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The primate prefrontal cortex (PFC) is critical for executive functions including working
memory, task switching and response selection. The functional organization of this
area has been a matter of debate over a period of decades. Early models proposed
segregation of spatial and object information represented in working memory in the
dorsal and ventral PFC, respectively. Other models emphasized the integrative ability of
the entire PFC depending on task demands, not necessarily tied to working memory.
An anterior-posterior hierarchy of specialization has also been speculated, in which
progressively more abstract information is represented more anteriorly. Here we revisit
this debate, updating these arguments in light of recent evidence in non-human
primate neurophysiology studies. We show that spatial selectivity is predominantly
represented in the posterior aspect of the dorsal PFC, regardless of training history
and task performed. Objects of different features excite both dorsal and ventral
prefrontal neurons, however neurons highly specialized for feature information are
located predominantly in the posterior aspect of the ventral PFC. In accordance with
neuronal selectivity, spatial working memory is primarily impaired by inactivation or lesion
of the dorsal PFC and object working memory by ventral inactivation or lesion. Neuronal
responses are plastic depending on task training but training too has dissociable effects
on ventral and dorsal PFC, with the latter appearing to be more plastic. Despite the
absence of an overall topography, evidence exists for the orderly localization of stimulus
information at a sub-millimeter scale, within the dimensions of a cortical column.
Unresolved questions remain, regarding the existence or not of a functional map at
the areal and columnar scale, and the link between behavior and neuronal activity for
different prefrontal subdivisions.
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INTRODUCTION

The functional organization of the prefrontal cortex (PFC) in humans and non-human
primates has been a matter of long-standing debate (Riley and Constantinidis, 2016).
Neurophysiological studies in non-human primates in the 1990s described physiological
correlates of functional specialization across the dorsal-ventral axis, proposing that the dorsolateral
PFC is responsible for spatial working memory, and the ventrolateral PFC for object working
memory (Wilson et al., 1993; Ó Scalaidhe et al., 1997, 1999). These conclusions were challenged by
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other influential studies, which demonstrated that individual
neurons in the PFC can represent both spatial and object
information, thus suggesting that PFC is the site of integration of
these streams in the primate brain (Rao et al., 1997; Rainer et al.,
1998a). Human imaging studies at the time were also equivocal
about the dorso-ventral organization of the PFC, with some
supporting the idea that specialized processing occurs within the
two prefrontal subdivisions (Adcock et al., 2000; Leung et al.,
2002; Sala and Courtney, 2007), whereas others suggesting an
organization in terms of cognitive operations rather than type
of information (Owen et al., 1996, 1998; Stern et al., 2000). An
anterior-posterior axis of functional specialization has also been
speculated, suggesting a hierarchical organization progressing
towards anterior areas (Badre and D’Esposito, 2009). How such
a hierarchy might intersect with a dorso-ventral specialization
added to the confusion.

A number of recent studies allow a re-evaluation of this
debate, resolution of some of the questions and deeper
insights on the representation of information in prefrontal
networks. Here, we review results from non-human primate
neurophysiology. We discuss the anatomical organization of the
PFC, the evidence for specialization of stimulus representation
within the PFC, the capacity for plasticity based on task being
executed, the evidence for functional specialization drawn from
inactivation experiments, and finally, the evidence for orderly
representation of stimulus information within the cortical
microcircuits.

ANATOMICAL ORGANIZATION

The PFC can be divided into a lateral, a medial and an orbital
aspect. The lateral aspect can be further distinguished into a
dorsal and ventral subdivision. The terms ventral and dorsal
have not been used consistently in the literature, however
(Constantinidis and Procyk, 2004). Walker initially identified
multiple cytoarchitectonic areas on the lateral aspect of the
macaque brain: areas 8a (encompassing the Frontal Eye Field)
and 45 lining the superior and inferior banks of the arcuate sulcus
respectively, area 8b just medial to the arcuate, areas 9 and 12 in
the superior and inferior convexities of the cortex respectively,
area 46 lining either banks of the principal sulcus and area
10 covering the frontal pole (Walker, 1940). Area 46 has been
additionally subdivided along its mediolateral aspect, into areas
46dr, 46d, 46v and 46vr, lining the medial rim, the medial and
the lateral banks of the principal sulcus and the lateral rim of
the principal sulcus, respectively (Preuss and Goldman-Rakic,
1991). There is also evidence of a specialization in the anterior-
posterior aspect, with the caudal aspect of area 46 shown to
be functionally dissociable from the anterior one; the former is
sometimes referred to as area 9/46, whereas themost anterior one
as area 46 (Petrides, 2000). More areas yet may be present based
on the evidence provided by fMRI studies probing functional
connectivity at rest (Goulas et al., 2017).

Anatomical studies point to a relative segregation of
projections from the posterior parietal cortex, which terminate
mostly to the dorsal PFC (areas 8 and 46, including both
banks of the principal sulcus), and from the inferior temporal

FIGURE 1 | Diagram of a macaque monkey brain, with the lateral prefrontal
cortex (PFC) divided into six regions, as indicated. Yellow letters denote
approximate location anatomical areas, based on the Petrides and Pandya
nomenclature. Adapted from Riley et al. (2017), with permission.

cortex, which terminate on areas 12 and 45 of the ventral PFC
(Petrides and Pandya, 1984; Selemon and Goldman-Rakic, 1988;
Cavada and Goldman-Rakic, 1989). This specificity of inputs
is not only limited to visual afferents; auditory connections
representing sound localization information also target the dorsal
PFC, whereas those representing auditory features terminate in
the ventral PFC (Romanski et al., 1999). A relative segregation of
inputs has also been observed across the anterior-posterior axis,
with areas higher in the sensory and limbic hierarchies projecting
to more anterior prefrontal subdivisions (Gerbella et al., 2013;
Barbas, 2015; Borra et al., 2017).

Based on anatomical and physiological evidence, we have
recently proposed a functional division of the lateral PFC into
a dorsolateral region that encompasses the area between the
arcuate and principal sulcus and both banks of the principal
sulcus, and a ventral region that comprises the inferior limb of the
arcuate and the inferior convexity (Riley et al., 2017). These are
further subdivided along the anterior/posterior axis. A fronto-
polar aspect completes the lateral surface (Figure 1).

LOCALIZATION OF STIMULUS
SELECTIVITY

As noted in the ‘‘Introduction’’ section, neurophysiological
studies initially proposed that dorsolateral PFC subserves
primarily spatial working memory whereas ventrolateral, object
working memory (Wilson et al., 1993; Ó Scalaidhe et al.,
1997, 1999). This conclusion was based on the finding that a
greater proportion of neurons selective for the spatial location
of peripheral stimuli were observed in the dorsolateral than in
the ventrolateral PFC, in monkeys trained to perform spatial
working memory tasks (Wilson et al., 1993). On the other hand,
neurons selective for highly specialized images such as faces were
almost exclusively observed in the ventrolateral PFC, at least in
monkeys just required to view such stimuli passively (Ó Scalaidhe
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et al., 1997, 1999). This ‘‘domain-specific’’ organization can be
thought of as an extension of the dorsal and ventral visual streams
(Ungerleider andMishkin, 1982; Felleman and Van Essen, 1991).

An opposing view posited that prefrontal neurons selective for
both the location of stimuli and their identity can be encountered
throughout the PFC, after monkeys have been trained in tasks
that required them to remember both the location and identity of
a stimulus (Rao et al., 1997; Rainer et al., 1998a). The implication
drawn was that the functional specialization observed in the
earlier studies was the result of task requirements (Rao et al.,
1997; Rainer et al., 1998a). This ‘‘integrative’’ model suggested
a plastic prefrontal organization that is shaped by cognitive
demands imposed by the task, instead. Related models suggest
that the PFC is primarily organized based on cognitive process
rather than stimulus presentation (Owen et al., 1998). Some
studies have also suggested that lesions of the ventral PFC
do not impair working memory for stimulus shape and color
(Rushworth et al., 1997).

Spatial Selectivity
A number of recent studies in our own and other laboratories
have reexamined the selectivity of PFC for different properties of
stimuli by comparing responses of dorsal and ventral prefrontal
neurons to the same stimuli, in the same animals. Spatial
selectivity proved a strong predictor of whether a neuron was
recorded in the dorsal or the ventral PFC (Meyer et al., 2011).
More neurons in the dorsolateral PFC responded to white square
stimuli presented at varying spatial locations; a higher percentage
of these neurons were selective for spatial location; and a greater
spatial selectivity was observed among those neurons, compared
to ventrolateral prefrontal neurons. This difference in spatial
selectivity between dorsal and ventral PFC was true for monkeys
naïve to any training that viewed stimuli presented at different
locations passively; for monkeys trained to perform only spatial
workingmemory tasks; as well as formonkeys that were explicitly
trained to perform tasks that required simultaneousmaintenance
of spatial and object information in memory (Meyer et al., 2007,
2011; Riley et al., 2017). This is not to say that ventral prefrontal
neurons exhibit no selectivity for spatial location. Neurons with
well localized receptive fields and significant selectivity for spatial
location were observed in the ventral PFC (Meyer et al., 2011;
Riley et al., 2017).

Spatial selectivity is dependent on the position of neurons
along the anterior-posterior axis (Figure 2). Neuronal selectivity
was found to decrease along the anterior posterior axis, so
that the most highly selective neurons for stimulus properties
were located more posteriorly in the PFC (Riley et al., 2017).
Conversely, neurons in more anterior areas exhibited little
selectivity to stimuli per se but were more likely to represent
task variables. Thus, the functional specialization between dorsal
and ventral PFC became less meaningful, particularly as task
demands molded responses of neurons to different stimuli.

Stimulus selectivity also appears to have a strong temporal
component in the PFC. In our experiments, neurons were highly
selective for spatial location early in the trial, and response
latency itself differentiated the highly selective posterior areas
from the less selective anterior areas (Riley et al., 2017). Other

FIGURE 2 | Average selectivity index for three different stimulus sets (defined
as the difference between the maximum and minimum firing rate for the stimuli
of the set, divided by their sum), among neurons with significant responses to
stimuli for each prefrontal subdivisions. Error bars represent standard error of
the mean. Adapted from Riley et al. (2017), with permission. Horizontal lines
with stars ∗ indicate significant differences (p < 0.05) between conditions,
determined based on a 2-way ANOVA and post hoc Tukey test.

studies too have determined a stronger contralateral bias in
neuronal responses shortly after the appearance of the stimulus,
which dissipated later in time (Kadohisa et al., 2015).

Finally, spatial selectivity was most evident for peripheral
stimuli. In our experiments, stimuli were positioned 10–14◦ away
from the fovea. Studies that have tested stimuli within 4–6◦

degrees from the fovea have found little or no differentiation
between dorsal and ventral PFC (Rao et al., 1997; Kadohisa et al.,
2015). We note that properties of ventral prefrontal neurons are
similar to inferior temporal neurons, which project to the ventral
PFC, and which can be highly selective for spatial position,
particularly in perifoveal locations (DiCarlo andMaunsell, 2003).
The difference in spatial selectivity between dorsal and ventral
PFC is therefore quantitative rather than qualitative, yet clearly
distinguishing between the two.

Feature Selectivity
Our experiments probed further the selectivity of prefrontal
neurons for object features by testing neuronal responses in
the two areas with a set of eight white geometric objects.
Feature selectivity provided a less straightforward picture of the
two prefrontal subdivisions. A larger proportion of dorsolateral
prefrontal neurons responded to any stimulus appearing in
their receptive fields. Many of these neurons exhibited broad
but significant selectivity for shape (Meyer et al., 2011). These
results are in agreement with findings from other laboratories,
which have found broad but significant selectivity for stimulus
shape in the dorsolateral PFC, including the Frontal Eye Fields
(Peng et al., 2008; Clark et al., 2012). Such shape selectivity has
also been reported in the posterior parietal cortex (the main
afferent input to dorsolateral PFC), where broad but significant
tuning for stimulus shape is present, when probed with very
similar geometric shapes (Sereno and Maunsell, 1998; Janssen
et al., 2008). On the other hand, ventrolateral prefrontal neurons
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were less likely to be driven by any stimulus, at least among
the limited set of geometric shapes. When we quantified shape
selectivity among responsive neurons, this was higher in the
ventrolateral than dorsolateral PFC prior to training (Meyer
et al., 2011). However, the percentages of selective neurons and
selectivity magnitude values after training in working memory
tasks were not found to be significantly different between the two
prefrontal subdivisions (Meyer et al., 2011). This result essentially
replicated the findings of the earlier studies that failed to detect
a difference in feature selectivity between dorsal and ventral
prefrontal neurons, in monkeys that were trained to perform a
combined spatial and object working memory task (Rao et al.,
1997). Newer studies have also found little evidence for greater
prevalence of object coding in ventral compared to dorsal PFC,
when each neuron is tested with a few stimuli (Kadohisa et al.,
2015).

Although a limited stimulus set does not allow detection
of a clear-cut dichotomy in shape selectivity between dorsal
and ventral PFC, the lack of overall responsiveness in the
ventrolateral PFC is not incompatible with high specialization
for stimulus features. Neurons that are highly selective for
object features, will only respond vigorously to a limited set of
stimuli and are likely to produce uniformly weak responses to
stimuli drawn from a small set, failing to differentiate between
them. Such a response pattern has precisely been reported for
inferior temporal neurons (Gross et al., 1972; Desimone et al.,
1984; Tanaka et al., 1991; Fujita et al., 1992). In contrast, when
neurons were tested with stimulus sets requiring very narrow
shape selectivity, such as faces and complex objects, neurons
distinguishing between such stimuli were localized exclusively in
the ventral PFC (Ó Scalaidhe et al., 1997, 1999).

Our experiments also evaluated functional specialization for
color, relying on eight iso-luminant colored squares presented
over the fovea. The results of this analysis mirrored that of
feature selectivity. A large proportion of dorsal PFC responded
to colored squares, with a small percentage of neurons exhibiting
weak but significant selectivity (Riley et al., 2017). Other studies
have also observed color selectivity in only a small proportion
of prefrontal neurons, in the order of 5%–15% (Lara and
Wallis, 2014). Similarly, approximately 15% of posterior parietal
neurons show selectivity for color of stimuli (Constantinidis
and Steinmetz, 2001). A smaller percentage of ventral prefrontal
neurons responded to the colored squares, and their overall
selectivity for color was not significantly different from that of
the dorsal PFC (Riley et al., 2017). Combined fMRI studies and
neurophysiological studies in the temporal lobe have suggested
that neurons selective for faces, other shapes, and colors are
clustered at distinct patches of cortex (Tsao et al., 2006;
Popivanov et al., 2014; Chang et al., 2017). A handful of studies
have explored the PFC as well, for example suggesting that
color-selective neurons are concentrated in specific ‘‘patches’’
(Lafer-Sousa and Conway, 2013). These results argue strongly for
precise localization of function within the PFC.

As was the case for spatial stimuli, feature selectivity
depended upon a second anatomical dimension, the position of
neurons along the anterior-posterior axis (Figure 2). Neuronal
selectivity for shape and color too was found to decrease along

the anterior posterior axis, so that the most highly selective
neurons for stimulus properties were located more posteriorly
in the PFC (Riley et al., 2017). Object representation is also
time dependent; early responses represent objects, whereas
more abstract information such as stimulus category has been
documented later in prefrontal responses (Meyers et al., 2008;
Kadohisa et al., 2015).

Plasticity of Stimulus Representations
The activity of prefrontal neurons is well known to be modulated
by task demands. Neuronal activity has been shown to represent
the abstract rules of the cognitive tasks subjects are trained
to perform (White and Wise, 1999; Wallis et al., 2001), as
well as categories (Freedman et al., 2001; Shima et al., 2007),
and numerical quantities (Nieder et al., 2002). Responses to
stimuli are also modulated by perceptual decisions (Kim and
Shadlen, 1999; Barraclough et al., 2004), reward expectation
(Leon and Shadlen, 1999), and sequences of events or actions
(Averbeck et al., 2002; Inoue and Mikami, 2006; Sigala et al.,
2008; Berdyyeva and Olson, 2010). Activity of single neurons can
represent stimulus features and task variables simultaneously,
including nonlinear combinations of these factors (Rigotti
et al., 2013; Parthasarathy et al., 2017). Additionally, prefrontal
neurons respond more strongly to stimuli when these are part
of a task and the monkey is required to attend to them, than
the same stimuli when they are not necessary for performing
the task or are even distracting in the context of the task
(Rainer et al., 1998b; Everling et al., 2002; Lennert and Martinez-
Trujillo, 2011). The stimulus dimension being represented in
neuronal activity may dynamically change during the course
of a single trial (Mante et al., 2013). The representation of
task variables may reasonably be assumed to be the result of
training, as these differ between trained tasks. Considering such
plasticity of neuronal representations exists, an extreme view of
plasticity may lead to the conclusion that all stimulus properties
represented in neuronal responses are the effect of training rather
than inherent specialization for different types of stimuli. It is
important therefore to consider how training in a behavioral
task alters stimulus representations within the PFC. Experiments
in our laboratory directly addressed this question by recording
neuronal activity in monkeys when they were naïve to cognitive
task training, and after they were trained to perform tasks that
required them to maintain the properties of the same stimuli in
working memory (Qi et al., 2011; Qi and Constantinidis, 2013).
The effects of training varied between areas. Posterior dorsal PFC
exhibited the weakest effects of plasticity, with robust selectivity
for spatial stimuli being present both before and after training
in the working memory tasks (Meyer et al., 2011; Riley et al.,
2017). On the other hand, the ventral subdivisions of the PFC
in general, were more affected by the effects of training, such
that more neurons were responsive to stimuli when the monkey
was performing a working memory task (Meyer et al., 2011; Riley
et al., 2017).

Considering this difference in plasticity between ventral and
dorsal PFC, is it possible to entirely reverse the relative selectivity
for spatial information between the two subdivisions, and have
ventral PFC exhibit strong spatial selectivity if this is relevant
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for a trained task and tightly coupled to reward? Results from
one series of studies demonstrated such a reversal; a systematic
difference in spatial selectivity between dorsal and ventral PFC
was found, but higher spatial selectivity was present in the
ventral rather than the dorsal PFC (Kennerley and Wallis, 2009).
Recordings in these experiments were localized in the anterior
PFC, using a task which signaled the magnitude of reward. It is
likely that neuronal responses in anterior and ventral areas are
more sensitive to task variables and cognitive factors rather than
stimulus properties per se, so that robust selectivity to the location
of stimuli may emerge as a result of training in task that requires
tracking of reward. Ventral PFC has greater sensitivity to learning
of new, rewarded conditions likely due to the action of dopamine
D1R receptors (Puig and Miller, 2012).

Our experiments also tested the idea that task demands
that require memory of both location and identity of an object
modifies the properties of neuronal firing so as to exhibit
selectivity for both spatial and object information, as was
speculated in early studies that reported integration of these
types of information (Rao et al., 1997). This was clearly not the
case. Neurons with selectivity for both identity and location were
present prior to training, in both the dorsal and ventral PFC
(Meyer et al., 2011). Among neurons responding to stimuli, the
average strength of selectivity for either spatial location or shape
actually declined after training in the task that required working
memory for both (Meyer et al., 2011). However, since more
neurons were active, the information about stimulus location and
shape that could be decoded from neuronal populations after
training were no less than that before training (Meyers et al.,
2012).

These results suggest that while PFC has a great capacity
for plasticity and representation of abstract relationships for
behaviorally relevant stimuli, plasticity does not entirely erase
pre-existing functional specialization for spatial and object
information between dorsal and ventral PFC, particularly in their
posterior aspects. The gradients of spatial and object selectivity
are depicted schematically in Figure 3. Training does not affect
all areas of the PFC in the same manner, either. Neuronal
properties detected in trained monkeys thus depend on the
anatomical location of the neurons.

FUNCTIONAL IMPLICATIONS OF DORSAL
AND VENTRAL PREFRONTAL
INACTIVATION

Although selectivity to different types of stimuli is revealing, the
ultimate functional role of an area can be probed by examining
the consequences of its activity on performance of working
memory tasks. Thus, experimentsmanipulating neuronal activity
can be very informative on the functional roles of prefrontal
subdivisions. Temporary inactivation experiments e.g. injections
of the GABAA agonist muscimol, or lidocaine, or by cooling of
the underlying cortex during working memory are consistent
with the specialized stimulus selectivity of dorsal and ventral
PFC neurons. Inactivation of dorsal prefrontal areas, including
the Frontal Eye Field, decreases performance during spatial
working memory tasks (Sommer and Tehovnik, 1997; Dias

FIGURE 3 | Schematic diagram of hypothesized spatial and object selectivity
gradients in the dorsal and ventral PFC. The posterior aspects of dorsal and
ventral PFC are most selective for spatial locations and object features
(indicated by blue and yellow hues, respectively). Selectivity declines more
anteriorly (indicated by gray hue), and effects of task variables and training
history become more dominant. Abbreviations: AS, arcuate sulcus; PS,
principal sulcus.

and Segraves, 1999; Chafee and Goldman-Rakic, 2000; Suzuki
and Gottlieb, 2013; Noudoost et al., 2014). Similarly, limited
injections ofmuscimol in the dorsal PFC produce spatial working
memory deficits that localize in the contralateral visual field as
do small, focal lesions, a phenomenon that has been termed a
‘‘mnemonic scotoma’’ (Funahashi et al., 1993; Sawaguchi and Iba,
2001).

Inactivation of a dorsal area, the Frontal Eye Field, has
negligible effects on object working memory (Clark et al., 2014),
even when monkeys are tested with objects for which Frontal
Eye Field neurons were shown to exhibit broad but significant
selectivity in the same object-working memory task (Clark et al.,
2012). In contrast, inactivation of the ventral PFC impairs the
ability to locate objects based on remembered features, but not on
spatial location (Bichot et al., 2015). Location along the anterior-
posterior axis is also critical for the effects of lesions. It was lesions
in the anterior aspect of the ventral PFC (area 47/12) that failed
to produce deficits of feature working memory (Rushworth et al.,
1997), and inactivation of the posterior ventral PFC that did
(Bichot et al., 2015).

Although our review focuses on spatial and object working
memory, we do not wish to suggest that these are the
only functions of the dorsal and ventral PFC, respectively.
The representation of task rules and associations reviewed in
the neurophysiological studies of the previous section fares
prominently on the functional consequences of lesion studies.
In this case too, the effects of lesions are dissociable between
dorsal and ventral PFC. Lesions in the posterior-dorsal PFC
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impair tasks relying on learnt associations (Petrides, 2005). In
contrast, lesions of the mid-dorsal PFC result in deficits in
tasks involving presentation of a stimulus and after a delay
period, the same stimulus plus a new one, requiring selection
of the newly added item, particularly if this is not a novel
object but it is one the monkey is familiar with (Petrides, 2005).
Damage to the ventral PFC does not produce impairments
in recognition or simple recall; its effects become apparent in
free-recall tasks (Petrides, 1996). The ventral PFC also appears
to be essential for learning a task by trial and error, and reversal
learning, which requires learning new associations within a
session (Rushworth et al., 1997; Buckley et al., 2009; Rygula et al.,
2010).

PREFRONTAL MICROCIRCUIT
ORGANIZATION

In order to understand the organization of spatial and object
information in the PFC, it is necessary to delve into the
representation of stimulus properties at the scale of cortical
micro-circuits. Anatomical evidence reveals a regular pattern of
axonal terminations into prefrontal neurons, originating either
from within the PFC or from association cortices, forming
repeating, interdigitated stripes (Kritzer and Goldman-Rakic,
1995; Pucak et al., 1996). More recent studies also reveal a
systematic relationship of correlated spiking as a function of
distance between neurons and of their spatial tuning, which
also points to a regular organization of synaptic inputs (Leavitt
et al., 2013). The principles of anatomical input organization with
respect to their functional content remain elusive, though the
available evidence raises some possible alternatives.

It is well understood that the PFC is not organized in a
retinotopic fashion, with only a coarse bias towards peripheral
locations in dorsal subdivisions and foveal locations in ventral
subdivisions (Suzuki and Azuma, 1983). The lack of a retinotopic
organization across the surface of the PFC should not be
surprising given that prefrontal neurons are modulated by a wide
array of sensory and cognitive factors. Theoretical studies have
formally demonstrated the advantage of schemes that contain
multiple representations of the same sensory stimulus, mapped
to multiple outcomes but each modulated in a different fashion
by contextual factors (Salinas, 2004; Rigotti et al., 2013). The
lack of a retinotopic map has been readily demonstrated in
studies that sampled systematically the surface of the dorsolateral
PFC. The same retinal location was found to be represented at
multiple electrode tracks, scattered across the surface of cortex
(Constantinidis et al., 2001; Meyer et al., 2011). More recent
studies, using chronic implants with a regular grid of electrodes
to sample a small area of the PFC, also found no obvious
organization; neurons representing any spatial location of the
contralateral hemifield are observed within the ∼3 × 3 mm
surface of such an array with electrodes spaced at 0.4 mm apart
(Kiani et al., 2015; Bullock et al., 2017). Wider grids of electrodes
spaced at 1.5 mm of each other, revealed no obvious pattern
of retinal location represented at this larger spatial scale, either
(Markowitz et al., 2015).

Even though the surface of the PFC does not correspond to a
topographic map of visual space, organization of receptive fields
is not random. Evidence suggests a systematic organization of
spatial information, at a finer scale, particularly in the posterior
dorsal PFC. Simultaneous recordings from closely spaced
electrodes have indicated that neurons in proximity of each other
(laterally separated by 0.2–0.3mm)most often represent adjacent
spatial locations (Constantinidis et al., 2001). Clustering of
neurons with preference for similar spatial locations and similar
motion direction tuning was also detected for prefrontal neurons
located up to 0.7 mm apart from each other (Masse et al., 2017),
as well as in the grid recordings mentioned above Markowitz
et al., 2015;Bullock et al. (2017). Anatomical reconstruction
of neurons recorded in neurophysiological experiments as
electrodes descent into the principal sulcus also indicate a regular
transition of memory field location in adjacent micro-columns
(Arnsten, 2013). These results raise the possibility that the entire
visual hemifield is represented in repeating cortical modules
corresponding to the (0.2–0.8 mm) dimensions of the stripe-like
zones of axonal terminations (Levitt et al., 1993; Kritzer and
Goldman-Rakic, 1995; Pucak et al., 1996).

CONCLUSIONS AND UNRESOLVED
QUESTIONS

A number of conclusions can be drawn from the results that
were reviewed here. Anatomical inputs to the PFC are relatively
segregated along a dorsal-ventral axis and modulated along
an anterior-posterior axis. Functional specialization reflects
this anatomical organization so that spatial information is
represented predominantly (though not exclusively) in the dorsal
PFC. This dominance of spatial information in the dorsal PFC
is unaltered by training in working memory tasks, whether they
require spatial or object working memory, or combination of
both. However, this specialization is highly dependent on: (a)
location across the anterior-posterior axis, as higher stimulus
selectivity was observed more posteriorly in the dorsolateral
PFC and greater dependence to task demands, more anteriorly;
(b) time course of responses, with greater sensitivity to spatial
location appearing earlier in trials; and (c) representation of
peripheral as opposed to perifoveal stimuli, with the former being
more distinguishing between dorsal and ventral PFC.

Object working memory has been more difficult to localize
with neurophysiological methods. Dorsal prefrontal neurons
have broad selectivity for shape and color, and more dorsal
prefrontal neurons respond to any given object. On the other
hand, the ventral PFC appears better suited for the representation
of highly specialized objects like faces. Object selectivity also
declines towards more anterior areas and is time-dependent.

A number of unanswered questions remain. One category
of questions has to do with the organization of the PFC at
the scale of cortical areas and the scale of cortical columns.
Is there a functional map of some sort across the surface of
prefrontal areas? If so, which are the functional variables that are
mapped systematically? What is the role of a prefrontal column
within such a map? A combination of fMRI, optical imaging and
neurophysiological recordings in non-human primates has made
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progress in revealing the functional organization of other cortical
areas and will likely be instrumental for addressing this question
in the PFC.

A second series of questions has to do with the functional
implications of activity in different areas of the PFC. The
functional role of the different divisions of the PFC will
be definitively revealed when a direct link between neuronal
activity and behavior can be established. In this context,
the question that needs to be addressed is which areas and
neurons determine behavior in different working memory
and other cognitive tasks? Modern methods of neuronal
inactivation and excitation, including through optogenetic
manipulation combined with large scale recordings that allow
prediction of trial-to-trial deviations of behavior depending on

neuronal activity offer promise in answering these questions
definitively.
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