal regions).

While we do acknowledge assigning specific processes to
individual ERP components is difficult (for a related discussion
on complexities of ERP analyses, see Horváth, 2015; Spriggs et al.,
2018), we suggest the long action and effect might have been
able to tease out some of these separate prediction stages. In
contrast, fast actions like a button press (Bäss et al., 2008; Baess
et al., 2011; Ford et al., 2014) or short speech sounds (Heinks-
Maldonado et al., 2005), might conflate these separate sensory
prediction processes into a single N1 outcome. In that case, the
time window of action, prediction, and the feedback-response
are so small that EEG recordings might not be able to show the
underlying computations. In any case, we find evidence for some
sensory prediction processes during action.

Sensorimotor associations were also present. As hypothesized,
when the learned sounds are heard, activation of related
corticospinal circuits that are involved in the associated actions
are revealed. This is supported by published data regarding
sensorimotor association that indicate training can lead to AMR
(Butler et al., 2011; Butler and James, 2013; D’Ausilio et al., 2014;
Furukawa et al., 2017).

More specifically, the AMR response was shown via a
time-locked dissociation between congruent and incongruent
sound-derived MEPs. When training generates the largest AMR
response for the congruent sound, hearing an incongruent sound
generates less activation in the motor circuit. This type of AMR
illustration is also supported by other published works on AMR
congruency (Ticini et al., 2011, 2019).

Importantly, this type of AMR disassociation is not present
before learning. It develops because of sensorimotor experience
and appears predicated on behavioral variability; albeit, a post hoc
and simple delineation of individual differences. That is, the
disassociation between congruent and incongruent sounds are
not revealed via the static TMS time points. Only when an
individual time point for the maximally trained (congruent)
response is used as an index or guide does AMR appear
after learning and not before. Given this, it would seem the
sensorimotor association here is more complicated than just
a broad cause and effect relationship between motor and
sound information. Add to this the sensory prediction data
regarding different stages of the predictive process, and we
suspect an internal modeling process might be generating the
sensorimotor associations.

Indeed, other interpretations can explain how sensory and
motor information are associated, such as an Association account
(for review e.g., see Cook et al., 2014), Ideomotor perspective
(for review e.g., see Herwig, 2015), or even more contemporary
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prediction theories (Friston, 2010, 2011; Friston et al., 2011,
2017; Pickering and Clark, 2014). However, we focus here on a
conventional internal modeling perspective.

Simply put, an internal model mimics the behavior of
actions and their consequences within the CNS (for review
e.g., see Miall et al., 1993; Miall and Wolpert, 1995; Wolpert
et al., 1995, 2011; Wolpert and Kawato, 1998; Wolpert
and Ghahramani, 2000; Grush, 2004; Burgess et al., 2017).
Traditionally, they consist of an inverse or controller unit
that causally integrates sensory consequences with the actions
and motor commands that produce them. Second, there is
a forward component, which generates predictions regarding
upcoming sensory change given the outgoing motor commands.
Principally, the combination of inverse and forward components
helps overcome temporal delays when integrating sound and
action, given large sensorimotor loops (Wolpert et al., 1995;
Wolpert and Kawato, 1998). They do this by reducing error
in the underlying component mappings through a comparison
between predicted and produced sensory stimuli. In turn,
feedback updates both model components. In other words,
sensory predictions help to overcome the delays in sensorimotor
feedback loops when integrating sound and action. Over time,
fewer cortical resources are needed to produce an action as the
models increase in accuracy and efficiency.

In support of the interdependence of components expected
under an internal modeling account, recent studies have
shown that sensory predictions are involved with activating
sensorimotor association and motor representations (Gordon
et al., 2018). Indeed, Stephan et al. (2018) demonstrated
that anticipatory MEPs were produced upon hearing sounds
in a musical sequence after learning (i.e., sound sequences
automatically cued future movement in specific finger muscles).
Others have even implicated the cerebellum in hand-reaching
experiments when inverse and forward models work in tandem
to overcome behavioral adaptation (Honda et al., 2018).
Altogether, we suspect the post hoc explorations are necessary
here to find AMR because sensorimotor associations are very
sensitive to individual timing and temporal delays during the
action-learning process. In turn, this type of association relies on
feedback from the reafferent comparisons via sensory prediction,
which is shown via peak modulation and correlational data
across study components. As is, we suspect sensory predictions
fine-tune the sensorimotor associations during learning as
expected by internal modeling.

Finally, we recognize the complexity of demonstrating these
relationships across the sensorimotor divide and concede some
methodological issues, which future investigations may wish
to consider. Measuring AMR should accommodate individual
learning variability. More detailed indices of the behavior (e.g.,
swipe time and distance) should be recorded and used to inform,
for example, TMS-triggering schedules in real time. In turn,
more accurate recordings of the AMR time course might mitigate
problems with post hoc time point selection. Also, more accurate
TMS triggers might help explain the decrease in Post-LP 1MEPs,
recorded immediately after training. Some TMS studies have
indicated that repetitive finger movements can decrease MEPs
when measured immediately after training (i.e., 1–2 min), even

without fatigue (McDonnell and Ridding, 2006; Avanzino et al.,
2011; Kluger et al., 2012; Miyaguchi et al., 2017). While we
applied a 4-min break between training and TMS assessment
during listening, not to mention the obligatory 3 s break between
swipes, this might not have been long enough to overcome the
supposed post-exercise depression in MEPs when using static
time points.

Additionally, change in the movement should also trigger
EEG equipment such that the protocol can determine when an
error occurred. For instance, a movement that was outside of
a typical participant response may help clarify more precisely
how behavior affects sensory prediction, which in turn affects
AMR development. Alternatively, it might show how these
prediction processes develop during learning (e.g., what happens
to ERP peak modulation as behavior goes from atypical-to-
typical movements). Similarly, future sensory prediction studies
might wish to examine motor-related potentials more closely,
which do not subtract the motor trace from the ERP. In doing so,
understanding the brain dynamics of sensory prediction during
action might be more achievable. Future studies might also
wish to consider if differences in stimulus sequences and inter-
stimulus intervals across action and audition stages affect the
ERP traces. Indeed, there are many questions that remain when
analyzing sensory prediction with EEG (Horváth, 2015). Finally,
there is evidence to suggest that the menstrual cycle may affect
motor cortex excitability when measured via TMS (Hattemer
et al., 2007; Pellegrini et al., 2018). Thus, future studies should
take this into account.

The problem with attempting to measure these internal
modeling mechanisms in humans goes beyond the simple
inferences of gross or system-level recordings. Instead,
methodological protocols and technology that can measure,
record, and reflect those processes as they develop should be
used. As is, we can only assume that our data measure these
modeling processes rather than somethingmore straightforward.

SUMMARY

Overall, we have documented putative sensorimotor association
or AMR development from a sensory prediction and internal
modeling perspective. In the present study, sensory prediction
indices are present in the form of enhanced P2 and suppressed
N2 peaks during action. These might represent different
stages of the prediction process. Also, novel sensorimotor
associations develop and appear tuned. Hearing congruent
sounds generates larger MEPs than those recorded during
incongruent sound listening once time-locked and within a
TMS time point. Importantly, these disassociations are not
present before learning, suggesting that AMR and sensorimotor
associations are experience dependent. Finally, there appears
to be a relationship between the strength of a sensorimotor
association measured during listening and how a related, yet
incongruent, sound is predicted during action. In other words,
sensory predictions seem to affect how precise a sensorimotor
action is encoded. While future investigations may wish to
examine behavioral indices further, we consider our data to
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represent a preliminary step towards understanding how, and
perhaps why, sensory signals activate motor brain regions.
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