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ABSTRACT
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal 
pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial 
agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria 
and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease 
as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis 
pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, 
cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous 
riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then 
presented to mucosal associated invariant T cells, is highlighted. This information will provide 
a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
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Introduction

Drug resistance of bacteria, fungi and even viruses is 
increasingly becoming a serious problem worldwide. 
Antimicrobial-resistant bacteria (such as 
Staphylococcus aureus, methicillin-resistant S. aureus 
(MRSA), Streptococcus pneumoniae and Salmonella 
typhimurium) have been found in hospitals and com-
munity settings [1,2]. Excessive use of antifungal drugs 
to treat humans and in other applications has led to 
increasing resistance [3]. The resistance of Candida and 
Aspergillus species notably presents a major problem in 
clinical treatment [4]. In addition, the issue of virus 
resistance cannot be ignored; the resistance of viruses 
(such as hepatitis B virus [5] and influenza virus [6]) 
has become a major challenge to human public health. 
Meanwhile, the emergence of many new resistance 
mechanisms also increases the difficulty in treating 
resistant microorganisms and viruses [7]. Our current, 
limited antimicrobial drugs can no longer solve the 
growing problem of drug resistance [8–10]. Therefore, 
it is urgent to develop additional antimicrobial drugs. 
Sulfonamides, the first generation of antibiotics [11], 
have recently been shown to target de novo folate 
synthesis in pathogens [12,13]. Therefore, microbial 
cellular targets and pathways, such as endogenous ribo-
flavin biosynthesis, may provide targets for novel drug 
discovery [14,15].

Riboflavin (vitamin B2) was isolated from milk whey 
in the late 1870s as a water-soluble compound. It is 
indispensable to adenine dinucleotide (FAD) and flavin 
mononucleotide (FMN), which participate in electron 
transport, and metabolism of lipids, drugs, and xeno-
biotics. Because of the absence of a system to produce 
riboflavin, riboflavin in humans is mainly obtained 
from the diet. However, bacteria and fungi, such as 
Aspergillus fumigatus, Candia albicans, Escherichia 
coli, Mycobacterium tuberculosis, and S. typhimurium, 
have the ability to produce riboflavin [16–18]. Silencing 
or downregulation of genes of the endogenous ribofla-
vin biosynthetic pathway may be beneficial tin treating 
fungal skin infections [19]. Furthermore, exogenous 
riboflavin has also been shown to exhibit anti- 
infectious effects in infectious diseases [20,21].

In this review, the role of the endogenous riboflavin 
synthesis pathway, which may be a target for the devel-
opment of antimicrobial agents, and exogenous ribo-
flavin, against infectious diseases is provided. The 
effects of exogenous riboflavin on immune cell and 
cytokine gene and heat shock protein gene expression 
are also presented. Moreover, the relationship between 
endogenous riboflavin and mucosal associated invar-
iant T (MAIT) cell is highlighted. These data provide 
a comprehensive review of the use of endogenous and 
exogenous riboflavin in anti-infection.
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Endogenous riboflavin synthesis pathways and 
the FMN riboswitch target in pathogens

Biosynthesis and transport of riboflavin

The riboflavin biosynthesis pathway is summarized in 
Figure 1. Riboflavin is formed by consuming guanosine 
triphosphate (GTP) and ribulose 5-phosphate (Ru5P) 
[9]. GTP cyclohydrolase II catalyzes GTP to form 
2,5-diamino-6-ribosylamino-4(3 H)-pyrimidinedione 
phosphate (1). The first step is common to both 

bacteria and fungi, whereas the second steps are differ-
ent. In bacteria, (1) is converted into 5-amino-6-ribo-
sylamino-2,4(1 H,3 H)-pyrimidinedione 5ʹ-phosphate 
(2) to form 5-amino-6-ribitylamino-2,4(1 H,3 H)- 
pyrimidinedione 5ʹ-phosphate (4). However, in fungi, 
(1) is converted into 2,5-diamino-6-ribosylamino-4 
(3 H)-pyrimidinedione 5ʹ-phosphate (3) [22,23]. Then, 
(4) is dephosphorylated to form 5-amino-6-ribityla-
nimo-2,4(1 H,3 H)-pyrimidinedione (5). Another com-
pound involved in riboflavin synthesis is 

Figure 1. Biosynthesis of riboflavin, FMN and FAD.
Riboflavin is formed by GTP and Ru5P, and key enzymes are in red (reproduced from reference [37]). 5-OP-RU: 5-(2-oxopropylideneamino)- 
6-D-ribitylaminouracil, 5-OE-RU: 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil
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3,4-dihydroxy-2-butanone 4-phosphate (6), which is 
converted from Ru5P catalyzed by 3,4-dihydroxy- 
2-butanone 4-phosphate synthase. (5) and (6) are cat-
alyzed by Lumazine synthase (LS) to form 
6,7-dimethyl-8-ribityllumazine (7). Then, riboflavin 
synthase (RS) catalyzes formation of the LS substrate 
(5) and riboflavin. Riboflavin is usually converted to 
FMN and FAD. Riboflavin kinase catalyzes riboflavin 
to form FMN, which is then converted into FAD by 
FAD synthase [24,25]. Until now, the endogenous ribo-
flavin synthesis pathway in viruses has not been found.

In addition, some microorganisms are able to take 
up exogenous riboflavin. In early 1979, components of 
the cell membrane were found to be involved in ribo-
flavin transport [26]. Riboflavin transporters introduce 
riboflavin into cells; these transporters include RibU of 
Lactococcus lactis, RibM of Actinobacteria and 
Streptomyces davaonensis [27], ImpX of Fusobacterium 
nucleatum [28], RibZ of Clostridium difficile, RibV of 
Mesoplasma florum, and RibXY of Chloroflexus auran-
tiacus [29]. However, exogenous riboflavin may sup-
press the biosynthesis of riboflavin in some cases [30]. 
The relationship between the uptake system and the de 
novo biosynthesis pathway remains unclear [29]. Most 
fungi are able to biosynthesize riboflavin, but the 
uptake of riboflavin has been relatively less studied. 
Wild type Saccharomyces cerevisiae has a riboflavin 
efflux system but cannot take up exogenous riboflavin 
[31]. The expression of MCH5 appears to be necessary 
for the uptake of riboflavin in auxotrophic S. cerevisiae 
mutants [32]. Unlike bacteria, fungi transport ribofla-
vin through a passive process that dose not consume 
any energy [26,32]. The riboflavin transport systems in 
pathogenic fungi and viruses require further study. 
Human riboflavin transporters (hRFVT1, hRFVT2, 
and hRFVT3) belong to the SLC52 family of solute 
carriers, which show low homology with bacterial or 
fungal riboflavin transporters [33]. Therefore, the ribo-
flavin transport in bacteria or fungi may provide ideas 
for developing antimicrobial agents.

Targeting the FMN riboswitch

FMN riboswitches are broadly conserved and consist of 
non-coding RNA structural elements. In the presence 
of FMN, they regulate the biosynthesis and transport of 
riboflavin in bacteria [34,35]. Importantly, they are 
specific to bacteria and absent in humans [36]. Here, 
several antibacterial agents, which include analogues of 
the riboflavin biosynthesis pathway, such as ribocil, 
roseoflavin (RoF), 8-demethyl-8-aminoriboflavin (AF), 

and 5-(3-(4-fluorophenyl)butyl)-7,8-dimethylpyrido 
[3,4-b]quinoxaline-1,3(2 H,5 H)-dione (5FDQD), pro-
tect against the pathogens by targeting the FMN 
riboswitch.

Ribocil directly binds the FMN riboswitch and inhi-
bits ribB expression, inducing bacterial death by block-
ing the riboflavin biosynthesis pathway in S. aureus and 
E. coli [37]. Further resistance mutation and whole- 
genome sequencing identified the ribocil target at the 
FMN riboswitch in E. coli [38,39]. However, exogenous 
riboflavin reduced the antibacterial activity of ribocil 
in vitro [37]. Interestingly and contrastingly, ribocil and 
RoF not only block riboflavin biosynthesis but also 
inhibit uptake from the environment in S. aureus and 
MRSA [34,40].

RoF is produced by S. davaonensis and 
S. cinnabarinus [41], and its main antibacterial spec-
trum is Gram-positive bacteria. The FMN riboswitch is 
a target for RoF in Bacillus subtilis [42] E. coli [15], 
F. nucleatum [43], and Listeria monocytogenes [44,45], 
which may be primarily responsible for its antibiotic 
activity. On the one hand, promiscuous riboflavin 
kinases catalyze RoF to form toxic RoF mononucleotide 
(RoFMN), which negatively regulates the ribB FMN 
riboswitch in E. coli [15,46]. L. monocytogenes does 
not contain genes that encode riboflavin biosynthetic 
enzymes. RoF was also shown to target the FMN ribos-
witch and inhibit the growth of L. monocytogenes. 
Surprisingly, RoF can increase the pathogenicity of 
L. monocytogenes in the absence of the FMN riboswitch 
[44,45]. However, the mechanisms require further 
study. On the other hand, the toxic RoFMN and RoF 
adenine dinucleotide (RoFAD) restricted growth of 
B. subtilis and S. davaonensis [45,47–49]. RoFMN and 
RoFAD can also be isolated from E. coli flavoproteins. 
Thus, flavoproteins may be another target for RoF in 
addition to FMN riboswitches [50]. However, human 
FAD synthase can accept RoFMN and disrupt the 
activity of flavoenzymes, which may be disadvanta-
geous to human metabolism [40,51].

AF, also produced by S. davaonensis, is less toxic to 
host. Similar to RoF, AF negatively regulates ribB 
expression, which is controlled by the ribB FMN ribos-
witch. Human flavokinase converts AF to 8-demethyl- 
8-amino-riboflavin mononucleotide (AFMN). In con-
trast to RoF, human FAD synthase cannot accept 
AFMN. Therefore, it may provide a better structure to 
develop antibacterial compounds [51]. Furthermore, 
5FDQD defends against Clostridium difficile infection 
through binding to FMN and triggering the function of 
the FMN riboswitch. However, many aerobes and 
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Gram-negative anaerobes are not sensitive to 5FDQD 
[52]. This is likely because the FMN riboswitch is not 
highly conserved across different bacteria. Thus, anti-
biotics targeting the FMN riboswitch are a narrow 
spectrum. Overall, FMN riboswitches are the main 
target of several existing inhibitors of the riboflavin 
synthesis pathway. However, the function and applica-
tion of FMN riboswitches in fungi have been rarely 
studied. The question is whether the FMN riboswitch 
exists in fungi? If it does exist, the function of the FMN 
riboswitch in regulation of riboflavin biosynthesis will 
require further investigation in fungi.

Inhibiting enzymes in the riboflavin synthesis 
pathway

LS and RS were identified in fungi and bacteria [30] 
and can be inhibited by antimetabolites [53]. Mutations 
of LS genes have emphasized the essential role of ribo-
flavin biosynthesis in pathogen survival. For example, 
there are two LS isoenzyme-related genes (ribH1 and 
ribH2) in Brucella abortus. The double mutant of ribH1 
and ribH2 does not survive without exogenous ribofla-
vin [54]. Thus, inhibitors of these enzymes are logical 
candidates for development as antibiotics [55]. Crystal 
structure analysis of icosahedral LS from 
S. typhimurium also supports the above-mentioned 
conclusion [56]. Several potent LS inhibitors were dis-
covered by a high throughput screening approach. 
However, cell membrane permeability remains an 
issue for the therapeutic use of these compounds [57]. 
Further investigations are needed to enhance cell mem-
brane permeability in vivo and in vitro. RS is highly 
conserved across pathogenic microorganisms, and may 
be a suitable target for alternative antibiotics [58]. 
High-throughput screening technology was used to dis-
cover and develop covalent hydrates of trifluoromethy-
lated pyrazoles, which can inhibit RS in M. tuberculosis 
[59]. Using the same technology, several inhibitors of 
B. abortus RS were discovered [60]. One compound 
could inhibit LS in B. subtilis and M. tuberculosis and 
RS in E. coli [61]. Mutation of both LS and RS is a rare 
event, but can lead to a low rate of resistance in strains 
[16]. Therefore, this compound can be used as a lead 
structure for designing dual inhibitors.

3,4-Dihydroxy-2-butanone-4-phosphate synthase 
(DHBP) catalyzes Ru5P to form (6) and formate 
(Figure 1). A competitive inhibitor of DHBP in Vibrio 
cholerae, 4-phospho-d-erythronohydroxamic acid, has 
been described [62,63]. DHBP is essential to 
Helicobacter, Mycobacterium, Salmonella species, and 

S. pneumoniae [[64-]]. Moreover, in eukaryotes and 
prokaryotes, FMN and FAD are catalyzed by FAD 
synthase and RFK, respectively (Figure 1). The two 
are involved in a plethora of vital processes. 
Therefore, the most important thing is to identify the 
different characteristics of FAD synthase/RFK in patho-
gens and hosts. However, the characteristics of FAD 
synthase in S. pneumoniae are different from those in 
other bacteria [65]. In addition, several FAD synthase 
inhibitors were shown to inhibit the growth of 
M. tuberculosis and S. pneumoniae [66].

To date, studies of endogenous riboflavin synthesis 
pathway inhibitors have been primarily performed in 
bacteria, and have resulted in the design of several 
inhibitors. Riboflavin biosynthesis and uptake are 
essential not only for invasion but also during dissemi-
nation. RIBB and RIB1 encode the GTP cyclohydrolase 
II enzyme, which converts GTP into (1) (Figure 1). 
Studies have shown that the RIBB mutant attenuates 
the virulence of A. fumigatus and inhibits its survival in 
hosts [67]. CaRIB1Δ/Δ deletion strains show no toxicity 
in HeLa cells and are completely avirulent in a mouse 
model [68–70]. RIB2 encodes the 2,5-diamino-6-ribity-
lamino-4(3 H)-pyrimidinone 5ʹ-phosphate deaminase 
of Histoplasma capsulatum, which catalyzes (1) into 
(3) (Figure 1). Disruption of the RIB2 gene prevents 
growth and proliferation of H. capsulatum in macro-
phages and severely attenuates its virulence [71]. FlcA, 
FlcB, and FlcC are important for FAD accumulation 
and A. fumigatus virulence, and FlcA-C belong to the 
flavin transporter family. The virulence of the ∆flcA, 
∆flcB, and ∆flcC mutant strain is lower, than that of the 
wild type, thus resulting in a higher survival rate of 
infected mice [71]. In conclusion, GTP cyclohydrolase 
II enzyme, DHBP, LS, RFK, RS, and FAD synthase, 
which are involved in the riboflavin synthesis pathway, 
can be used as antibacterial and antifungal drug targets 
(Table 1). However, RFK and FAD synthase are also 
present in humans [30]. Thus, the application of RFK 
and FAD synthase inhibitor against bacterial and fungal 

Table 1. Inhibitors of enzymes in the riboflavin synthesis 
pathway.

Inhibitors Target species Reference

DHBP inhibitors Vibrio cholerae [62]
LS inhibitors Schizosaccharomyces pombe, C. albicans, 

B. abortus; and M. tuberculosis
[55,57,61]

RS inhibitors M. tuberculosis, B. abortus and E. coli [59–61]
RFK inhibitors S. pneumoniae and Corynebacterium 

ammoniagenes
[65]

FAD inhibitors C. ammoniagenes, M. tuberculosis and 
S. pneumoniae

[66]
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infections in the human body should be considered 
carefully.

Immune response of endogenous riboflavin

It is necessary to understand how the endogenous ribo-
flavin biosynthesis pathway of pathogens affects the 
human immune response. 5-(2-oxopropylidenea-
mino)-6-D-ribitylaminouracil and 5-(2-oxoethylidenea-
mino)-6-D-ribitylaminouracil are intermediates in the 
microbial riboflavin biosynthesis pathway, and are con-
sidered to be the biological signature of microbial infec-
tion in mammals, which are formed by (5) combined 
with methylglyoxal or glyoxal [72] (Figure 2a). The 
major histocompatibility class I-like antigen- 
presenting molecule, MHC-related protein-1 (MR1), 
captures these pyrimidine intermediates and forms 
a complex. MAIT cell antigen receptors accept MR1- 
antigen complexes and then trigger MAIT cell immune 
responses, which lead to protection of the host from 
pathogens at mucosal surfaces [73–75]. In the early life 
of humans, the development of MAIT cells requires 
exposure to microorganisms with the ability to synthe-
size riboflavin. Subsequently, MAIT respond to cuta-
neous microbes, which are beneficial to tissue repair. 
Furthermore, MR1, which presents riboflavin metabo-
lites, is necessary for MAIT cells to recognize pathogens 
[76]. Besides the activation and enrichment of MAIT 
cells, the production of cytokines is also a response to 
microbial antigens [77]. For example, Legionella long-
beachae induces MAIT cell activation and rapid pul-
monary accumulation in an MR1-dependent manner in 
pulmonary L. longbeachae-infected mice. Interferon 
(IFN)-γ, granulocyte-macrophage colony stimulating 
factor (GM-CSF), tumor necrosis factor (TNF), and 
Interleukin (IL)-17 produced by activated MAIT cells 
enhance host immune protection [78]. Granzyme 
B and perforin, the secretions of MAIT cells, can also 
kill target cells to fight infection [79,80]. In addition, 
they promote the accumulation of CCR1+ and CCR5+ 

immune cells to the lung, preventing mycobacterial 
infection [80]. It is worth noting that MAIT cells are 
polarized to the Th1 phenotype and migrate to the 
infectious site during M. tuberculosis infection [81,82]. 
In addition, fungi (including Aspergillus ssp., 
C. albicans, and Mucorales species) can be recognized 
by MAIT cells in an MR1-dependent manner [83–85].

However, immune responses of MAIT cells are dif-
ferent in different kinds of infections. For example, 
A. fumigatus infection induces MAIT cells to produce 
a large amount of TNF and less IFN-γ, in contrast to 
C. albicans infection, which induces MAIT cells to 
mainly produce IFN-γ. Differences in the MAIT cell 

response to C. albicans and E. coli can be seen in the 
sensitivity of recognition, release of cytokines, and 
immune response [84,86]. Viruses cannot produce 
riboflavin metabolites to form MR1-antigen complexes. 
MAIT cells depend on cytokines, but not MR1, which 
play a protective role in influenza virus, dengue virus, 
and hepatitis C virus infection [87–89] (Figure 2b). 
Activated MAIT cells can limit hepatitis C replication, 
and the mechanism should be further explored [88]. 
However, MAIT cells are activated and exhausted in 
most viral infections [90,91]. The antivirus activity of 
MAIT cells was induced in human immunodeficiency 
virus infection [92,93]. Thus, MAIT cells can be acti-
vated by different types of microbial stimuli and against 
bacteria, fungi, and viruses in different response pat-
terns [86]. Thus, MAIT cells also promote cytokine and 
chemokine release, as well as promote migration of 
immune cells to sites of infection, which enhances 
host immunity and exerts an anti-infectious effect 
(Figure 2b). However, MAIT cells cannot be activated 
by A. fumigatus strains lacking ribB [84]. Hence, it is 
worth considering that whether inhibitors of the ribo-
flavin biosynthesis pathway affect the formation of 
MR1-antigen compounds, resulting in pathogen eva-
sion from MAIT cells. Further investigations are 
needed.

Anti-infection effect of exogenous riboflavin

Direct anti-infective effect of riboflavin

Riboflavin can be used as an antibiotic in the treatment 
of various infectious diseases. Intravenous injection of 
highly purified riboflavin (80 mg/kg) greatly reduced 
the virulence of E. coli and S. aureus as well as the 
production of proinflammatory cytokines and nitric 
oxide (NO) induced by lipopolysaccharide (LPS) [20]. 
Exogenous riboflavin (10 mg/kg) could also protect 
mice against LPS-induced shock by increasing the 
level of heat shock protein 25 (Hsp25) to decrease 
mortality [94]. In addition, exogenous riboflavin 
(10 mg/kg) and riboflavin combined with aminolevane 
increased survival of mice with LPS-induced shock 
[95]. Riboflavin (20 mg/kg) also decreased IL-6 and 
macrophage inflammatory protein-2 concentrations 
and mRNA transcription levels in mice injected with 
LPS. It also reduced plasma elevated NO levels by 
reducing expression of inducible NO synthase (iNOS) 
gene [96]. Supplementation with 300 mM riboflavin 
reduced the mortality of LPS-stimulated macrophages 
and induced expression of Hsp72 in macrophages [97]. 
These data illustrate that intravenous injection of ribo-
flavin has antibacterial effects.
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Figure 2. Immune responses of endogenous/exogenous riboflavin and exogenous riboflavin against infection. a. The 
formation of pyrimidine adducts. 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU) and 5-(2-oxopropylideneamino)- 
6-D-ribitylaminouracil (5-OP-RU) are formed by (5) combining with glyoxal or methylglyoxal in bacteria. RF: riboflavin. 
b. Interaction between riboflavin and MAIT cells. MR1 recognizes and presents the signals of the riboflavin synthesis pathway 
to MAIT cells triggering different types of immune responses in bacteria and fungi. 1) MIAT cells produce granzyme B and perforin to 
kill the target cell directly. 2) MAIT cells release cytokines, including IFN-γ, GM-CSF, IL-17, and TNF. 3) MAIT cells facilitate other 
immune cells to protect the host from infection. However, fungi are recognized in an MR1-dependent manner and, therefore, MAIT 
cells response to fungi are not exactly same as to bacteria. Viruses cannot biosynthesize riboflavin, and depend on cytokines to 
activate MAIT cells. In most virus infections, MAIT cells levels were reduced and their functions were impaired, such as antimicrobial 
activity. In addition, activated MAIT cells can limit HCV replication, and the mechanism should be further explored. c. The immune 
responses of exogenous riboflavin against infection. Exogenous riboflavin affects infectious disease by regulating the function of 
immune cells and the release of cytokines/inflammatory factors. HMGB1: high mobility group box 1 protein, Mø: macrophage, PMN: 
polymorphonuclear cell. INF-γ: interferon-γ, TNF-α: tumor necrosis factor-α, MCP-1: monocyte chemoattractant protein-1, IL: 
interleukin, Hsp: heat shock protein.
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In vivo, the dominant immune responses of C57BL/ 
6 J, BALB/c, and CBA mice are different, which results 
in the different effects of riboflavin supplementation on 
fungal peritonitis. In general, riboflavin affects matrix 
metalloproteinase-9 activity, iNOS gene expression, and 
the migration of polymorphonuclear cells (PMNs) and 
macrophages [98]. The effect of riboflavin on zymosan- 
induced peritonitis in Swiss mice has also been studied. 
The results suggested that the effects of riboflavin on 
proinflammatory and anti-inflammatory cytokines 
were most significant. Different from LPS-induced 
infection, 20 mg/kg riboflavin was usually ineffective 
in zymosan-induced infection in Swiss mice [21], while 
300 nM riboflavin supplementation of macrophages 
stimulated by zymosan significantly decreased Toll- 
like receptor 6, NO, iNOS, IL-1β, monocyte chemoat-
tractant protein-1 (MCP-1), and keratinocyte chemoat-
tractant levels [97]. Riboflavin supplementation 
reduced the release and expression of high mobility 
group box 1 protein (HMGB1) in zymosan-induced 
peritonitis mice and in vitro macrophage model. 
HMGB1 is responsible for activation of neutrophils or 
macrophages in recent studies [99]. In-depth studies of 
the mechanisms of action will be necessary in the 
future.

Exogenous riboflavin directly controls infection in 
three ways: 1) it inhibits transcription of bacterial LPS 
(Figure 2b); 2) it reduces the level of NO or expression 
of iNOS; and 3) it regulates the functions of innate 
immune cells (such as macrophages and neutrophils) 
and the levels of immunoreactive materials, including 
TNF, ILs, and IFN. The key factors affecting the anti- 
bacterial or anti-fungal effects of riboflavin are the time 
of administration and the dose [20,21,94,95]. 
Exogenous riboflavin regulation of immune responses 
is highlighted in Figure 2c. These immune responses 
also have a vital role in virus infection [100]. Thus, 
riboflavin may affect the occurrence and development 
of viral infection. In addition, the function and activa-
tion of MAIT cells participate in host defense during 
microbial or viral infection [88–91]. Therefore, exogen-
ous riboflavin may directly affect the function of MAIT 
cells or influence MAIT cells’ recognition of pathogens. 
Further experiments are needed to confirm these 
conclusions.

Indirect anti-infective effects of riboflavin

Riboflavin can also be used as a synergist to enhance 
the activity of antimicrobial or antiviral drugs. In 1996, 
Adelavin, a compound that contains liver extract and 
FAD, was used in patients with chronic hepatic-C and 
potentially enhanced the anti-viral effect of IFN [100]. 

Riboflavin showed significant synergistic activity with 
linezolid against MRSA infection [101]. Riboflavin in 
combination with azithromycin treatment eliminated 
S. aureus from blood, spleen, and synovial tissue of 
infected mice, reduced serum levels of TNF-α, INF-γ, 
and IL-6, and increased serum anti-inflammatory cyto-
kines IL-12p70 and IL-10 [102].

Riboflavin, a natural photosensitizer, is widely used 
in photodynamic inactivation of microorganisms. 
Photo-illuminated riboflavin inhibits the biofilm for-
mation of S. aureus and E. coli by inducing reactive 
oxygen species accumulation and oxidative stress, and 
destroying the respiratory system [103,104]. In combi-
nation with ultraviolet (UV) light A, riboflavin damages 
nucleic acids of pathogens (such as S. aureus, MRSA, 
and P. aeruginosa [105]) through the same mechanism 
[106,107]. Low concentrations of riboflavin (0.03%– 
0.07%) can improve the bactericidal effects of UV 
light A [108]. Interestingly, riboflavin/UVA combined 
with amphotericin B can enhance inhibitory effects on 
A. fumigatus, C. albicans, and Fusarium. Riboflavin/ 
UV-A enhanced surface diffusion of amphotericin 
B and reduced vertical diffusion into the agar. This 
treatment strategy can be used to treat fungal infection 
keratitis [109]. Several studies have investigated the use 
of riboflavin to treat infectious keratitis. Clinical trials 
have shown that collagen cross-linking (CXL) with UV 
light-activated riboflavin has a positive role in the treat-
ment of bacterial or fungal keratitis [110–113]. 
Conversely, no benefits of the CXL to treat infectious 
keratitis have been reported [114–117]. Based on cur-
rent evidence, further investigations are needed to clar-
ify the efficacy of CXL-UVA riboflavin for treatment of 
infectious keratitis. Moreover, riboflavin can also be 
used for virus inactivation [18]. Riboflavin and UV 
light reduced the infectious titer of severe acute respira-
tory distress syndrome coronavirus-2 [118,119], middle 
east respiratory syndrome coronavirus [120], dengue 
viruses [121], and ebolavirus [122] below the limit of 
detection. In summary, exogenous riboflavin plays 
a positive role in infectious diseases through combina-
tion with other drugs or therapies. Riboflavin’s use as 
a synergist and photosensitizer are summarized in 
Table 2.

Exogenous riboflavin and immune responses

As an antioxidant, exogenous riboflavin has a vital effect 
on the treatment and prevention of infectious diseases 
directly or indirectly by regulating the immune response 
and redox state. The role of exogenous riboflavin in 
immune responses is summarized in Figure 2c. On the 
one hand, exogenous riboflavin facilitates the ability of 
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immune cells to protect the host from infection. For 
instance, riboflavin regulates the accumulation, infiltra-
tion, migration, and development of macrophages and 
PMNs [98,123,124]. Under some conditions, pathogens 
are disseminated through immune cells (such as macro-
phages and PMNs) [125]. It reduced the level of HMGB1 
released by macrophages [126], although the underlying 
mechanism is unknown [99]. On the other hand, exo-
genous riboflavin decreases cytokine/chemokine levels 
(including those of TNF-α, IL-1β, MCP-1, and IL-6) 
and increases the levels of IL-12p70 and IL-10 [127– 
131]. Riboflavin also regulates the level of heat shock 
proteins, including Hsp25 and Hsp72 [97] (Figure 2c). 
Heat shock proteins can protect against cellular injury 
and death under harmful environmental conditions, 
such as infection [97,132133]. TNF-α is a well-known 
pro-inflammatory cytokine [133] that participates in 
inflammatory cell activation and recruitment [128]. 
TNF-α and INF-γ are partially responsible for LPS- 
induced iNOS mRNA expression [128]. Furthermore, 
TNF-α and INF-γ induced inflammatory cell death dur-
ing SARS-CoV-2 infection, which may contribute to 
cytokine storm activation [127]. TNF-α is one of the 
reasons for the destruction of the immune defense dur-
ing infection [129]. IL-10 primarily limits excessive 
inflammatory responses by inhibiting pro-inflammatory 
mediators, including TNF-α, IL-1β, IL-6, and GM-CSF 
[130]. It also maintains tissue homeostasis and innate 
immunity to control infection [133]. Thus, TNF, ILs, and 
IFN play vital roles in the occurrence and development 
of infection. However, further studies are needed to 
determine the effects of exogenous riboflavin on infec-
tions disease; its detailed effects on the immune system 
have yet to be elucidated.

Conclusion

In this review, anti-infectious roles of the endogenous 
riboflavin biosynthesis pathway, FMN riboswitch, and 
exogenous riboflavin are summarized. The data suggest 
that the riboflavin biosynthesis pathway may be 
a promising target for the development of novel classes 
of antibiotics and antifungals. In bacteria, the FMN ribos-
witch is the main target of existing riboflavin biosynthesis 
inhibitors, such as RoF, AF, Ribocil and 5FDQD. In 
addition, enzymes, such as LS, RS, riboflavin kinase, 
and FAD synthase, can also be targets for antibiotics 
[30,34]. However, few studies have developed inhibitors 
of the riboflavin biosynthesis pathway in fungi. Further 
studies are also needed to clarify whether enzyme inhibi-
tors of riboflavin biosynthesis will be useful as a novel 
class of antifungal agents. In addition, MAIT cells recog-
nize bacteria and fungi in an MR1-dependent manner, 
which requires the riboflavin synthesis pathway, while 
viruses depend on cytokines (Figure 2b). How MAIT 
cells respond to bacteria/fungi treated with inhibitors of 
the riboflavin biosynthesis pathway will require further 
investigation. Notably, if the inhibitors inhibit the pro-
duction of pyrimidine adducts, MR1 cannot present anti-
gen to MAIT cells and trigger an immune response 
in vivo, which may cause the effect of these inhibitors 
in vivo to be worse than that in vitro.

Furthermore, during infection, exogenous riboflavin 
inhibits the mRNA expression of LPS and reduces the 
overproduction of NO (Figure 2b), as well as regulates 
innate immune cells and cytokines (Figure 2c). However, 
whether exogenous riboflavin influences the de novo 
synthesis of riboflavin needs to be further explored. It 
also remains to be determined whether MAIT cells can 
respond to exogenous riboflavin or whether exogenous 
riboflavin can be presented by MR1 and compete with 
endogenous riboflavin/riboflavin precursors. Further 
understanding of these mechanisms will shed light on 
the role of endogenous and exogenous riboflavin in 
infection. In summary, further investigation of the endo-
genous riboflavin biosynthesis pathway and exogenous 
riboflavin will help lay the foundation for the develop-
ment of new antimicrobials.
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Table 2. Riboflavin’s use as a synergist and photosensitizer.

Usage
Wavelength 

of light Target organisms Reference

Synergist - MRSA [101,102]
- hepatitis C virus [100]

Photosensitizer 450 nm S. aureus [103]
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CoV; dengue 
viruses; ebolavirus

[118–122]
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