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Abstract

Transmembrane TNF-a, a precursor of the soluble form of TNF-a, is expressed on activated macrophages

and lymphocytes as well as other cell types. After processing by TNF-a-converting enzyme (TACE), the

soluble form of TNF-a is cleaved from transmembrane TNF-a and mediates its biological activities through

binding to Types 1 and 2 TNF receptors (TNF-R1 and -R2) of remote tissues. Accumulating evidence

suggests that not only soluble TNF-a, but also transmembrane TNF-a is involved in the inflammatory

response. Transmembrane TNF-a acts as a bipolar molecule that transmits signals both as a ligand

and as a receptor in a cell-to-cell contact fashion. Transmembrane TNF-a on TNF-a-producing cells

binds to TNF-R1 and -R2, and transmits signals to the target cells as a ligand, whereas transmembrane

TNF-a also acts as a receptor that transmits outside-to-inside (reverse) signals back to the cells after

binding to its native receptors. Anti-TNF agents infliximab, adalimumab and etanercept bind to and neu-

tralize soluble TNF-a, but exert different effects on transmembrane TNF-a-expressing cells

(TNF-a-producing cells). In the clinical settings, these three anti-TNF agents are equally effective for

RA, but etanercept is not effective for granulomatous diseases. Moreover, infliximab induces granuloma-

tous infections more frequently than etanercept. Considering the important role of transmembrane TNF-a
in granulomatous inflammation, reviewing the biology of transmembrane TNF-a and its interaction with

anti-TNF agents will contribute to understanding the bases of differential clinical efficacy of these prom-

ising treatment modalities.
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Introduction

TNF-a is a potent pro-inflammatory cytokine exerting

pleiotropic effects on various cell types and plays a critical

role in the pathogenesis of chronic inflammatory diseases,

such as RA [1, 2]. Accumulating evidence suggests that

not only soluble TNF-a, but also its precursor form, trans-

membrane TNF-a, is involved in the inflammatory

response. Transmembrane TNF-a exerts its biological

function in a cell-to-cell contact fashion, which is distinct

from the feature of soluble TNF-a, which acts at sites

remote from the TNF-a-producing cells [3]. In transgenic

mice, transmembrane TNF-a was shown to be sufficient

to induce arthritis with synovial hyperplasia and inflamma-

tion [4, 5].

Transmembrane TNF-a acts as a ligand by binding to

TNF-a receptors as well as functioning as a receptor that

transmits outside-to-inside (reverse) signals back into

the transmembrane TNF-a-bearing cells (TNF-a-

producing cells) [6]. It is therefore considered that

transmembrane TNF-a plays a critical role in local inflam-

mation [7–10]. Anti-TNF agents have been successfully

introduced for the treatment of chronic inflammatory dis-

eases. However, clinical features against granulomatous

inflammation are not similar among these agents. For

example, all the anti-TNF agents are effective against

RA, but not all of them against Crohn’s disease [1, 2].

The binding and neutralizing activities against soluble

TNF-a are the critical and common mechanisms of
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action of these anti-TNF-agents. On the other hand,

recent studies have shown that these agents have differ-

ential effects against transmembrane TNF-a and

TNF-a-producing cells [7–10]. In the light of a growing

body of evidence for the involvement of transmembrane

TNF-a in inflammation, such as granulomatous inflamma-

tion, it would be important to summarize the biology of

transmembrane TNF-a in health and disease as well as

its interaction with anti-TNF agents. We would like to

review the following issues: (i) biological function of trans-

membrane TNF-a as a ligand, (ii) biological function of

transmembrane TNF-a as a receptor and (iii) different

effects of anti-TNF agents on transmembrane

TNF-a-bearing cells (TNF-a-producing cells) that would

help to understand the different clinical effects of the

anti-TNF agents.

Biology of transmembrane TNF-a and
soluble TNF-a

TNF-a is generated as a precursor form called transmem-

brane TNF-a that is expressed as a cell surface type II

polypeptide consisting of 233 amino acid residues

(26 kDa) on activated macrophages and lymphocytes as

well as other cell types [11–13] (Fig. 1). After being pro-

cessed by such metalloproteinases as TNF-a-converting

enzyme (TACE) between residues alanine76 and valine77,

the soluble form of TNF-a of 157 amino acid residues

(17 kDa) is released and mediates its biological activities

through Type 1 and 2 TNF receptors (TNF-R1 also known

as TNFRSF1A, CD120a and TNF-R2 also known as

TNFRSF1B, CD120b, respectively) [14–17]. Soluble

TNF-a is a homotrimer of 17-kDa cleaved monomers

and transmembrane TNF-a also exists as a homotrimer

of 26-kDa uncleaved monomers [18]. Transmembrane

TNF-a also binds to TNF-R1 and -R2, but its biological

activities are supposed to be mediated mainly through

TNF-R2 [19]. Transmembrane TNF-a is palmitoylated at

a specific cysteine residue located just at the boundary

between the transmembrane and the cytoplasmic

domains [20]. In addition, serine residues of the intracel-

lular domain of transmembrane TNF-a are phosphorylated

[21]. These kinds of post-translational modification may

be important for the regulation of transmembrane TNF-a
function. After releasing soluble TNF-a by TACE cleavage,

the residual cytoplasmic domain of transmembrane TNF-a
migrated back into the nucleus of the transmembrane

TNF-a-bearing cells [22].

TNF-R1 and -R2 are expressed on almost all nucleated

cells [17] in the form of pre-assembled trimers [23]. Both

TNF receptors are capable of binding intracellular adaptor

proteins that lead to activation of complex intracellular

Fig. 1 Biology of transmembrane TNF-a and soluble TNF-a.

Transmembrane TNF-a is a precursor form of soluble TNF-a that is expressed on TNF-a-producing cells as a homotrimer.

After processing by TACE, soluble TNF-a is generated and binds to TNF-R1 or -R2. Transmembrane TNF-a also binds to

TNF-R1 and -R2. Upon binding to TNF receptors, both transmembrane and soluble TNF-a mediate pleiotropic effects

(apoptosis, cell proliferation and cytokine production). The remaining transmembrane TNF-a after cleavage with TACE is

further processed by SPPL2b and the intracellular domain is translocated into the nucleus and is supposed to mediate

cytokine production. tmTNF: transmembrane TNF-a; sTNF: soluble TNF-a.
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signalling processes and mediate the pleiotropic effects

of TNF-a [2, 24]. The signalling pathways initiated by

TNF-R2, which may be the preferential receptor for trans-

membrane TNF-a, are less characterized compared with

those of TNF-R1. However, TNF-R2 appears to have both

shared and opposing effects to TNF-R1 and may be

actively involved in the pathogenesis of inflammatory dis-

eases [25]. Although controversial, a functional M196R

polymorphism of TNF-R2 [26] is associated with an

increased risk of a number of inflammatory diseases,

such as RA [27, 28], SLE [26, 29] and ulcerative colitis

[30]. A meta-analysis revealed the association of the

196R polymorphism of TNF-R2 and SLE [31].

Biological activities of transmembrane
TNF-a as a ligand

Transmembrane TNF-a on the cell surface of TNF-a-

producing cells binds to TNF receptors on the target

cells and exerts various biological functions that will con-

tribute to the modulation of local inflammation in a cell-to-

cell contact manner as well as in a cell-type-specific fash-

ion. Expression of transmembrane TNF-a on various cell

types would contribute to the physiological as well as

pathological responses in health and diseases (Table 1).

Cytotoxic activity

In the late 1980s, a number of reports showed the cyto-

toxic effects mediated by transmembrane TNF-a. Human

macrophages and lymphocytes stimulated with such

agents as lipopolysaccharide (LPS), IFN-g or phorbol myr-

istate acetate express transmembrane and soluble TNF-a.

Tumour cells were lysed by incubating with transmem-

brane TNF-a on paraformaldehyde-fixed activated mono-

cytes [32–34], paraformaldehyde-fixed activated

lymphocytes [33] and microsomes [12]. This cytotoxic

activity is mediated by TNF receptors [34]. Freshly

isolated human NK cells constitutively express

transmembrane TNF-a that mediates cytotoxic activity

[35]. In patients with HIV infection and acute respiratory

distress syndrome, functionally active, cytotoxic

transmembrane TNF-a was expressed on the alveolar

macrophages [36, 37], which is supposed to be a mech-

anism for TNF-a-mediated lung injury. CD8+ T cells in SLE

patients express an increased amount of transmembrane

TNF-a upon activation and exerts cytotoxic activity

when incubated with L929 cells [38]. Monocytes

primed with cytokines demonstrated increased killing

of tumour cell lines as well as primary acute myeloid

leukaemia blasts by a mechanism dependent on trans-

membrane TNF-a [39]. In experimental Con A-induced

or melphalan-induced hepatitis [40, 41], transmembrane

TNF-a is involved in the pathogenesis through both

TNF-R1 and -R2. Melphalan inhibited TACE and induced

Kupffer cells to express transmembrane TNF-a, which

leads to hepatocyte injury. In endothelial programmed

cell death by ionizing radiation and LPS, transmembrane

TNF-a played a critical role through TNF-R1 [42]. Lipid

rafts participate in the cytotoxicity of transmembrane

TNF-a through intercellular adhesion molecule-1

(ICAM-1) clustering and consequent enhancement of the

cell-to-cell contact in Raji cells [43].

Host defence against intracellular pathogens

One of the major biological roles of TNF-a is in the host

defence to bacterial, viral and parasitic infections [2]. The

importance of transmembrane TNF-a in the inhibition of

intracellular organisms is beginning to be elucidated.

HIV-infected T-cell line or HIV-infected peripheral blood

lymphocytes were induced to cell death when co-cultured

with cells expressing transmembrane TNF-a through

cooperative signalling of TNF-R1 and -R2 [44]. The con-

tact mechanism mediated by transmembrane TNF-a
on CD4+ T cells activated Leishmania major-infected

macrophages to inhibit the growth of intracellular

Leishmania, an effect it exerts more strongly than soluble

Table 1 Biological activities of transmembrane TNF-a as a ligand

Target Function References

Tumour cells (various types) Cytotoxicity [32–35, 38, 39, 43]

HIV-infected lymphocyte Cell death [44]

Intracellular parasite-infected macrophage Inhibit the growth of intracellular pathogens [45–49]

Mycobacterium infection T-cell and macrophage migration,
granuloma formation

[52–55]

Monocyte IL-10 production [70]

B cell Proliferation, Ig production [58–64]
T cell HLA-DR and CD25 expression, GM-CSF production [19]

NK cell Enhancement of cytotoxic activity [65]

Endothelial cell Cell death, induction of pro-coagulant agents,
adhesion molecules and pro-inflammatory cytokines

[42, 19, 56, 57]

Adipose tissue Inhibition of adipocyte differentiation,
local insulin resistance

[66, 67]

Heart Concentric cardiac hypertrophy [68, 69]

Lung Interstitial inflammation [36, 37]

Liver Hepatitis [40, 41]
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TNF-a [45]. By using transmembrane TNF-a-knock-in

mice, which express functional transmembrane TNF-a
but do not release soluble TNF-a, transmembrane TNF-a
was shown to be sufficient to control infection due to

L. major [46]. In vitro tissue co-culture system revealed

that T-cell-expressed transmembrane TNF-a is necessary

and sufficient for memory T-cell responses to intracellular

pathogen Francisella tularensis, and is particularly impor-

tant for intramacrophage control of bacterial growth by

CD8+ T cells [47]. IFN-g induces monocyte apoptosis

and Coxiella burnetii killing through b2-integrin-mediated

cell clustering, which allows transmembrane TNF-a
to deliver a death signal to infected monocytes. Both

TNF-R1 and -R2 are involved in this process [48].

Transmembrane TNF-a participates in cell-mediated

immunity to Listeria monocytogenes as shown in trans-

genic mice. In the absence of secreted TNF-a, transmem-

brane TNF-a endows macrophages with enhanced

capacity to kill L. monocytogenes [49].

Protective immune response to Mycobacterium tuber-

culosis is regulated by T cells, macrophages and cyto-

kines, such as INF-g, IL-12 and TNF-a [50, 51]. A critical

role of TNF-a has been extensively reported in neutralizing

or gene-deletion experiments in mice infected with myco-

bacterial species with varying virulence. The importance

of transmembrane TNF-a for protection from M. tubercu-

losis or less virulent M. bovis bacillus Calmette–Guerin

infection was demonstrated in transgenic mice expressing

transmembrane TNF-a [52, 53]. Transmembrane TNF-a is

sufficient to initiate T cell and macrophage migration as

well as granuloma formation, and effective against acute,

but not long-term M. tuberculosis infection [54, 55].

Activation of endothelial cells

Human umbilical vein endothelial cells (HUVECs) co-cul-

tured with transmembrane TNF-a-expressing Chinese

hamster ovary (CHO) cells expressed tissue factor with

synergistic action of both TNF-R1 and -R2 in an adhe-

sion molecule (E-selectin/ICAM-1)-dependent manner

[19, 56]. In addition, plasma membranes isolated from

stimulated T lymphocytes up-regulated the expression

of ICAM-1, vascular cell adhesion molecule-1 (VCAM-1)

and E-selectin on isolated human brain microvascular

endothelial cells (HB-MEC) and their IL-6 expression

[57], which was partly diminished by inhibitors of TNF-a.

Induction of pro-coagulant agents, adhesion molecules

and pro-inflammatory cytokine by transmembrane TNF-a
may reflect the inflammation of microvessels mediated by

direct cell-to-cell contact between inflammatory cells and

endothelial cells.

B-cell proliferation and immunoglobulin production

Transmembrane TNF-a is expressed on HIV-infected

CD4+ T cells and markedly stimulated proliferation and

immunoglobulin (Ig) production by both autologous

and allogeneic B cells in an antigen-non-specific,

MHC-unrestricted, contact-dependent manner [58, 59].

Likewise, B-cell activation was induced by transmem-

brane TNF-a on HTLV type I (HTLV-I)-infected CD4+

T cells and herpesvirus saimiri-transformed CD4+ T cells

[60–62]. It is thus considered that human CD4+ T-cell

clones, when infected by certain viruses, can provide

abnormal B cell help and explain at least in part the hyper-

gammaglobulinaemia and other phenomena related to

polyclonal B-cell activation seen in patients infected with

these viruses [63]. In healthy individuals, transmembrane

TNF-a on Con A-activated CD4+ T-cell clones provided a

co-stimulatory signal for human B-cell activation and Ig

production through TNF-R1, but not by TNF-R2 [64].

T-cell/thymocyte activation

Transmembrane TNF-a expressed on CHO cells stimu-

lated human peripheral T cells to express HLA-DR [19].

Thymocytes from TNF-R2 transgenic mice induced prolif-

eration, CD25 expression and GM-CSF production when

co-cultured with transmembrane TNF-a-expressing

CHO cells [19].

NK cell stimulation

Transmembrane TNF-a is an important mediator for NK

cell–dendritic cell (DC) crosstalk [65]. In mouse, prolifera-

tion and cytotoxic activity of NK cells were enhanced by

transmembrane TNF-a on DCs through NK cell-surface

TNF-R2.

Adipocyte differentiation

Expression of transmembrane TNF-a on adipocytes

resulted in inhibition of differentiation by selectively

activating TNF-R1 [66]. This result might indicate that

transmembrane TNF-a is a local mediator of insulin resis-

tance. Supporting evidence was demonstrated in trans-

genic mice. Mice specifically expressing transmembrane

TNF-a in adipocytes showed a decreased whole body

adipose mass, and local, but not systemic, insulin resis-

tance [67]. These data demonstrate that exclusive action

of TNF-a in adipose tissue strongly inhibits insulin action

at this site and leads to reduced adiposity in mice.

Cardiac hypertrophy

There is a growing body of evidence that the short-term

and self-limited expression of TNF-a plays an important

homeostatic role in the heart [68]. Transgenic mice

with cardiac-restricted overexpression of transmembrane

TNF-a provoke a concentric hypertrophic cardiac

phenotype [69].

Cytokine production from monocytes

Transmembrane TNF-a expressed on glutaraldehyde-

fixed pre-stimulated human T-cells induced monocytes

to secrete IL-10 in a cell–cell contact manner [70].

TNF-R1 and -R2 on the monocyte surface are stimulated

by transmembrane TNF-a on glutaraldehyde-fixed

pre-stimulated human CD4+ T cells to produce TNF-a.

Extracellular signal-regulated kinase, a member of mito-

gen-activated protein kinases, was involved in the down-

stream signalling [71]. It is thus considered that

transmembrane TNF-a plays an important role for
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monocyte cytokine production in T-cell–monocyte cog-

nate interaction.

Biological activities of transmembrane
TNF-a as a receptor

Transmembrane TNF-a-bearing cells show their biological

activity when transmembrane TNF-a on their cell surface

is bound to its receptor, TNF-R1 or -R2. The biological

activity is induced by the transmembrane TNF-a-

mediated signal, also called an ‘outside-to-inside signal’

or ‘reverse signal’. In contrast to the well-characterized

functions of transmembrane TNF-a as a ligand, the bio-

logical functions elicited by outside-to-inside (reverse)

signal have not completely been clarified. However, it is

supposed that outside-to-inside signalling mediated by

transmembrane TNF-a contributes to the pleiotropy of

this pro-inflammatory cytokine and its fine-tuning of

immune response [6]. The biological activities of trans-

membrane TNF-a as a receptor have been demonstrated

in T cells, monocytes/macrophages and NK cells in

humans [72–76]. The elevation of intracellular calcium

concentration in both human T-cell line and mouse

macrophage cell line [62, 77] was induced through trans-

membrane TNF-a (Table 2).

Modulation of T-cell function

Harashima et al. [72] reported that activation by polyclonal

anti-TNF-a antibody against transmembrane TNF-a on

phytohemagglutinin-activated normal human CD4+ T

cells resulted in the induction of an adhesion molecule,

E-selectin (CD62E). In addition, Jurkat T cells or HeLa

cells stably expressing transmembrane TNF-a up-

regulated E-selectin when brought into cell-to-cell contact

with TNF-R2-expressing HeLa cells [72]. Transmembrane

TNF-a was involved in the alloresponse of T cells against

human microvascular endothelial cells (HMECs) [73].

CD4+ T cells proliferated upon stimulation with HMECs

were down-regulated by reverse signalling through trans-

membrane TNF-a. In addition, stimulation of transmem-

brane TNF-a on CD8+ T cells increased their cytotoxic

potential against HMECs, although the stimulation was

not by native cell-surface TNF-R, but by polyclonal

anti-TNF-a or soluble TNF-R production of IL-2 and

IFN-g in human T-cell line [62].

Modulation of monocyte/macrophage function

In human monocytes/macrophages pre-incubated with

TNF-R1-expressing human endothelial cells, reverse sig-

nalling through transmembrane TNF-a mediated LPS

resistance as indicated by the down-regulation of

LPS-induced soluble TNF-a and IL-6 as well as IL-1 and

-10 [74]. Pre-treatment with soluble TNF-R1 for inducing

reverse signalling through transmembrane TNF-a sensi-

tized human monocyte cell line U937 cells to soluble

TNF-a-induced activation, whereas stimulation of trans-

membrane TNF-a after soluble TNF-a-induced activation

of U937 cells reduced mRNA stability of IL-1b and IL-8

[75]. In contrast to these findings that transmembrane

TNF-a may inhibit sustained activation of monocytes,

transmembrane TNF-a played a positive role in the acti-

vation of monocytes. Ligation of transmembrane TNF-a
on monocytes by TNF-R2 on T cells or soluble

TNF-R2:Ig receptor construct (etanercept) induced

TNF-a production due to outside-to-inside signalling

through transmembrane TNF-a [71].

Activation of NK cell function

Such a positive effect by transmembrane TNF-a was also

reported in NK cells. Pre-stimulation of transmembrane

TNF-a with soluble TNF-R1 resulted in increased cytotoxi-

city of NK92 cells, a human NK cell line [76]. This

increased cytotoxicity of NK92 cells was accompanied

by augmented mRNA production of two cytotoxic mole-

cules, perforin and granzyme B.

Other TNF ligand family members and outside-to-inside
signal

These lines of evidence indicate that transmembrane

TNF-a transmits outside-to-inside signals back to the

cell by a cell-to-cell contact manner in local inflammation.

Outside-to-inside (reverse) signals transmitted by other

members of TNF ligand family have also been reported.

CD40L co-stimulation is important in the regulation of IL-4

production from T cells [78]. CD30L on the neutrophil

transmits reverse signal to induce IL-8 expression and a

Table 2 Biological activities of transmembrane TNF-a as a receptor

tmTNF-expressing
cells Function Reference

T cell E-selectin expression, [72]

Production of IL-2 and IFN-g [62]

Alloresponse against endothelial cells [73]
Monocyte/macrophage Down-regulation of LPS-induced soluble TNF-a, IL-6, IL-1 and IL-10 [74]

Sensitization to soluble TNF-induced activation (pre-stimulation) or
reduction of mRNA stability of IL-1b and IL-8 (post-stimulation)

[75]

TNF-a production [71]

NK cell Increased cytotoxicity by up-regulation of perforin and granzyme B [76]

tmTNF: transmembrane TNF-a.
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rapid respiratory burst [79]. In addition, outside-to-inside

signal transmitted by CD27L or FasL leads to T-cell pro-

liferation [80–82]. Enhancement of IgG production of B

cells and promotion of maturation of DCs were shown to

be reverse signalling by OX40L [83]. Outside-to-inside sig-

nals have been studied relatively well for the CD137L. A

variety of biological functions, such as cytokine induction

and cell proliferation, in different cell types have been

reviewed recently [84].

Binding of anti-TNF agents to soluble
and transmembrane TNF-a

Anti-TNF agents have been successfully applied to

the treatment of Crohn’s disease and RA as well as

other chronic inflammatory diseases like psoriasis, AS

and Behçet’s disease [1, 85]. Three anti-TNF agents,

infliximab, adalimumab and etanercept, are approved

worldwide for the treatment of these diseases and there

are ample data on the clinical profile. Other anti-TNF

agents, certolizumab pegol and golimumab, have just

been approved for clinical use. Infliximab, adalimumab

and golimumab are mAbs against human TNF-a and eta-

nercept is engineered from human TNF receptors (Fig. 2).

Infliximab is a chimeric mouse–human anti-TNF-a mAb

composed of a murine variable region and a human

IgG1 constant region. Adalimumab and golimumab are

fully humanized anti-TNF-a mAbs, which are indistinguish-

able from the normal human IgG1. Etanercept is

composed of the extracellular portion of the two human

TNF-R2 (p75 TNF receptor) linked to the Fc portion (CH2

and CH3 domains) of human IgG1. Certolizumab is a Fab’

fragment of an anti-TNF-a IgG1 mAb and is lacking the Fc

portion. The hinge region of certolizumab is covalently

linked to two cross-linked chains of 20 kDa of polyethyl-

ene glycol, giving certolizumab pegol [86].

Infliximab binds to both monomer and trimer forms of

soluble TNF-a, whereas etanercept binds only to the

trimer form [87]. Infliximab formed stable complexes

with soluble TNF-a, while etanercept formed relatively

unstable complexes [87]. Each infliximab molecule is

capable of binding to two TNF-a molecules, and up to

three infliximab molecules can bind to each TNF-a homo-

trimer. In contrast, etanercept is supposed to form 1 : 1

complex with the TNF-a trimer [87]. In fact, the mAbs,

but not TNF-R2:Ig soluble receptor, form large protein

complexes in vitro [88]. Overall, all three anti-TNF agents

have similar intrinsic binding properties for soluble TNF

[10]. Although these kinds of analysis at the molecular

level have not been performed, certolizumab pegol

showed similar potency in neutralizing soluble TNF-a to

infliximab, adalimumab and etanercept [89].

Infliximab, adalimumab, etanercept and certolizumab

pegol bind to transmembrane TNF-a on transmembrane

TNF-a-transfected cells [7, 9, 89] with similar affinities

that were lower (weaker) than for soluble TNF-a [10].

As in the case of soluble TNF-a, up to three molecules

of infliximab can bind one transmembrane TNF-a, one

etanercept can bind one molecule of transmembrane

TNF-a [87].

Fig. 2 Structures of anti-TNF agents.

Infliximab is a mouse–human chimeric monoclonal anti-TNF antibody of IgG1 isotype. Adalimumab and golimumab are

fully human IgG1 monoclonal anti-TNF antibodies. Etanercept is a fusion protein of the extracellular domain of TNF-R2

and the Fc region of IgG1. Certolizumab pegol is a PEGylated Fab0 fragment of humanized monoclonal anti-TNF

antibody.
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Functional properties of anti-TNF agents
on transmembrane TNF-a

Among the five anti-TNF agents, infliximab, adalimumab

and etanercept are approved and have been clinically

introduced worldwide for years. Here, we would like to

describe the functional properties of anti-TNF agents

with emphasis on these three widely used TNF antago-

nists. Infliximab, adalimumab and etanercept are effective

for the treatment of RA, PsA and AS; however, etanercept

is not effective for Crohn’s disease, Wegener’s granulo-

matosis and sarcoidosis [86, 90]. This difference in the

clinical efficacy may be explained by the differences in

pharmacokinetics, tissue distribution and functional prop-

erties of these anti-TNF agents. Considering the important

role of transmembrane TNF-a in health and diseases, dif-

ferential effects of anti-TNF agents on transmembrane

TNF-a may explain the difference in these clinical effica-

cies. A number of groups have reported head-to-head

comparison of the functional properties for these

anti-TNF agents on transmembrane TNF-a [7, 8, 10, 87,

89] (Fig. 3).

Inhibition of ligand activity of transmembrane TNF-a

Infliximab was significantly more potent than etanercept

at blocking transmembrane TNF-a-mediated E-selectin

expression in HUVECs [87]. In a bioassay using human

lung carcinoma cell line A549, infliximab, adalimumab

and certolizumab pegol similarly inhibited transmembrane

TNF-a-mediated cell death; however, etanercept showed

�2-fold less activity [89]. Taken together, effector function

of transmembrane TNF-a is inhibited by any of the

anti-TNF agents, although the activity of etanercept is

weaker than the other antagonists.

Inhibition of transmembrane TNF-a-bearing cells

Complement-dependent cytotoxicity. In a system using

human Jurkat T cells [8], mouse NS0 myeloma cells [89],

mouse Sp2/0 myeloma cells [10] or CHO cells [9],

complement-dependent cytotoxicity (CDC) was analysed

for the anti-TNF agents. All the reports were in agreement

that infliximab and adalimumab induced CDC much more

potently than etanercept. In contrast, certolizumab pegol

did not have any CDC activity [89], which reflects its

absence of the Fc portion of IgG1. From the structural

point of view, lack of activation of the complement

system by etanercept seems to be reasonable as well.

Infliximab, adalimumab and etanercept commonly pos-

sess the Fc portion of IgG1, whose CH2 domain activates

the first component of complement (C1) activation (Fig. 4).

However, etanercept does not carry the CH1 domain of

IgG1. A narrow region of 23 amino acid residues within the

CH1 domain serves as a platform for complement C3 acti-

vation [91]; it was later confirmed that three amino acid

residues within the specific 23 amino acids are involved in

the covalent attachment with C3 [92, 93]. Etanercept is

Fig. 3 Inhibition of TNF-a-bearing cells by anti-TNF agents.

Transmembrane TNF-a plays an important role in granuloma formation, which is essential for the development of

granulomatous diseases such as Crohn’s disease, and the host defence against tuberculosis. There are at least four

distinct mechanisms for the inhibition of TNF-a-bearing cells by anti-TNF agents: (i) inhibition of transmembrane

TNF-a-mediated effector function, (ii) destruction of TNF-a-bearing cells by CDC, (iii) destruction of TNF-a-bearing cells

by ADCC and (iv) destruction of TNF-a-bearing cells by outside-to-inside signal (reverse signal).
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structurally impaired in the appropriate activation of C3,

the most important step in complement activation.

Moreover, lack of a hinge region in the Fc portion of eta-

nercept resulted in rigidity compared with the natural anti-

body and eventually culminated in conformational

hindrance to the proper access of complement proteins.

It is thus difficult for etanercet to make a membrane

attack complex of complement proteins (C5b–C9) for

CDC at least in vitro. When activated human peripheral

blood mononuclear cells were studied as target cells,

none of these three anti-TNF agents induced CDC [10],

which may be due to the use of different cell types from

the above-mentioned experiments.

Antibody-dependent cell-mediated cytotoxicity. Infliximab,

adalimumab and etanercept showed similar antibody-

dependent cell-mediated cytotoxicity (ADCC) activitiy

using mTNF-transfected Jurkat T cells as target [8],

while infliximab and adalimumab showed much more

potent ADCC than etanercept in NS0 cells [89] or in CHO

cells [9]. Certolizumab pegol did not show any ADCC

activity [89]. The discrepancy in etanercept-induced

ADCC is not clear, but may be explained by the different

experimental conditions, such as difference in the species

of target cell, in the expression level of transmembrane

TNF-a. From the structural viewpoint, infliximab, adalimu-

mab and etanercept carry CH2 and CH3 domains of the Fc

domain of IgG1, whereas certolizumab pegol does not

(Fig. 4). These domains of IgG1 are involved in the binding

to Fc receptors of NK cells [94], which leads to the lysis of

target cells by granzyme B and perforin. The presence or

absence of soluble TNF-a in the assay system may also

affect ADCC activities. Both mAbs and etanercept weakly

bound to Fcg receptors in the absence of soluble TNF-a,

but in the presence of soluble TNF-a, there was a marked

increase in binding only by mAbs infliximab and

adalimumab [9]. As for infliximab, induction of both CDC

and ADCC has been reported by others [95].

Outside-to-inside signalling (reverse signalling). This is a

novel function of anti-TNF agents for the inhibition of

TNF-a-producing cells, which is mediated by mechanisms

independent of CDC and ADCC [8, 96] (Fig. 5). Infliximab

and adalimumab, but not etanercept, induced apoptosis

and cell cycle G0/G1 arrest upon binding to transmem-

brane TNF-a-expressing Jurkat T cells. Cross-linking of

etanercept bound to the cell-surface transmembrane

TNF-a resulted in increased apoptosis [96], which

indicates that multimer formation with mAbs and trans-

membrane TNF-a may be essential for the initiation

of the subsequent intracellular signals. IL-10 production

was induced by infliximab, but not by etanercept, in trans-

membrane TNF-alpha-expressing Jurkat T cells [96].

c-Jun NH2-terminal kinase activation followed by

Fig. 4 CDC and ADCC by anti-TNF agents.

Infliximab, adalimumab and etanercept commonly possess the Fc portion of IgG1, whose CH2 domain activates com-

plement C1. Activation of C1 leads to complement C3 activation and subsequent formation of a membrane attack

complex (C5b–C9) and lysis of the target cells. However, etanercept does not carry the CH1 domain of IgG1 which is

important for the activation of C3. Infliximab, adalimumab and etanercept carry CH2 and CH3 domains of the Fc domain

of IgG1 that mediate the binding to Fc receptors, which culminates in granzyme B and perforin release from NK cells and

lysis of the target cells.

1222 www.rheumatology.oxfordjournals.org

Takahiko Horiuchi et al.



Fig. 5 Outside-to-inside signal by adalimumab and infliximab.

This is a novel mechanism for the inhibition of transmembrane TNF-a-bearing cells by anti-TNF antibodies. In the

absence of NK cells or complement, adalimumab or infliximab induces G0/G1 cell cycle arrest and apoptosis, which

inhibits TNF-a-producing cells and leads to an anti-inflammatory response. A number of molecules (p21WAF1/CIP1, Bax,

Bak and ROS) were involved in these intracellular signalling events through the intracellular domain of transmembrane

TNF-a. These signalling molecules are supposed to be associated with p53 activation. Three serine residues in the

intracellular domain of transmembrane TNF-a are essential for the activities. Bak and Bax are proapoptotic multidomain

molecules; tmTNF: transmembrane TNF-a.

Fig. 6 Structure of transmembrane TNF-a.

Transmembrane TNF-a is a type II polypeptide composed of a extracellular domain (177 amino acid residues), a

transmembrane domain (26 amino acid residues, shaded) and an intracellular domain (30 amino acid residues). Mature

TNF-a (soluble TNF-a) of 157 amino acid residues is cleaved from transmembrane TNF-a by TACE (black arrow). The

remaining part is further cleaved by SPPL2b in the transmembrane domain (two grey arrows), and the intracellular domain

is translocated into the nucleus to possibly modulate gene expression of the TNF-a-bearing cells. The intracellular

domain contains CKI motif (boxed) and three serine residues. These serine residues are conserved among different

species and are essential for the outside-to-inside signal transmitted by transmembrane TNF-a upon binding to anti-TNF

antibody. Amino acid residues are shown in the one-letter code. The transmembrane domain of transmembrane TNF-a is

shaded.
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up-regulation of p21WAF1/CIP1, Bax and Bak as well as

reactive oxygen species (ROS) accumulation are impor-

tant intracellular signalling events for apoptosis and cell

cycle arrest [96]. In addition, site-directed mutagenesis

revealed that three serine residues in the cytoplasmic

domain of transmembrane TNF-a are essential for these

biological effects. The amino acid sequence of the intra-

cellular domain of transmembrane TNF-a is well con-

served in different species [77] (Fig. 6), and is thus

considered to play an important role. All three serine res-

idues were conserved among different species. A casein

kinase I (CKI) consensus sequence in the cytoplasmic

domain may be involved in outside-to-inside signalling

as well [77]. This domain is dephosphorylated upon acti-

vation of transmembrane TNF-a in mouse macrophage

cell line RAW264.7, and is accompanied by an increase

in intracellular calcium levels [77]. Increase in intracellular

calcium levels by outside-to-inside signal of transmem-

brane TNF-a has also been reported by others [62]. For

the outside-to-inside signalling, the amino-terminal intra-

cellular domain of transmembrane TNF-a cleaved by

signal peptide peptidase-like 2b (SPPL2b) may play an

additional role [97, 98]. This cleaved intracellular domain

triggers expression of the pro-inflammatory cytokine IL-12

in human DCs [97]. Consistent with these findings, the

amino-terminal intracellular domain of transmembrane

TNF-a contains a putative nuclear localizing signal

(KKTGGPQGSRR; one-letter amino acid code), localizes

in the nucleus and seems to be associated with IL-1b
expression in human HeLa cells [22, 99].

Granulomatous diseases and
transmembraneTNF-a

The three widely used anti-TNF agents, infliximab, adali-

mumab and etanercept, show different clinical efficacy.

Infliximab and adalimumab, but not etanercept, are effec-

tive against such diseases as Crohn’s disease, WG

and sarcoidosis [86, 90]. These are granulomatous inflam-

matory disorders. In addition, side effects are differ-

ent between these anti-TNF agents. Post-marketing

surveillance in the USA (from January 1998 through

September 2002) has identified that infliximab was

associated with a 2- to 8-fold greater risk of such granu-

lomatous infections as tuberculosis, listeriosis and histo-

plasmosis compared with etanercept [100]. The increased

incidence of tuberculosis in patients treated with inflixi-

mab or adalimumab compared with etanercept was also

reported in other European countries [101]. It has become

apparent that efficacy in granulomatous inflammatory dis-

eases and risk of granulomatous infections seems to

reflect the anti-granuloma function of anti-TNF agents. In

fact, specimens from RA patients who developed tuber-

culosis after treatment with infliximab lack granuloma for-

mation [102]. The presence or absence of an

anti-granuloma effect would be the most prominent differ-

ence between the currently available anti-TNF agents.

Transmembrane TNF-a has recently been shown to con-

tribute to the host defence against acute M. tuberculosis

infection in humans. CD8+CCR7-CD45RA+ effector

memory T cells express granulysin and mediate anti-

microbial activity against M. tuberculosis [103]. This

T-cell subset expressed transmembrane TNF-a
and bound infliximab, making itself susceptible to

complement-mediated lysis and the resultant reduced

antimicrobial activity.

In patients with Crohn’s disease, treatment with inflix-

imab induced a rapid increase of the number of apoptotic

CD3+ lamina propria T cells, without detectable changes

in peripheral blood T lymphocyte phenotype or markers of

apoptosis [104]. Moreover, transmembrane TNF-a, in the

absence of soluble TNF-a, induces colitis in a mouse

model [105]. In the clinical setting, it is likely that infliximab

induces apoptosis at least in part by transmembrane TNF-

a-mediated effects: CDC, ADCC and/or outside-to-inside

signalling.

Considering that infliximab and adalimumab induce

CDC, ADCC and outside-to-inside signalling through

transmembrane TNF-a, these anti-TNF mAbs seem

to be more potent than etanercept in the elimination of

transmembrane TNF-a-bearing macrophages and trans-

membrane TNF-a-bearing T cells. Thus, infliximab and

adalimumab may more strongly inhibit granuloma forma-

tion by these cells in tuberculosis or in Crohn’s disease, as

compared with etanercept. Different effects of these

anti-TNF agents on transmembrane TNF-a might at least

partly explain their different clinical efficacies. Although

available information is limited for the new anti-TNF

agents, certolizumab pegol and golimumab, it is important

to further analyse both the basic and clinical data of these

new agents and put the pieces together to more precisely

understand the similarities and dissimilarities of mechan-

ism of action of anti-TNF agents. Moreover, it is of note

that the clinical efficacy profiles are not solely dependent

on the mode of action on transmembrane TNF-a. These

anti-TNF agents are not similar with respect to doses,

routes and frequency of administration, pharmacokinetics

or immunogenicity. There might be other indirect effects in

the inflammatory network different between the anti-TNF

agents. The mechanisms of action of these anti-TNF

agents are more complex in patients than in in vitro

experiments.

Conclusion

Transmembrane TNF-a is a bipolar molecule that trans-

mits signals as a ligand and as a receptor back to the cell.

It is thus considered that transmembrane TNF-a plays

an important role in local inflammation in a cell-to-cell

contact manner. Infliximab, adalimumab and etanercept

similarly bind to transmembrane TNF-a on TNF-a-

producing cells, and the former two mAbs seem to trans-

mit stronger inhibitory signals through transmembrane

TNF-a. Understanding the mechanism of action of

anti-TNF agents and their relationship with clinical effects

will contribute to appropriate prediction of the clinical effi-

cacy of forthcoming anti-TNF agents, the application of

the agents to new disease targets and the development

of new anti-TNF agents.
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Rheumatology key messages

. Transmembrane TNF-a, a precursor form of soluble
TNF-a, transmits signals both as a ligand and as a
receptor.

. Differential clinical efficacies of anti-TNF agents
may be explained by their different action on trans-
membrane TNF-a-bearing cells.
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