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ABSTRACT
Dendritic spines are described as neuronal protrusions. The morphology of dendritic
spines and dendrites has a strong relationship to its function, as well as playing an
important role in understanding brain function. Quantitative analysis of dendrites
and dendritic spines is essential to an understanding of the formation and function
of the nervous system. However, highly efficient tools for the quantitative analysis of
dendrites and dendritic spines are currently undeveloped. In this paper we propose a
novel three-step cascaded algorithm–RTSVM— which is composed of ridge detection
as the curvature structure identifier for backbone extraction, boundary location based
on differences in density, theHumoment as features andTwin Support VectorMachine
(TSVM) classifiers for spine classification. Our data demonstrates that this newly
developed algorithmhas performedbetter than other available techniques used to detect
accuracy and false alarm rates. This algorithm will be used effectively in neuroscience
research.

Subjects Neuroscience, Computational Science
Keywords Neuron, Dendritic spine, Ridgelet detection, Twin Support vector machine

INTRODUCTION
The dendrite is defined as the branched projection of a neuron. The dendritic spine is
described as neuronal protrusions attached to the neuronal dendrites (Wang et al., 2015).
The structure of the spine is composed of a small head which is connected to the shaft of
the dendrite by its thin neck. They work by assisting the transmission of electrical signals to
the neuronal soma and providing essential energy storage for the synapses. Statistics show
that the length of the spine is usually between 0.5–2 µm with some measurements of the
Cornu Ammonis three (CA3) region of the hippocampus measuring up to 6 µ. Volume
ranges from 0.01 µm3 to 0.8 µ3 (Zito & Murthy, 2002).

Dendritic spines are categorized into three types according to shape—thin, stubby or
mushroom shaped. The morphology of the dendritic spines varies over time (Engert
& Bonhoeffer, 1999; Yuste & Bonhoeffer, 2001). Research shows that the morphology
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Figure 1 Dendritic spine.

of dendritic spines had a strong relationship to neuron function (Johnston & Wu,
1994; Krichmar et al., 2002; Mainen & Sejnowski, 1996). For example, researchers have
traditionally used the relationship between the morphological and functional classes of
cat retinal ganglion cells to illustrate the interaction between neuronal shape and function
(Sun, Li & He, 2002). Characterization of dendritic spinal structures has the potential to
profoundly impact biological research and an understanding of neuronal morphology has
important, beneficial implications and can be instructive in the treatment of neurological
and psychiatric disorders such as Attention-deficit hyperactivity disorder (ADHD), autism,
cognitive disorders and Alzheimer’s and Parkinson’s diseases. Figure 1 is provided to
illustrate the dendritic spine and dendrite.

Within the last several decades, numerous automatic and semi-automatic neuron
analysis methods have been proposed, such as ImageJ, Neuron Studio etc. For example,
SynD, proposed by Schmitz et al. (2011) was a semi-automatic image analysis software
designed specifically for immuno-fluorescent imagery. It was based on the principal that
neuron structure information is obtained in different channels. Jie et al. (2007) proposed a
pipeline method which included an adaptive threshold that could improve segmentation
performance over that of the global threshold method. Following this an efficient backbone
extraction method was introduced. Detached spines were detected based on the signal
noise ratio (SNR) values as well as local dendrite morphology estimates. Zhang et al. (2007)
proposed use of curvilinear structure detection in the identification of dendritic spines
and backbones. The result is exclusion of pseudo-spines among the attached spines based
on linear discriminate analysis. Rodriguez et al. (2008) introduced a new system for spine
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detection, shape analysis and classification. The spinal analysis module in Alfredo et al.’s
paper posited that the model of the dendritic tree could be identified as a series of nodes of
specified diameter. The spine detection was therefore based on voxel clustering. Fan et al.
(2009) presented their method in the vivo mouse models. They isolated the medical axes of
dendritic backbones and attached spines based on the curvilinear structure detector. They
then used the adaptive local binary fitting energy level set model to determine the dendritic
boundary and the central line of the curvilinear detector in the initial samples. Spinal
growth was tracked based on the graph homomorphism of dual image graph structures
at different times. In order to discriminate between the androgynous and exdrogynous
effects on spineogensis. Hideo et al. (2011) proposed an automatic analysis method of
spines based on confocal laser microscopic imaging. They developed a new method based
on the geometrical features, which used scale free shape dependent analysis combined with
manual correction. He, Xue & Wong (2012) proposed a nonlinear degeneration equation
(NDE) method. The morphological differences between the dendrites and spines was
enhanced by the NDE method due to differences in pixel shrinkage rates between spines
and dendrites. For the classification of different types of spines, Gaussian curvatures and
the biomimetic pattern recognition theory were used. Su et al. (2014) proposed to use the
directional morphological filter (DMF) and shortest path (SP). Extractions were refined
by DMF until the desired results were achieved. Next, SP was used to locate the dendritic
boundary in order to determine the beginning points of the spines. Finally, the spines were
segmented from the dendrites outside of the extracted boundary. Marker-controls were
then used to split the attached spines.

The limitations of these algorithms, however, are that they perform well on specific
images but poorly on new query images from different types of microscopies. In addition,
existing manual methods were time consuming, costly, and irreproducible. Increased
dimensionality (Zhang et al., 2016), the result of the immense size of the imaging data,
necessitated the design of more efficient automated spinal analysis.

Therefore, we propose a novel, robust automatic three step cascaded method, composed
of ridge backbone detection, Hu moment invariants (HuMI) for feature extraction and
twin SVM for spinal type classification. This paper is thus organized into the following
sections: Section 1: Research importance and impact statement and an introduction of
current research and progress. Section 2: Methodology used in the paper, including image
preprocessing, ridge-based backbone extraction, Hu moments based feature extraction
and Twin SVM based classification. Section 3: Results and discussion of our proposed
algorithm. Section 4: Conclusion and discussion of ongoing work.

METHOD
Our proposed approach begins with a morphological operation to remove the small
jiggers as the noise for the backbone extraction. Next, the curvilinear structure detector is
implemented to isolate the dendritic backbone. The dendritic boundary is then obtained
by creating sharp density differentiation. Finally, Twin SVM classifies the spines as pseudo
or positive—with positive spines being sub-classified by shape (mushroom, stubby or
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thin (Nimchinsky, Sabatini & Svoboda, 2002)) according to their Hu Moments invariants
features (Hu &Mingkuei, 1962). Figure 1 shows a flowchart of our proposed approach.

Image acquisition
The cortical neurons used for imaging initiated from the embryonic (E) 18th day rat.
Neurons were cultured in vitro until day 22. Finally, Green fluorescent protein (GFP) was
transfected using Lipofectamine2000 by Lipofectamine 2000 and neuron was imaged on
day 24 by Leica SP5 confocal laser scanning microscopy (CLSM) with a 63X magnification.
The size of the image is 1,024 × 1,024 with a resolution of 0.24 µm/pixel at the confocal
layer. We added a white line in the figures to indicate the scale bar of 10micron by 41 pixels.

As the images were captured as a Z-stack series a 3D image stack was mapped onto the
ZX, YZ, and XY planes, respectively. However, the slices yielded limited information along
the optical (Z) and high computing burden. Therefore, only the projection onto the XY
plane was considered.

Image preprocessing
According to the imaging technique (Van der Walt et al., 2014), the photomultiplier tubes
(Ge et al., 2016) mainly introduced salt and pepper noise. Therefore, the 2D median filter
was used to reduce noise and a partial differential equation (PDE) was used to enhance
the image. Furthermore, in order to reduce the disturbance of the backbone extraction we
used the opening top-hat and majority operator to eliminate small jiggers.

The original gray image I (x,y) and the structure elements (SE) S(i,j) were then set. The
opening top-hat operator (Zhang et al., 2014) is defined as following:

I ◦S= (I2S)⊕S (1)

in which I ◦S is defined as function I executed the opening operation via SE ⊕ and 2 is
defined as the dilation and erosion respectively.

The majority operator is defined as:

P =

{
1, more than n positive pixels in its 3 by 3 window
0, otherwise

(2)

indicating that a pixel is considered to be part of themajor line if there aremore than n posi-
tive pixels in its 3*3window.Otherwise, the pixel’s noise informationmust be relegated to 0.

Ridge based backbone extraction
Along the pipeline of spine analysis the backbone detection is a critical step, underlining the
importance of finding an effective and robust backbone detection algorithm. In this section
we tried to use curvilinear structure detectors to find the dendritic backbone. One of the
most well-known curvilinear structure detection methods is to use the principal curves
proposed by Kegl & Krzyzak (2002) and Kegl et al. (2000), in which the curve is defined
as a line passing through the middle of the data in a certain sense. However, this method
was restrictive in that it assumed there would be single lines without self-intersection.
Considering that the dendrite has multiple branches, we followed the detector that extracts
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the curvilinear structure from the data of ridge curves by the density estimation—so-called
the ridge-based curvilinear structure detector. The multiple dendritic branches were
detected on the assumption that the branches were separated by low density areas. The
critical step then becomes the density estimation from the original image data. Here,
we employed the nonparametric estimation directly from the samples represented by
the observed variable X within a specific compact domain �εRd . First, the image was
normalized into binary image. We set T = 1 for the foreground clutter and T = 0 for the
background clutter.

The probabilities

D(T = 1)= η, and D(T = 0)= 1−η (3)

in which, η∈ [0,1]. We defined the generating function {fi}ni=1, i={1,2,3,3...n} with unit
length of parameters, where n represents the number of the dendrite. {fi}ni=1 depends on
two parameters i∈ {1,2,3,....,n}, θ ∈Di where Di is represented by the data samples along
each dendrite. The output of X depends on function fi and noise ε : Nd(0,σ 2).

Density

P(I = i)=wi (4)

in which wi> 0,
∑

wi= 1.

Dx(x|T = 1,I = i,2= θ)=
1

(
√
2πσ )d

exp

(
−

∥∥x− fi(θ)∥∥2
2σ 2

)
. (5)

We employmarginalized and the joint density to determine total density, which depends
solely on the observed sample point X .

Dx,T ,I ,(x,T ,i,θ)= Dx(x|T = 1,I = i,2= θ)DT ,I ,2(1,i,θ)

= Dx(x|T = 1,I = i,2= θ)D2(θ |I = i)DT ,I (1,i)

= Dx(x|T = 1,I = i,2= θ)D2(θ |I = i)D(I = i)D(T = 1) (6)

and

Dx,T ,I ,(x,0,i,θ)=Dx(x|T = 0)D(T = 0) (7)

in which, Dx,T ,I ,(x,0,i,θ), and 2 represent the joint density and axis along the specified
dendrite, respectively. When we summed the joint density over the domains of the discrete
random variable I and T (subsequently integrated over the domain of the continuous
variable 2), marginal density (Alghalith, 2016) that provides the probabilities of various
values of the variables in the subset without reference to the values of the other variables
could be determined as:

dx(x)=
ρ

(
√
2πσ )d

n∑
i=1

wi

∫
Di

exp

(
−

∥∥x− fi(θ)∥∥2
2σ 2

)
D2(θ |I = i)dθ+

1−η
V (�)

(8)

in which V (�) is the volume of domain �.
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The kernel density estimation was then used, which could be determined from a set of
samples Y ={yi}Ni=1⊂R2 of the probability density D:

D̂=
1
N

N∑
i=1

KH (x−yi) (9)

in which KH is the Gaussian function (Cecchin et al., 2015) with a symmetric and positive
kernel bandwidth in the domain R2

→ [0,∞], and H ∈R2×2.
We assumed that the ridge was present in the area of high probability density. Thus, the

dendrites were thought to be separated by a low density area. The ridge points (Micheal,
Vani & Sanjeevi, 2014) were determined based on the principal that modes lie on a ridge
curve. Accordingly, we first found modes of D̂, and constructed the ridge point sets passing
through these modes by using them as initial points. The algorithm is listed in the following
steps:
Step 1: The modes of D̂ are obtained by establishing the local maximum from each sample
point.
Step 2: Step1 is iteratively applied to find the ridge curve components.
Step 3: The ridge curve segments are traced based on the following Eq. (10) adapted to the
initial value as

d
dθ

(
P(x(θ))∇2D(x(θ))

∇D(x(θ))
‖∇D(x(θ)) ‖

)
= 0, x(0)= x0. (10)

Step 4: A given point is projected onto the n-dimensional ridge set of D̂, which is the
density estimate.
Step 5: The ridge curve sets are separated by a low density area with a threshold of the
density value ϑ .

The spurs caused by the connected spines were excluded based on the observation that
there was only one exact main ridge curve structure passing through an intersection point.
The proposed method spitted any other ridge curve components passing through such a
point.

Boundary location based on the density invariance
The local line direction was determined via the 2nd directional derivatives of the image
(Zamani et al., 2012). Along the two directions perpendicular to the local line, the sharp
difference of the density is thought to be the boundary of the dendrite based on the gray
scale image.

The density of each pixel is given I (p) of point (x , y) in the original image, and α is the
predefined pixel intensity value:

if

{
I (p)≥α,p belongs to the line pixel
I (p)<α,p does not belong to the line pixel.

(11)

Wang et al. (2016), PeerJ, DOI 10.7717/peerj.2207 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.2207


Hu moment invariants based feature extraction
In order to establish biological significance, it is essential to characterize the shape of the
spinal structures. Spines are historically classified into three categories based on the shape
of specific structures, including the spinal neck and head. Therefore, shape descriptors are
critical for spinal classification and quantitative analysis. In this paper we employ a shape
descriptor designated as the image moment. For a 2D Neuron image I (x,y), we define the
raw moment of order (p+q) as

Mpq=
∑
x

∑
y

xpyqI (x,y) (12)

where p, q= 0, 1, 2, . . . .
Central moment: In practice, the central moments µ are usually utilized to replace the

raw moment in Eq. (13)

µpq=
∑
x

∑
y

(x− x̄)p(y− ȳ)qI (x,y) (13)

x̄ =
M10

M00
, ȳ =

M01

M00
. (14)

Central moments are translational-invariant.
Normalized central moment:When dividing the corresponding central moment by the

properly scaled (00)th moment, Central moments can be extended to be both scale and
translation invariant, The division was called normalized central moment.

ηpq=
µpq

µ

(
p+q
2 +1

)
00

. (15)

Humoment invariants: In order to allow for invariable rotation the above moments
were reformulated. There are two different methods for producing rotation moment
invariants described byHu &Mingkuei (1962). The first method is principal axes. However,
when images do not have unique axes that are rotationally symmetrical, the first can be
broken down. The second method is Hu moment invariants (HuMI). Hu derived these
equations from algebraic invariants and applied them to the moment generating function
under the condition of a rotation transformation. They consist of a set of nonlinear
centralized moment (NCM) equations as

H1= η20+η02

H2= (η20−η02)2+4η211
H3= (η30−3η12)2+ (3η21−η03)2

H4= (η30+η12)2+ (η21+η03)2

H5= (η30−3η12)(η30+η12)[(η30+η12)2−3(η21+η03)2]
+ (3η21−η03)(η21+η03)[3(η30+η12)2− (η21+η03)2]

H6= (η20−η02)[(η30+η12)2− (η21+η03)2]+4η11(η30+η12)(η21+η03)
H7= (3η21−η03)(η30+η12)[(η30+η12)2−3(η21+η03)2]

− (η30−3η12)(η21+η03)[3(η30+η12)2− (η21+η03)2].

(16)
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It has been clearly observed that HuMI consist of absolute orthogonal (i.e., rotation)
moment invariants which can be used for rotation, translation and scale invariant pattern
recognition (Noronha & Nayak, 2013; Xiang et al., 2014; Žunic & Žunic, 2013).

Twin SVM based spine classification
We did not use artificial neural network (Hernandez-Serna & Jimenez-Segura, 2014) since
it may suffer from overfitting. The principle of the standard SVM involves setting up two
parallel planes so that each is nearest to one of two datasets with the two planes being as
far apart as possible (Kim et al., 2015; Modinos et al., 2013; Wu & Zhang, 2012; Zhang &
Wang, 2015). The planes are described as

wTx+b= 0 (17)

which lie midway between the bounding planes provided by

wTx+b= 1 and wTx+b=−1. (18)

The goal of the standard SVM is to maximize the margin in the form as

Min
w,b

1
2w

Tw

subject to Aiw ≥ 1−b for yi= 1 and Aiw ≥ 1−b for yi=−1.
(19)

Jayadeva, Khemchandani & Chandra (2007) proposed a Twin SVM (TSVM) that
generated a pair of nonparallel planes for data classification, instead of two parallel
planes via the standard SVM. However, in TSVM it was necessary to solve two quadratic
programming problems, with one in SVM. Reports indicated that TSVM had better
performance with regards to for classification and run time than did standard SVM.

The TSVM classifier is implemented by solving the following two quadratic
programming problems

Min
w(1),b(1),q

1
2(Aw

(1)
+e1b(1))T (Aw(1)

+e1b(1))+ c1eT2 q

subject to− (Bw(1)
+e2b(1))+q≥ e2,q≥ 0

(20)

Min
w(2),b(2)q

1
2(Bw

(2)
+e2b(2))T (Bw(2)

+e2b(2))+ c2eT1 q

subject to− (Aw(2)
+e1b(2))+q≥ e1,q≥ 0

(21)

in which c1,c2 > 0 are parameters, and e1,e2 are vectors of those with appropriate
dimensions.

The TSVM sets up a hyper-planes for each class and classifies a sample according to
which hyper-plane any given point is closest to relative to Euclidean distance. TSVM
attempts to find the minimal squared distance based on Eq. (21) , which requires keeping
the hyper-plane near to the points of one class. Simultaneously, a hyper-plane is required to
be at a certain distance from the other class. Should the hyper-plane fall within predefined
distances, a set of error variables is used to measure the error in the form of Eq. (19) . In
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order to improve the classification accuracy we employed the kernel nonlinear classifier
Eqs. (22)–(23) to generate surfaces instead of planes as Eqs. (20)–(21).

Min
U (2),b(2),q

1
2

∥∥(K (B,CT )u(2)+e2b(2))
∥∥2+ c1eT1 q

subject to (K (A,CT )u(2)+e1b(2))+q≥ e1,q≥ 0
(22)

Max
γ

eT1 γ −
1
2
γ TL(N TN )−1LTγ

subject to 0≤ γ ≤ c2
(23)

in which L=
[
K (A,CT ),e1

]
,N =

[
K (B,CT ),e2

]
.

The advantage of the TSVM is that it can be up to four times faster than the traditional
SVM depending on computation size. In addition, TSVM has better generation than the
traditional SVM.

EXPERIMENT RESULTS AND DISCUSSION
The experiments were performed on an IBM with a 3 GHz core i3 processor and 8 GB
of RAM running a Windows 7 operating system. The algorithm was developed in-house
using Matlab 2014a without optimization (MathWorks, Natick, MA, USA). The average
runtime for a 1,024 × 1,024 image was 0.43s on a computer with a 3 GHz processor. This
speed can be increased 10–100 times in C++ with optimization.

Backbone extraction and dendrite location
Figure 3 shows different cases of the backbone extraction based on the ridge detection and
boundary location via the density difference. The purple color indicates the backbone, and
the red color indicates the boundary. Figure 3A show the dendrite location result with
multiple branches. Figures 3C and 3D show a single dendrite with one branch. Figures 3E
and 3F show a single dendrite with another one branch dendrite. Figures 3G–3J respectively
provide one single dendrite. Figure 3 proves that the backbone extraction based on the
ridge detection and boundary location based on the density difference is effective.

Spine analysis
Figures 4A–4E illustrate the spine detection results of the sub-images for the condition
in which that the dendrite backbone and boundary are marked. The pseudo spines were
excluded based on the TSVM. After the dendrite and backbone were detected, our first
step was to apply the Hu moment. We extracted the features of the remaining connected
components and classified them as either true spines or pseudo-spines. Figure 4 shows two
Examples of the pseudo spines, marked by a purple circle.

Table 1 shows the quantities data corresponding to Figs. 4A–4E. As we can find from
Table 1, the total length of the dendrite, the number, total length and the area of the spines
are recorded for the statistics analysis to reach the biology meaning.

Figure 6 demonstrates that the area and length have similar distributions. For the
normalization, L represents for largest value for the smallest area and R for the true value
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Figure 2 Flow chart of our proposed approach.

Table 1 Quantities analysis of the dendrite and spiness.

Total length of
the dendrite (µm)

The number
of the spine

Total length of the
spines (µm)

Total area
of the spines

Figure 4A 282.1 31 116 31.8
Figure 4B 160.2 13 37.9 9.6
Figure 4C 220.6 22 56.0 15.1
Figure 4D 166.2 13 46.0 12.8
Figure 4E 130.2 11 41.7 13.0

of the spine It is provided as:

N =
R

L−S
. (24)

Finally, The TSVM was utilized to classify the positive spines into predefined categories-
MushRoom, Stubby and Thin-using the seven extracted Hu features. Table 2 shows the
classification result for the pictures in Fig. 4. The average computation of the classification
is 0.0012 s for 20 spines. The classification accuracy can reach 99%. Table 3 shows the
Spine classification statistical results, we can find that the ‘‘MushRoom’’ type takes the vast
majority of all the spines in our dataset followed by the ‘‘Thin:’’ types.
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Figure 3 Results of backbone extraction and boundary location.
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Figure 4 Spines detection results.

Figure 5 Examples of pseudo spines.

Comparison of detection rate
We compared our proposed methods with Su’s algorithm and the manual mark. We
randomly selected six images which include about 2,000 spines from the dataset and tested
the accuracy. Figures 7 and 8 show two image examples to demonstrate the result of spine
detection based on different methods, including via manual mark, Su’s method and our
proposed RTSVM.
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Figure 6 Distribution trend of the spine area and length of Figs. 4A and 4C.

Table 2 Classification rate of spines.

MushRoom Stubby Thin

Figure 4A 13 8 10
Figure 4B 4 4 5
Figure 4C 8 4 10
Figure 4D 6 3 4
Figure 4E 5 3 3

Table 3 Spine classification statistical results (%).

Spine type MushRoom (%) Stubby(%) Thin(%)

RTSVM 46 22 32
Manual 39 24 37

Table 4 shows the number of detected spines based on above three methods. For the
first image (ROI_1), the detected number is 33, 25, and 29; for the second (ROI_2) is 28,
22, 23, respectively. It should be noted, however, that the manual method is vulnerable to
mistaking as spines pixels belonging to the dendrite. Thus, it will have a much higher false
alarm rate than the other methods. Conversely, Su’s method missed some positive spines
due to the blurred dendrite boundary.

Comparison of the classification
We employed traditional support vector machine (SVM), generalized eigenvector proximal
support vector machine (GESVM) and Twin support vector machine (TSVM) for the spine
classification. Table 5 shows the classification result based on different SVMs for ROI_
1 and ROI_ 2. We can find from Table 5 that GEPSVM and traditional SVM obtain
similar classification results and are different from the results of TSVM. TSVM has
better performance in the term of classification accuracy when compared to the ground
truth (MushRoom 21, Stubby 12, Thin 19), which is provided by five experts in the
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Figure 7 Spine detection result of ROI_ 1 via (A) Manual (B) Su’s method (C) RTSVM.

Figure 8 Spine detection result of ROI_ 2 via (A) Manual (B) Su’s method (C) RTSVM (our).

Table 4 Number of detected spine via Manual, Su’s method and RTSVM.

Manual Su’s method RTSVM

ROI_ 1 33 25 29
ROI_ 2 28 22 23

neuroscience field who manually classified the spines into three predefined categories
including ‘‘Mushroom,’’ ‘‘Stubby’’ and ‘‘Thin’’ according to the human vision by using
Photoshop. For the conflict of the manual marking, the minority was supposed to
subordinate to the major. Meanwhile, the computation time is much faster via TSVM
than other two methods, which is 0.0015 s for the 52 spines instead of 0.007 s and 0.0054 s
respectively by SVM and GESVM.

Meanwhile, we compared our classification results based on the TSVM and Su’s
algorithm. The result is shown in Table 6. We can find that our method obtain better
classification result than Su’s algorithm (Su et al., 2014) based on the ground truth.

CONCLUSION
This paper proposed a method based on the ridge detection for dendrite backbone and
TSVM for the classification. The steps of the process were as follows: first a ridge curve
was employed to extract the backbone of the dendrite. Then we used the sharp density
difference to locate the boundary of the dendrite and the presumed starting points of the
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Table 5 Comparison of classification via different SVMs for ROI_ 1 and ROI_ 2.

MushRoom Stubby Thin

SVM 18 10 24
GEPSVM 18 11 23
TSVM 20 13 19

Table 6 Comparison of classification via TSVM and SuâĂŹs algorithm for ROI1 and ROI2.

MushRoom Stubby Thin

TSVM 20 13 19
Su’s algorithm 18 19 15

spines. Then TSVM classifier was built based on the seven spine features extracted by Hu
moments invariant. The experiment demonstrated that the system is effective and efficient.
The backbone extraction results show that the ridge detection performs well for curvilinear
structures in the context of noisy data. We classified spines in terms of pseudo- vs. true
spines, and also in terms of predefined categories of spines. In both cases, TSVM performed
better than standard SVM and GEPSVM and demonstrated faster running times.

A major contribution of this paper is the development of a robust and efficient system
for dendrite and spines analysis. Given that statistical analysis of neuronal structure is
important for advancement in the fields of biology, and that large amounts of data are
available due to advancements in imaging techniques, such a system is invaluable.

A limitation of this paper is that did not obtain data from all kinds microscopy images.
In theory, the proposed system should work well for all types of microscopy. A second
limitation is that the resolution is defective. Further improvements in imaging techniques
will enhance the performance of our system.

We plan to continue our experiments, collect more data from different types of
microscopy, and build a large database which can be used for the test of our system.
We also need to optimize our algorithm to further improve accuracy and speed by latest
swarm intelligence methods, such as biogeography-based optimization (Ji et al., 2015) and
particle swarm optimization (Ji, Zhang & Wang, 2015). A human interface is also essential
for the wide application of the system. New partial differential equations (Lopez Corona et
al., 2014) are to be tested.
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