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Linearized encoding models are increasingly employed to model cortical responses

to running speech. Recent extensions to subcortical responses suggest clinical

perspectives, potentially complementing auditory brainstem responses (ABRs) or

frequency-following responses (FFRs) that are current clinical standards. However,

while it is well-known that the auditory brainstem responds both to transient

amplitude variations and the stimulus periodicity that gives rise to pitch, these features

co-vary in running speech. Here, we discuss challenges in disentangling the features

that drive the subcortical response to running speech. Cortical and subcortical

electroencephalographic (EEG) responses to running speech from 19 normal-hearing

listeners (12 female) were analyzed. Using forward regression models, we confirm that

responses to the rectified broadband speech signal yield temporal response functions

consistent with wave V of the ABR, as shown in previous work. Peak latency and

amplitude of the speech-evoked brainstem response were correlated with standard

click-evoked ABRs recorded at the vertex electrode (Cz). Similar responses could

be obtained using the fundamental frequency (F0) of the speech signal as model

predictor. However, simulations indicated that dissociating responses to temporal fine

structure at the F0 from broadband amplitude variations is not possible given the high

co-variance of the features and the poor signal-to-noise ratio (SNR) of subcortical EEG

responses. In cortex, both simulations and data replicated previous findings indicating

that envelope tracking on frontal electrodes can be dissociated from responses to slow

variations in F0 (relative pitch). Yet, no association between subcortical F0-tracking

and cortical responses to relative pitch could be detected. These results indicate that

while subcortical speech responses are comparable to click-evoked ABRs, dissociating

pitch-related processing in the auditory brainstem may be challenging with natural

speech stimuli.
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1. INTRODUCTION

Subcortical responses to sound measured with
electroencephalography (EEG) have traditionally relied on
evoked responses to short stimuli averaged over thousands of
repetitions. Numerous studies have more recently used linear
stimulus-response models to quantify neural tracking of running
natural speech or other naturalistic stimuli in the cortex (Lalor
et al., 2009; Ding and Simon, 2012; Di Liberto et al., 2020;
Kulasingham et al., 2020; Kurthen et al., 2021). These efforts
have now been extended to the subcortical auditory system
(Forte et al., 2017; Maddox and Lee, 2018; Etard et al., 2019;
Polonenko and Maddox, 2021; Van Canneyt et al., 2021a,b,c),
leveraging the fact that EEG responses to fast acoustic variations
are dominated by subcortical sources (Bidelman, 2018; Saiz-Alía
and Reichenbach, 2020). The idea of using deconvolution to
model brainstem EEG responses has previously been proposed
in the context of evoked responses, i.e., stimulus-triggered
averages with multiple repetitions of short sounds (Elberling,
1978; Dau, 2003). Goldstein and Kiang (1958) introduced the
concept that the measured electrode response in the far-field
can be understood as the convolution of a unit waveform
with the underlying neural population activity. To estimate a
“unitary response” function at the brainstem level, Dau (2003)
deconvolved measured click-evoked ABRs at 60 dB SPL (sound
pressure level) with simulated auditory nerve activity obtained
from a computational auditory nerve model. The unitary
response function was then used to model both ABRs and FFRs
for different stimulus and level conditions beyond those used to
estimate the response function. Lalor et al. (2009) later suggested
that response functions can similarly be estimated for running
stimuli like speech, by deconvolving unaveraged electrode
responses with the amplitude envelope of the continuous
stimulus (Lalor and Foxe, 2010).

The ability to measure subcortical responses to running

speech has a number of appealing perspectives in auditory
neuroscience as well as in clinical audiology. In contrast to

listening to repeating and thus highly predictable short sounds,

listening to running speech is a relevant task in daily life. It
enables more naturalistic listening experiments where results are
potentiallymore transferable to real-life situations (Hamilton and
Huth, 2020). Using speech, cognitive top-down processes that
may not play a role for short isolated syllables can potentially
be addressed. It yields possibilities for investigating subcortical
effects of language learning, differences between languages,
or assessing responses to pitch contours in their semantic
context (Llanos et al., 2021). Measuring distinct subcortical
responses to different speech features would not only help
to shed light on the nature of neural auditory information
processing mechanisms in the midbrain, but might also offer new
perspectives for clinical intervention. For example, perceptual
weighting of envelope and pitch cues for perceiving lexical
tones may change with hearing impairment (Wang et al., 2011),
and distinct neural readouts may support tailoring hearing
solutions to listeners’ needs. Furthermore, simultaneous EEG
measures of both subcortical and cortical responses to the
same naturalistic speech stimulus can potentially be used to

investigate interactions along the auditory pathway. This way,
speech processing from fundamental to higher-order aspects
can be studied with the same data (Brodbeck and Simon,
2020). Changes in the interaction between peripheral and central
auditory processing may be particularly relevant in the study of
aging (Bidelman et al., 2014) and hearing loss (Presacco et al.,
2019).

However, running speech also comes with the challenge of
dissociating the features driving the measured neural response
(Hamilton and Huth, 2020). Many relevant features co-vary
in natural speech, challenging the interpretation of stimulus-
response models. Previous studies of subcortical EEG responses
to running speech have focused on different acoustic features
of the speech signal. Maddox and Lee (2018) used the half-
wave rectified broadband speech signal to predict the running
subcortical EEG via linear regression. They showed a high degree
of consistency between speech-derived response functions and
conventional click-evoked ABRs. In particular, speech-ABRs
showed a prominent peak at latencies corresponding to wave
V of conventional click-ABRs (6.17 ± 0.31 ms). Polonenko
and Maddox (2021) further showed that when the glottal pulse
train is used for response estimation, speech resynthesized to
have sharp peaks in the pressure waveform additionally yielded
earlier wave-I-like components in the speech-ABR. Forte et al.
(2017), on the other hand, examined subcortical responses to the
F0 of running speech signals. To model the stimulus-response
relation, they computed the cross-correlation between both a
periodicity feature (an extracted F0 waveform) as well as its
Hilbert transform and the EEG. These were treated as the real and
imaginary parts of a complex cross-correlation function, and the
magnitude was interpreted as the neural response. Peak latencies
occurred around 6–10 ms, corresponding to latencies observed
with short periodic stimuli like speech syllables or tones (Skoe
and Kraus, 2010). In a later study, Etard et al. (2019) instead
simply applied a band-pass filter around the F0 of the speech
signal and obtained similar results as Forte et al. (2017). Van
Canneyt et al. (2021c) similarly used F0 band-passed speech
and regularized linear regression (rather than cross-correlation)
to predict the running EEG signal. They found different early
response peak latencies for their four female- (12.29, 10.24, 10.24,
7.17 ms) and two male-narrated (13.31, 14.34 ms) stories (Van
Canneyt et al., 2021c), suggesting an influence of F0 on response
latency. Thus, the studies of Forte et al. (2017) or Etard et al.
(2019) focusing on subcortical pitch-related processing reported
response peak latencies comparable to the speech-ABR studies
of Maddox and Lee (2018) or Polonenko and Maddox (2021).
However, the responses also showed qualitative differences.
While Maddox and Lee (2018) obtained an ABR-like waveform
morphologically similar to click-ABRs, Forte et al. (2017), Etard
et al. (2019), and also Van Canneyt et al. (2021c) showed F0-
responses with broader response peaks at later latencies.

Together, these results indicate that modeled measures of
speech tracking in the auditory brainstem are consistent with
known evoked response measures. However, the approaches
differ both in terms of the considered speech features and the
applied stimulus-response analysis. It therefore remains unclear
whether observed differences in response waveforms stem from
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these methodological decisions highlighting different parts of the
same underlying response, or indicate that distinct responses
to pitch can be extracted. It is commonly accepted that the
auditory brainstem responds to both the temporal fine structure
of periodic stimuli (as reflected in FFRs) and to broadband
amplitude variations in transient stimuli (as reflected in click-
ABRs). Yet, these features are highly correlated in natural speech
and might not be dissociable given the relatively low SNR of
subcortical EEG measurements.

While the exact pitch processing mechanisms along the
central auditory pathway remain debated, neuronal firing
intervals matching the fundamental period of periodic sounds
has been proposed as a temporal representation of pitch in the
auditory nerve and brainstem (Hewitt and Meddis, 1992; Cariani
and Delgutte, 1996; see e.g., Oxenham, 2013 for an overview).
To probe pitch-related processing in the auditory brainstem,
FFRs to periodic stimuli are often used (Krishnan et al., 2010;
Bidelman and Krishnan, 2011; Krishnan and Gandour, 2017).
The FFR elicited by harmonic sounds is argued to be predictive of
speech-in-noise performance (Anderson et al., 2011, 2013), and
speech understanding in reverberation (Fujihira and Shiraishi,
2015). Tonal language speakers show stronger FFR responses
to lexically relevant changes in the F0 track (Krishnan et al.,
2005; Krishnan and Gandour, 2017). Phase-locked activity in the
brainstem to the F0 has been observed for missing-fundamental
stimuli, i.e., stimuli that elicit a pitch percept despite the
absence of energy at the F0 (Smith et al., 1978; Galbraith,
1994). This might indicate that F0-tracking at the level of the
brainstem reflects a pitch-extraction mechanism. It remains
unclear, however, whether pitch processing in the brainstem can
be investigated with running speech where pitch co-varies with
other acoustic features.

In the cortex, recent studies have also investigated pitch
tracking with running speech (Tang et al., 2017; Teoh et al., 2019;
Li et al., 2021; Llanos et al., 2021). In a recent electrocorticography
study, Tang et al. (2017) showed cortical tracking of relative pitch
contours by high-gamma band activity. The cortical tracking
of the relative changes in slowly varying F0 contours (rather
than its temporal fine structure) was also shown by Teoh et al.
(2019) using low-frequency EEG responses to running speech.
To dissociate pitch and envelope processing, Teoh et al. (2019)
used model comparisons and showed that adding relative pitch
(a normalized F0 trajectory) to a regression model of the low-
passed envelope improved prediction of the running speech
EEG. Tracking of the relative pitch was absent for noise-vocoded
stimuli. Yet, it remains unclear whether a similar dissociation of
responses to the temporal fine structure of F0 can be achieved in
the brainstem.

In this study, we compared neural responses to different
pitch-related features of running speech with the aim to shed
light on the current ambiguities. Specifically, we compared
models of subcortical responses to running speech with either
F0 periodicity or with the broadband waveform of the speech
signal. We also examined the degree to which cortical responses
to slowly varying pitch contours of the speech signal can
be dissociated from cortical envelope tracking as reported in
recent work.

2. METHODS

2.1. Data Acquisition
Participants listened to an audio book and click trains while their
neural activity was recorded with an EEG system. Data from 20
(13 female) young native Danish speakers without any history of
psychiatric or neurological diseases were recorded. Participants
were required to have pure-tone thresholds better than 25 dB
hearing level in both ears (measured at standard audiometric
frequencies: 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, and 8 kHz),
and professional musicians were excluded. The data from one
participant that did not match these criteria was excluded
from further analysis, after which the participant sample
consisted of 19 (12 female) people (Mage = 23.13 ± 2.30). All
henceforth reported statistics focus on the included participants.
Each participant provided written informed consent, and all
experiments were approved by the Science-Ethics Committee for
the Capital Region of Denmark (reference H-16036391).

Measurements were conducted in a soundproof, electrically
shielded listening booth. Participants were seated in a
comfortable chair in front of a computer screen. Experiment
presentation and data acquisition were controlled from outside
the booth. The audio book was presented at 65 dB SPL through
ER-2 insert earphones (Etymotic Research), with a sampling
frequency of 44.1 kHz. Delay from trigger to transducer activity
was 0.18 ms, and the distance from the transducers to the ear
drums caused an additional presentation delay of 0.87 ms. The
total delay of 1.05 ms was accounted for in the analysis. The
beginning of the Danish version of Lord of the Flies by William
Golding, read by a male narrator with a F0 of around 107Hz, was
used as audio book. Longer pauses in the audio book recording
were restricted to 450 ms, and the recording was cut into trial
segments of 50 s duration. The experiment consisted of 36 trials.
To ensure that participants attended the story, three multiple-
choice questions were asked after every trial. For each segment,
one of the three comprehension questions was presented to the
participant prior to listening to the segment. Accuracy on these
control questions was above 80% for all included participants
(Mcorrect = 91.13%± 4.28%). To familiarize themselves with the
experimental procedure, participants completed a short training
session consisting of two trials before starting the experiment.
Data from the training session were not included in the analysis.
The experiment was implemented using the Psychtoolbox
(Kleiner et al., 2007) in Matlab (The MathWorks Inc., 2015).

To compare speech EEG recordings with standard ABRs (e.g.,
Maddox and Lee, 2018), click-ABR responses were obtained after
the speech experiment. A 10 Hz click train with alternating
polarities was presented at 93 dB peak-to-peak equivalent SPL
for 5 min, resulting in 3’000 click repetitions. A rectangular click
shape with a duration of 80 µs (Garret and Verhulst, 2019) was
used, and no jitter was applied to the click train.

The EEGwas recorded using the Active Two system (BioSemi)
with a sampling rate of 16’384 Hz. Electrical potentials were
measured from 32 scalp electrodes placed according to the 10–
20 system, and 4 external electrodes placed on the left and right
mastoid bones, as well as and over and below the right eye to
measure the electrooculogram (EOG).
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FIGURE 1 | Processing pipeline of the audio and EEG in the subcortical

speech response analysis. Processing steps that are identical for the

broadband and the F0 band-passed features are shown in gray. Processing

steps only applied for the broadband or the F0 band-passed approach are

indicated with light blue (dotted line), and darker blue (dashed line),

respectively. Apart from the different stimulus-response models, the two

approaches mainly differ in that a half-wave rectification is applied for the

broadband approach, and a 240 Hz low-pass filter is applied for the F0

band-passed approach.

2.2. Speech Feature Extraction and EEG
Preprocessing
In general, EEG and audio signals were preprocessed with
equivalent filters whenever possible (see Figure 1), to avoid
introducing differences potentially affecting the analysis.
Processing was done in Matlab (The MathWorks Inc., 2020)
using the FieldTrip Toolbox (Oostenveld et al., 2011). The data
was first visually inspected, and electrode channels showing
extreme activity indicating artifacts were excluded from the
analysis (Mexcl = 0.84± 1.11 channels).

2.2.1. Subcortical Responses

As later and larger cortical components could have an impact on
early responses, only causal filters were used on the EEG data
(Maddox and Lee, 2018). The EEG was first re-referenced to
the mastoid channels, and the data were segmented according
the experiment trials. For one participant with noisy mastoid
channel recordings, EEG was instead re-referenced to the close-
by cap electrodes (T7 & T8). Both the audio and the EEG were
then down-sampled to 4’096 Hz by first applying a causal anti-
aliasing filter at 1’638 Hz (audio: one-pass zero-phase hamming-
windowed sinc FIR corrected for filter delay, order 356, transition
width 409.6 Hz; EEG: with the exception of a filter order of 132
to account for the difference in original sampling rate, the same
filter design parameters were used). The EEG signal was then
down-sampled by a factor of 4 (to 4’096 Hz) by taking every 4th
sample. For one participant wrongly recorded at a sampling rate

of 2’048 instead of 16’384 Hz, data was up-sampled usingMatlab’s
resample function (anti-aliasing filter order of 34, otherwise same
filter design parameters as described above). The audio was re-
sampled to 4’096 Hz using the resample function. After down-
sampling, a high-pass filter of 80 Hz was applied to both the audio
and the EEG data (one-pass zero-phase hamming-windowed sinc
FIR controlled for filter delay, order 676, transition width 20 Hz)
to limit cortical contributions (Bidelman, 2018). The audio and
EEG were further processed in two separate ways to analyse
responses to F0 or to the broadband amplitude envelope. For the
F0 filter, the audio and EEG were filtered with a 240 Hz low-
pass filter (one-pass zero-phase hamming-windowed sinc FIR
controlled for filter delay, order 226, transition width 60 Hz).
For the broadband response, the audio was instead half-wave
rectified and no further filtering was applied. To discard possible
filtering artifacts, the first and last seconds were cut from all
processed signals.

The click-ABR data were pre-processed similarly to the speech
data. After the exclusion of bad electrode channels, the data
were re-referenced to the mastoid electrodes, cut into trials, and
down-sampled as was done for the speech data. However, before
applying the 80 Hz high-pass filter, a line noise filter was applied
(discrete fourier transform filter at 50, 100, and 150 Hz with
bandwidths of 1, 2, and 3 Hz, respectively). Then, trials with
voltages exceeding 20 µV were interpreted as including artifacts
and excluded (Mexcl = 1.87 ± 6.14% of trials). Before averaging
the ABR, every trial was divided by its variance.

2.2.2. Cortical Responses

For the cortical analyses, the EEG data were re-referenced to
the mastoids, before re-sampling to 64 Hz (anti-aliasing filter
at 30 Hz: one-pass zero-phase hamming-windowed sinc FIR
controlled for filter delay, order 7210 (902 for the participant
recorded at lower sampling rate), transition width 7.5 Hz).
The EEG data was then high-passed at 0.5 Hz (one-pass zero-
phase hamming-windowed sinc FIR controlled for filter delay,
order 212, transition width 1 Hz) before trial segmentation
and using the EOG electrodes for eye movement removal with
joint decorrelation (de Cheveigné and Parra, 2014) following
Wong et al. (2018). Finally, the EEG data were band-pass filtered
between 1 and 9 Hz (high-pass filter: one-pass zerophase, order
106, transition width 2 Hz; low-pass filter: one-pass zero-phase,
order 94, transition width 2.2 Hz).

For the audio, we compared responses to the low-pass filtered
speech envelope and to relative pitch (Teoh et al., 2019). The
relative pitch feature is the relative F0 trajectory. The YIN
algorithm (Cheveigné and Kawahara, 2002) was used to compute
F0 estimates at every sample (limited to frequencies ranging
between 80 and 240 Hz), after which z-scoring was applied. The
envelope speech feature was extracted in a manner similar to
Fuglsang et al. (2020). The presented audio signal was first re-
sampled to 12 kHz (anti-aliasing filter at 6 kHz, two-pass zero-
phase, order 98), before a gamma-tone filterbank was applied
to extract 24 filter bands from 100 Hz to 4 kHz. The outputs
of the filterbank were then rectified and compressed by a factor
of 0.3, before averaging over the bands. The resulting signal was
further down-sampled in two steps, first to 512 Hz (anti-aliasing
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FIGURE 2 | Speech stimulus (A) and audio features (B–E) used as model

predictors in the different analyses. Half-wave rectified high-passed (80Hz)

broadband (B) and band-passed from 80 to 240 Hz, around F0 (C), features

were used for modeling subcortical activity. Low-frequency changes in speech

amplitude (D) and the relative F0 trajectory (E) for modeling cortical activity.

Amplitude and F0 values were z-standardized prior to plotting.

filter at 256 Hz, two-pass zero-phase, order 620), and second to
64 Hz (anti-aliasing filter at 30 Hz, two-pass zero-phase, order
226). As a last step, the signal was band-pass filtered between 1
and 9 Hz (high-pass filter: two-pass zero-phase, order 106; low-
pass filter: two-pass zero-phase, order 94). All speech features and
processed EEGwere z-scored at the trial level before entering into
the analysis. An overview over all speech features is depicted in
Figure 2.

2.3. Analysis
Speech responses were analyzed using forward encoding models
that map between the auditory stimulus features and the EEG
response. Unless otherwise stated, the models were estimated
using linear ridge regressions (Tikhonov and Arsenin, 1977),
or special cases thereof. With a ridge regression, the regression

weights β are estimated as:

β̂ = (X′X + λI)−1(X′Y) (1)

where X is the time-lagged stimulus feature, λ is a regularization
parameter, and Y is the neural response data for a given EEG
channel. The regression weights β yield a temporal response
function (TRF) that can be interpreted as the stimulus-evoked
impulse response from a neural population (Lalor et al., 2009;
Ding and Simon, 2012; Crosse et al., 2021). When fitting the
regularization parameter in the cortical response analysis, a 3-
way nested cross-validation procedure was used in which the
data were split into training, validation and test sets as described
in Fuglsang et al. (2020). The λ parameter was fit to yield
optimal correlation on the training (25.92 ± 0.63 trials) and
validation (6.48± 0.50 trials) set, a procedure which was repeated
5 times before choosing the optimal λ value. Then, the prediction
accuracy was computed on the independent test set (3.60 ± 0.49
trials). This procedure was repeated 10 times, and the estimated
regression weights were averaged. The cortical ridge regression
model was computed over lags from –312 to 812 ms, and λ was
fitted for lags spanning from 47 to 266 ms.

For the subcortical response analyses, we followed previous
studies to facilitate comparison. Following Maddox and Lee
(2018), the EEGwas regressed onto the broadband rectified audio
without regularization, i.e., setting λ to 0. Without the need to
fit the regularization parameter, the TRF prediction accuracy was
simply evaluated using leave-one-trial-out cross-validation. The
TRF was estimated for lags from –5.13 to 25.15 ms.

Responses to the F0 band-passed feature were estimated
using cross-correlation following e.g., Forte et al. (2017). In a
regression framework this corresponds to high regularization,
whereby the relative influence of the auto-correlation term X′X
in Equation (1) is minimized and the size of the coefficients
is reduced. Following Forte et al. (2017), the cross-correlation
was computed both for the F0 band-passed audio feature and
its Hilbert transform, and the terms were interpreted as the real
and imaginary part of a complex cross-correlation function. The
magnitude of this complex function was then interpreted as the
neural response.

For completeness, we also computed the cross-correlation for
the broadband feature, as well as the regression model for the F0
feature. As features may interact with model regularization (as
further discussed below) we investigated regression models both
without and with high degrees of regularization.

2.4. Response Peak Statistics
Response peaks for the subcortical analyses were extracted
between 5 and 11 ms, and cortical envelope and relative pitch
analyses in ranges 100–210 and 50–160 ms, respectively. For all
subcortical analyses, activity measured at the vertex electrode Cz
was analyzed, to mimic clinical ABR recording settings. For the
cortical approaches, the analysis was performed on the average
over six auditory-relevant frontal electrodes (FC1, FC2, FC5,
FC6, F3, F4; Di Liberto et al., 2015; Hjortkjær et al., 2018).
For each participant, the maximum of the response in the pre-
defined time window was interpreted as the response peak.
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One-tailed Pearson correlations between peak amplitudes and
latencies within participants were calculated. All presented p-
values were corrected for multiple comparisons according to false
discovery rate (FDR) following Benjamini and Yekutieli (2001).

2.5. Model Comparisons
A critical question was whether a unique contribution of
the different pitch and envelope-related features to the EEG
response can be separated. The F0 band-passed and broadband
audio features may be mutually correlated, making it difficult
to associate responses to unique variance. Following previous
studies (Di Liberto et al., 2015; Teoh et al., 2019), we investigated
this by combining features and computing the improvement
in prediction performance of the combined models relative
to models containing the individual features separately. If
the combined model significantly outperforms the individual
feature models, then both features may provide a unique
contribution to the prediction. For the subcortical features, we
thus regressed the broadband EEG on the broadband rectified
speech waveform, the F0 band-passed speech signal, or the
two features combined. To accommodate for the different
regularization parameters associated with the features, we fitted
the regularization parameter λ similar as described above for the
cortical analysis, but on time lags between 2.44 and 12.21 ms. In
the cortical analysis, we similarly combined the low-pass filtered
envelope and the relative pitch feature to investigate their relative
contribution (cf. Teoh et al., 2019).

2.6. Simulations
Model accuracy, however, depends on the SNR of the measured
neural response. To investigate the degree to which the unique
contribution of the considered features can be partialed out
over different SNRs, we further performed model simulations.
Data simulations were performed by adding noise with a
1/f distribution (EEG-shaped) at various SNRs to the speech
features, convolved with a predetermined TRF, and then
computing the regression analysis as described above. As results
remained unchanged when fitting regularization independently
for different regressors, regularization was fitted jointly within
combined models. Any increase in prediction performance of
the combined models were computed relative to the individual
feature models, as in the EEG data analysis. We also compared
individual feature models with combined models where a
feature was combined with a random Gaussian signal in
the simulated data. This allowed us to estimate the upper
bound of model improvement with uncorrelated features for a
given SNR.

3. RESULTS

3.1. Subcortical Responses
Subcortical responses obtained with the different speech features
and their topographies are presented in Figure 3A. We first
examined responses found by linearly regressing the running
EEG on the rectified broadband waveform of the running
speech signal (similar to Maddox and Lee 2018). TRFs for this

broadband signal (middle left panel) show a distinct wave-V-like
peak at 6.76–8.47 ms in latency. We compared these speech-
derived TRFs to standard click-evoked ABRs (Figure 3A bottom
left). Within individual subjects, the response peaks identified
with the broadband speech signal correlated with wave V in click-
evoked ABRs (5.38–6.36 ms) in terms of latency (p = 0.039,
ρ = 0.598), and amplitude (p < 0.001, ρ = 0.706). The complex
cross-correlation between the running EEG with the F0 band-
passed running speech signal (similar to Forte et al., 2017) is
shown in the top left panel in Figure 3A. The magnitude of
the complex cross-correlation function showed a peak at 5.05–
9.44 ms in latency. Peaks in this range were also correlated with
wave V of the click-ABRs within subjects in terms of amplitude
(p < 0.001, ρ = 0.760), but not latency (p > 0.05). Similarly,
responses to the broadband and the F0 band-passed speech were
mutually correlated in amplitude (p < 0.001, ρ = 0.744), but
not in latency (p > 0.05). For comparison, Figure 3B shows
responses to each of the two speech features (F0 band-passed
and the broadband signal) estimated with either regression or
the complex cross-correlation function. For regression, both the
unregularized, ordinary least squares and a highly regularized
solution is shown.

3.2. Distinct Tracking of F0?
While responses extracted by regressing the EEG onto the
rectified broadband speech waveform were consistent with ABR
wave V (Figure 3 mid and bottom), as previously reported
(Maddox and Lee, 2018), it remains unclear whether subcortical
tracking of the F0 periodicity from the running speech signal
can be extracted separately. As can be seen in Figure 3A (top
left), the cross-correlation of the F0 band-passed audio with
the EEG response suggests a more smooth waveform with later
response peaks, as also reported in previous work (Forte et al.,
2017; Etard et al., 2019; Van Canneyt et al., 2021a,b,c). To
investigate their unique predictive power, we linearly combined
the broadband and F0 band-passed signals in a regression model
to jointly predict the subcortical EEG response. We then tested
for improvement in prediction accuracy relative to the individual
models (following e.g., Di Liberto et al., 2015; Teoh et al., 2019).
The rectified broadband signal predicted the EEG significantly
better than the F0 band-passed speech (p = 0.008). Yet, no
significant improvement was found by combining the features (p
> 0.05). Thus, adding F0 to a model of the broadband rectified
waveform yielded no additional predictive power.

This is likely due to the fact that the two speech features
are mutually highly correlated. To investigate this further, we
simulated responses to the two speech features by adding
EEG-shaped noise to the features. We then computed model
improvement by comparing the combined broadband and F0
features relative to the individual models as a function of SNR. As
can be seen in the top panel of Figure 4, even at high SNRs the
combined model leads to almost no improvement in prediction
accuracy compared to the individual feature models. This again
suggests that dissociating subcortical F0-tracking responses may
be challenging with running speech.
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FIGURE 3 | Modeled subcortical responses to different speech features. All traces show the response at electrode Cz. Shaded areas indicate ±1 standard error of

the mean across participants. (A) Modeled responses for different speech features and topographies at mean peak latencies. Top: Complex cross-correlation

between the F0 band-passed speech and the EEG (80–240 Hz). Middle: The EEG (>80 Hz) regressed onto the broadband (>80 Hz) rectified speech signal using

ordinary least-squares regression. Bottom: Conventional click-evoked ABRs. (B) Subcortical response functions modeled using the F0 band-passed (top) or

broadband features (middle) and estimated using cross-correlation or regression. For regression, both the unregularized ordinary least-squares and a highly

regularized solution (λ = 109) is shown.

Given that the F0 band-passed and broadband rectified speech
waveforms are highly correlated, it is perhaps surprising to find
that the F0-responses (Figure 3A, top left) yield later peaks
and more smooth response. However, these differences may
stem from differences in the autocorrelation of the features
and how the autocorrelation is dealt with in the stimulus-
response model (Crosse et al., 2016). The low-pass filter around
F0 effectively enhances signal autocorrelation, compared to the
broadband speech signal, which must be compensated for in

the stimulus-response model. Following Forte et al. (2017), the
F0-response was estimated using cross-correlation, while the
broadband feature was estimated with regression (Maddox and
Lee, 2018). In the framework of regularized regression (Equation
1), this corresponds to different amounts of regularization
(λ) controlling the autocorrelation term in the regression.
Figure 3B showing both the regularized and unregularized
solutions suggested that the F0 band-passed feature requires a
higher degree of regularization. The effect of regularization for
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FIGURE 4 | Simulated prediction accuracies for the different envelope and

pitch-related features as a function of SNR. Top: comparison of the F0

band-passed and broadband rectified speech features considered in the

subcortical response analysis. Bottom: comparison of the envelope and

relative pitch features considered in the cortical analysis. Purple: Simulated

regression prediction accurracies for the best performing individual feature

model. Red: Improvement in prediction accuracy by combining the two

features relative to the best performing individual model. Yellow: Improvement

in prediction accuracy by combining the relevant features with an uncorrelated

predictor as an estimate of the upper limit of prediction improvement.

features with different degrees of autocorrelation is illustrated
with simulated data in Figure 5. Here, we simulate how well a
true TRF peak (dashed lines) can be estimated given different
degrees of feature autocorrelation. Compared to a broadband
“white” feature (left panels), a low-passed signal with higher
autocorrelation (right panels) requires regularization to estimate
the true TRF peak latency. However, very high degrees of
regularization (corresponding to cross-correlation) with an
autocorrelated regressor smears the estimated response function
and may consequently shift the response peaks (Figure 5, top
right). Higher degrees of autocorrelation in the F0 band-passed

FIGURE 5 | Simulated TRF responses for features with lower (left) or higher

(right) degrees of autocorrelation. Bottom panels show the autocorrelation

matrices of two simulated features (filtered random Gaussian variables). Top

panels show the true (dashed lines) and estimated TRFs for different degrees

of regularization (normalized amplitudes). For the more autocorelated feature,

higher regularization is required to estimate the true TRF, but overregularization

leads to temporal smearing of the response function.

signal in combination with cross-correlationmay thus potentially
explain the observed differences in peak latencies.

3.3. Cortical Pitch Processing
We also investigated whether cortical activity tracks the relative
pitch contour of the running speech signal, as proposed in recent
work (Tang et al., 2017; Teoh et al., 2019). As for the subcortical
features, we investigated the degree to which relative pitch
predicts unique variance in the cortical EEG after accounting
for envelope tracking. We therefore regressed the cortical low-
frequency EEG separately on relative pitch and the low-frequency
envelope, as well as the two features combined. As seen in
Figure 6, we found that adding relative pitch to an envelope
model led to a significant improvement in prediction (paired
permutation test, all p = 0.005), replicating the findings of Teoh
et al. (2019).

Unlike the subcortical features, this indicates that the relative
pitch track is sufficiently uncorrelated with envelope fluctuations
for allowing these two features to be dissociated in the cortical
response. Again, we simulated the effect of combining envelope
and pitch features over a range of SNRs. As can be seen
in the bottom panel in Figure 4, combining the two cortical
features leads to an increase in model accuracy as SNR increases.
Importantly, this improvement with increasing SNR was similar
when simulating a random feature that is uncorrelated with the
speech features. The model improvement is significantly larger
than zero already at low SNRs, where the prediction accuracy
corresponds to that found with real EEG data.

Reasoning that tracking of the periodicity at F0 in the
brainstem may provide a temporal code for relative pitch-
tracking in cortex, we tested whether subcortical response
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FIGURE 6 | Prediction accuracy (Pearson’s r) of cortical EEG for regression

models containing relative pitch, envelope, or both features as predictors. Gray

lines indicate individual subject data. The combined model yields significantly

higher accuracy compared to either of the individual models, suggesting that

both predictors explain a unique part of the variance. The envelope model

shows significantly higher prediction accuracy compared to the relative pitch

model.

peaks to F0 band-passed speech correlated with the cortical
response to relative pitch. Across participants, responses to
relative pitch yielded a positive TRF peak at frontal electrodes
around 100 ms latency (77.07–139.57 ms), consistent with Teoh
et al. (2019). No correlation was found between this cortical
response peak and the subcortical response peak to the F0 band-
passed speech determined with the complex cross-correlation
function (Figure 3A, top panel), neither in terms of latency nor
amplitude (p > 0.05). Similarly, we tested whether the ABR
V-like peaks of the subcortical responses modeled to rectified
broadband speech (Figure 3A, middle panel) were correlated
with cortical responses to the envelope. Cortical responses to the
envelope showed a positive peak around 140 ms latency (123.95–
186.45 ms) at frontal electrodes, consistent with previous work
(e.g., Fuglsang et al., 2017). No significant correlation in peak
latency or amplitude was found (both p > 0.05) for this
comparison either.

4. DISCUSSION

Our results replicate those of Maddox and Lee (2018) showing
that regressing subcortical EEG responses onto the rectified
running speech waveform yields response functions consistent
with the ABR wave V and correlated with conventional click-
ABRs. Measuring unique F0-related subcortical responses may
be challenging. In the cortex, on the other hand, our results
also replicated previous work suggesting distinct processing of
relative pitch (Teoh et al., 2019).

The approaches evaluated here propose objective measures
of subcortical running speech processing, which may offer new

research possibilities and potentials for clinical applications.
Brainstem EEG is used for objective hearing assessment in patient
groups where the response-reliant pure-tone audiometry might
not be applicable. For example, brainstem measures are used
for hearing screening in newborns (World Health Organization,
2010; Patel et al., 2011). The use of continuous speech instead of
clicks or tone beeps may become relevant for patient groups in
need of amore engaging assessment design to uphold compliance

(e.g., children), or patients that may be uncomfortable with
unfamiliar sounds (e.g., patients with dementia). Furthermore,

subcortical measures of running speech can potentially serve as
an objective tool to evaluate and tailor hearing assistive devices
(HADs) to the user’s needs. Signal processing in hearing aids
is typically programmed to process and enhance real-world
speech, and brainstem responses may thus be obtained with the
stimulus they are designed for. This is especially relevant for
the evaluation of hearing aid noise suppression schemes that
might classify non-speech or monotonously repeating stimuli
as noise.

Evoked responses from the auditory brainstem can be
measured both with broadband transient stimuli, as in click-
ABRs, and with periodic stimuli, as in tone- or speech-evoked
FFRs. The degree to which ABRs and FFRs rely on the same
generators is debated. Wave V of the ABR is most efficiently
elicited by broadband signals like clicks or chirps (Dau et al.,
2000), and high-frequency stimulation contributes significantly
to the response magnitude of wave V (Wegner and Dau, 2002).
FFRs typically require relatively high sound pressure levels
to be elicited and are usually not observed near threshold
(Krishnan and Parkinson, 2000; Bidelman and Powers, 2018),
which may indicate that the FFR to low-frequency tones or
speech F0 is not a direct neural correlate of on-frequency
processing, but requires synchronous activity from mid- and
high-frequency peripheral neural channels (Wegner and Dau,
2002; Dau, 2003). Dau (2003) showed that a unitary response
obtained by deconvolution of click-ABR data with simulated
auditory nerve activity from a level-dependent and frequency-
selective model can predict both click-ABRs and tone FFRs. This
indicates that the frequency-following activity measured with
EEG may not reflect pitch-specific or on-frequency processing,
but rather reflects summed neural activity across cochlear
frequency channels. These conclusions are consistent with the
current study indicating that F0 yields no separate predictive
power for the subcortical response compared to the broadband
speech signal. Instead, we find that including high-frequency
information via the broadband signal improves prediction of
the subcortical response relative to prediction with the F0. The
cortical response analysis, on the other hand, replicated the
findings of Teoh et al. (2019) indicating distinct processing of
envelope and pitch features. The combined model containing
both relative pitch and the low-pass filtered speech envelope
as predictors significantly outperformed both individual models
for cortical features, which could be supporting evidence of
distinct processing of relative pitch in the cortex. However,
we can not rule out the possibility that the relative pitch
feature is correlated with other features that the models do not
account for. Simulations indicated that the model improvement
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by combining relative pitch and the low-passed amplitude
envelope is comparable to the effect of adding an uncorrelated
feature. The dissociation of envelope and pitch processing is
a potentially attractive tool for research on tonal languages,
where the F0 track not only conveys prosodic, but also lexical
information. For example, it offers perspectives for objectively
measuring the processing of lexical tone in listeners with elevated
hearing thresholds.
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