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Advances in immunoglobulin (Ig) sequencing technology are leading to new

perspectives on immune system dynamics. Much research in this nascent field

has focused on resolving immune responses to viral infection. However, the

dynamics of B-cell diversity in early HIV infection, and in response to anti-

retroviral therapy, are still poorly understood. Here, we investigate these

dynamics through bulk Ig sequencing of samples collected over 2 years

from a group of eight HIV-1 infected patients, five of whom received anti-

retroviral therapy during the first half of the study period. We applied

previously published methods for visualizing and quantifying B-cell sequence

diversity, including the Gini index, and compared their efficacy to alternative

measures. While we found significantly greater clonal structure in HIV-

infected patients versus healthy controls, within HIV patients, we observed

no significant relationships between statistics of B-cell clonal expansion and

clinical variables such as viral load and CD4þ count. Although there are

many potential explanations for this, we suggest that important factors include

poor sampling resolution and complex B-cell dynamics that are difficult to

summarize using simple summary statistics. Importantly, we find a significant

association between observed Gini indices and sequencing read depth, and we

conclude that more robust analytical methods and a closer integration of

experimental and theoretical work is needed to further our understanding

of B-cell repertoire diversity during viral infection.
1. Introduction
The recent application of high-throughput sequencing technology to immunology,

and to the characterization of B-cell and T-cell receptor diversity in particular, has

the potential to reveal immune system dynamics in unprecedented detail [1–3].

This work has led to advances in our understanding of antibody dynamics after

vaccination [4,5], the effects of aging and infection on the B-cell repertoire [6],

the development of B-cell cancers [7,8] and the onset of autoimmune disorders

such as multiple sclerosis [9]. Many of these studies have taken an ‘antibodyome’

perspective to viral infection, in which the immune response to infection is inves-

tigated by the bulk sequencing from patient samples of the antigen-binding

regions of B-cell immunoglobulin (Ig) genes. These sequences are then analysed

to explore how the antibody repertoire changes in response to perturbation arising

from viral evolution and vaccination. This approach has been applied, for example,

to influenza virus [5,10], varicella-zoster virus [11] and dengue virus [12].

Some of the most notable findings in this field have come from detailed inves-

tigation of the interactions between the humoral immune system and HIV-1

infection. Much of this work has focused on observing and understanding the

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2014.0241&domain=pdf&date_stamp=2015-07-20
mailto:oliver.pybus@zoo.ox.ac.uk
http://dx.doi.org/10.1098/rstb.2014.0241
http://dx.doi.org/10.1098/rstb.2014.0241
http://rstb.royalsocietypublishing.org
http://rstb.royalsocietypublishing.org


3

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140241

2
development of broadly neutralizing antibodies (bNAbs) in

order to aid the development of preventative HIV-1 vaccines

[13]. Interestingly, bNAb precursors may be preferred in vac-

cine design over observed bNAbs because they may have a

wider binding profile, and the sequences of such precursors

can be inferred using methods of phylogenetic ancestral

sequence reconstruction [14]. This requires an understanding

of the diversity and dynamics of B-cell clones during infection,

and significant strides have been made, both in tracking the

coevolution of B-cell and viral lineages, [15–17] and in finding

potential bNAb precursors using phylogenetic methods [14].

Despite these advances, more general trends in B-cell diver-

sity and clonal dynamics during HIV-1 infection are still poorly

understood, particularly during early infection. While some

studies have contrasted the plasmablast, naive and memory

B-cell content between early and chronic infections [18], the

diversity of patient ‘antibodyomes’ has not yet been character-

ized, either in comparison to healthy controls or through time in

individuals that have recently seroconverted. Although early

anti-retroviral therapy (ART) has been shown to have a signifi-

cant effect on viral divergence (e.g. [19]), the corresponding

effect on B-cell clonal diversity under ART is unknown. While

it may be expected that B-cell populations in HIVþ individuals

are more clonal than in uninfected individuals, and that the

degree of B-cell clonal relatedness is related to the size of

the concurrent viral population, these associations have not

been explicitly tested.

Most previous studies that investigated the repertoire of

B-cell receptor (BCR) diversity in peripheral blood (as opposed

to those that focused on specific clonal lineages, e.g. [15]) have

typically used non-phylogenetic approaches to summarize

B-cell diversity. One successful approach has been to use

single-linkage clustering to group sequences into clusters (or

clones), and then to infer clonal expansions by measuring prop-

erties of the size distribution of clones using entropy scores,

such as the Gini index [8]. Others studies have used alternative

statistics, including mean clone size, the number of unique

IgHV-D-J allele combinations, and genetic distances between

IgV segment sequences and their respective germline homo-

logues (e.g. [7]). Both sets of approaches have shown promise

in studying B-cell cancers, which result from significant

clonal expansions of usually one BCR lineage [20], but it

is unknown if a similar approach will be informative when

studying immune responses to HIV infection.

To better understand B-cell repertoire dynamics during

early HIV infection and the degree to which it is modulated

by ART, we used deep-sequencing to capture the diversity

of Ig heavy-chain sequences from eight HIV patients enrolled

in the short pulse anti-retroviral therapy at seroconversion

(SPARTAC) trial [21]. This is, to our knowledge, the first

time high-throughput BCR sequencing has been applied to

studying general B-cell clonal diversity during ART and

early HIV infection. Patients were enrolled an estimated

12–95 days after seroconversion, and were sampled at up

to eight time points over approximately 2 years. At each

time point, B-cell repertoire sequencing was performed and

both viral load and CD4þ T-cell counts were measured.

Three patients were untreated, while five received ART for

the first 48 weeks of the study only. This study design not

only allows us to track individual B-cell clones during early

infection, but also to test for associations between the

dynamics of B-cell sequence diversity and clinical variables,

including treatment status.
For each patient and each time point, we used a high-

throughput Illumina MiSeq platform to obtain paired-end

reads from Ig heavy-chain sequences that represent the mixture

of antibody classes in peripheral blood. Within each patient, we

extended a previous single-linkage clustering approach [8] to

classify sequences into clones and track their relative frequencies

through time. We also explored a number of statistics in order to

quantify BCR sequence diversity from HIV-1 infected patients,

and to compare this diversity to that observed in a cohort of

HIV-negative controls. While some general patterns were

observed, overall we found a high degree of heterogeneity in

B-cell clonal dynamics both among patients and through time.
2. Material and methods
(a) HIV patients
Peripheral blood mononuclear cells (PBMCs) were isolated from

eight patients with primary HIV-1 infection recruited from the

SPARTAC study [21]. All had recently seroconverted before

enrolment in the trial (an estimated 12–93 days before enrolment;

median ¼ 56 days). Patients 1–3 were untreated during the study

period. Patients 4–8 received an ART regimen from week 0 to

week 48, after which treatment was suspended. Patients were

sampled between six and eight times over 108 weeks of the

study (all time points are defined as weeks after start of the

study, defined as week 0). All patients were sampled at weeks

4, 16, 24, 52, 60 and 108, whereas four patients were also sampled

at week 0, and six at week 12. To ensure consistency among

patients, and to ensure an equal number of time points during

and after ART, only the former time points were used in analysis.

(b) RT-PCR
RT-PCR reagents were purchased from Invitrogen and primers

(supplied by Sigma Aldrich) are described by Van Dongen

et al. [22] and in electronic supplementary material, table S1.

Reverse transcription (RT) was performed using 500 ng of total

PBMC RNA mixed with 1 ml JH reverse primer (10 mM), 1 ml

dNTPs (0.25 mM) and RNase-free water added to make a total

volume of 11 ml. This was incubated for 5 min at 658C, and

4 ml First strand buffer, 1 ml DTT (0.1 M), 1 ml RNaseOUTTM

Recombinant Ribonuclease Inhibitor and 1 ml SuperScriptTM III

reverse transcriptase (200 units ml21) was added. RT was per-

formed at 508C for 60 min before heat-inactivation at 708C for

15 min. PCR amplification of cDNA (5 ml of the RT product)

was performed with the JH reverse primer and the FR1 forward

primer set pool (0.25 mM each), using 0.5 ml Phusionw High-

Fidelity DNA Polymerase (Finnzymes), 1 ml dNTPs (0.25 mM),

1 ml DTT (0.25 mM), per 50 ml reaction. The following PCR pro-

gramme was used: 3 min at 948C, 35 cycles of 30 s at 948C, 30 s at

608C and 1 min at 728C, with a final extension cycle of 7 min at

728C on an MJ Thermocycler.

(c) Sequencing and reference-based V-D-J assignment
MiSeq libraries were prepared using Illumina protocols and

sequenced by 150 bp paired-ended MiSeq (Illumina). MiSeq

reads were filtered for base quality (median more than 32) using

QUASR (http://sourceforge.net/projects/quasr) [23]. Sequences

were concatenated and a gap inserted between the forward and

reverse reads (average gap length approx. 35 nucleotides; elec-

tronic supplementary material, figure S2). Non-Ig sequences

were removed; only those reads with significant similarity to

reference IgHV and IgHJ genes from the ImMunoGeneTics

(IMGT) database [24] were retained, as determined using BLAST

[25] with E-value thresholds of 1 � 10210 and 1 � 102
,

http://sourceforge.net/projects/quasr
http://sourceforge.net/projects/quasr


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140241

3
respectively. Primer sequences were then trimmed from the reads,

and sequences retained for analysis only if both primer sequences

were identified and if both forward and reverse sequence lengths

were more than 100 bp. Lastly, a second BLAST analysis was used

to identify the IgHV genes of retained reads. Specifically, BLAST

[25] was used to align reads against known BCR sequences from

the IMGT database [24] (E-value thresholds for IgHV and IgHJ

genes were 10270 and 10220, respectively, due to their different

gene lengths). The combined per-base error rate for the RT-PCR

and sequencing process of the MiSeq platform was 2.06� 1024

[8,26]. Sequences and BAM files are available from the European

Nucleotide Archive under study accession no. ERP000572.

(d) Alignment
The data comprised non-overlapping paired-end reads separated

by a gap of variable and unknown length. This necessitated cer-

tain heuristic measures during data processing and the two reads

of each pair were aligned separately to ensure positional hom-

ology. As above, reference IGHV and IGHJ segments were

obtained from IMGT [24]. Gaps were removed from the reference

sequences, then IGHV sequences were clustered using CD-HIT

[27] with a 95% similarity threshold. Only one sequence was

retained from each cluster, resulting in a smaller set of V seg-

ments. The IHGJ reference sequences were not down-sampled,

however. The first read of each pair was aligned with the closest

matching sequence in the V references through gapless pairwise

alignment. To further optimize the alignment, each read was

matched using only the 50 half of the V segments. Next, the

second read of each pair was pairwise aligned with the closest

sequence in the J references, again using gapless alignment.

Once the first and second reads had been aligned to the V and J

references, respectively, gaps were added 30 of the first read, and

50 of the second read, such that each were 300 nucleotides in

length. The two reads were then concatenated, and excess gaps

were trimmed between each read pair. A graphical representation

of this process is provided in electronic supplementary material,

figure S3. Because we expect sequences from the same clone to

match the same, or highly similar, V and J segments, this process

generates an approximation of the optimal gapless alignment for

sequences from the same clone. Further, the process does not

require sequences to match the same V and J segments in order

to be compared, a requirement that may be problematic when deal-

ing with highly mutated sequences. However, the process may

produce sub-optimal alignments when indel diversity is present

within a clone. A small percentage of reads showed high similarity

between forward and reverse reads (longest common sub-sequence

of 20 bp or greater) and were excluded during this step.

(e) Clonal assignment
Sequences from all time points within each patient were pooled

and assigned to clones using single-linkage agglomerative clus-

tering using the Hamming distance between two sequences [8],

while ignoring gap variation. This latter condition was necessary

because each aligned sequence had an arbitrary gap between its

two reads that resulted from paired-end sequencing, and not

from a natural process of immunological diversification. To

make our results comparable with previous work [8], we also

chose a maximum Hamming distance of unity for clustering

two sequences together into the same clone.

( f ) Measurement of B-cell receptor diversity
The diversity of BCR sequences was qualitatively visualized

using the network approach developed by Bashford-Rogers

et al. [8]. Briefly, each vertex represents a unique BCR sequence,

whose relative size is proportional to the number of sequence

reads identical to the vertex sequence. Edges are then drawn
between vertices whose sequences differ by at most one nucleo-

tide change. Networks were computed using igraph, as

implemented in R (http://igraph.sourceforge.net; see [8] for

details). Because each clone is shown in proportion to its relative

frequency in the BCR sequence population, these networks pro-

vide an intuitive visualization of the clone size distribution.

Examples of these plots from representatives of the treated and

untreated patient groups are shown in figure 1.

Three sample summary statistics were applied to the BCR

sequences obtained at each time point to summarize their clonal

diversity: (i) mean clone size, (ii) vertex Gini index, and (iii) the pro-

portion of reads in ‘large clones’. Each of these three statistics is

described below.

For each time point and each clone, clone size was defined as

the number of reads in the clone at that time point divided by the

total number of reads at that time point. Mean clone size was cal-

culated as the arithmetic mean of this distribution of clone sizes.

Next, the vertex Gini index was used to summarize inequality in

BCR sequence frequency; the index equals unity if all reads have

the same BCR sequence (maximum inequality), and equals zero

if each BCR sequence is equally common (maximum equality).

As defined above, vertex size equals the number of identical

reads with a unique BCR sequence, so the vertex Gini index

was computed directly from the vertex size distribution as

formed using a clustering cut-off of zero. Bashford-Rogers et al.
[8] explored both the vertex and cluster Gini indices, and

found that the former correlated better with clinical parameters

in chronic lymphocytic leukaemia (CLL) patients; hence only

the vertex Gini index is used here.

Clones were classified as ‘large clones’ if they comprised at

least 0.1% of the reads sequenced at any of the time points in

which they were found. We quantified these by calculating the

proportion of reads at each time point that belong to ‘large

clones’. Additionally, we wished to describe changes in the

very upper tail of the clonal size distribution. To do so, we

plotted the sizes of the 20 largest clones as a proportion of the

total number of reads at each time point. These values are for

illustrative purposes only and are not used as sample statistics.

(g) Sub-sampling
Preliminary statistical analysis using ANOVA showed that Gini

index values were significantly associated both with patient iden-

tity ( p ¼ 0.02) and read depth ( p ¼ 0.001). A plot of Gini index

values against read depth for each time point highlights the vari-

ation in read depth among patients (electronic supplementary

material, figure S4). To ensure that comparisons among patients

are reliable and not an artefact of read depth variation, all further

analyses were undertaken on subsamples of the original data.

Specifically, 70 000 sequences were randomly sampled from

each time point in each HIVþ patient (the lowest number of

reads available for a HIVþ patient sample was 74 861). When com-

paring HIVþ patients with healthy controls (see §2i), then 5000

sequences were randomly sampled from each control and HIVþ
dataset (the lowest number of reads available for a control patient

was 5087). In each case, random sub-sampling of reads was

repeated 10 times. As variance in BCR statistics among these 10

repetitions was very low (less than 1 � 1024), we only report the

mean values of the 10 sub-sampling repetitions.

(h) Analysis of B-cell receptor diversity
To examine the relationship between BCR sequence diversity and

clinical variables, we compared each of the above BCR statistics

to log(viral load) and CD4þ counts using linear regression.

p-values were adjusted for multiple hypothesis testing using

the Benjamini–Hochberg procedure [28] (as implemented in

the R function p.adjust). To account for possible temporal auto-

correlation within patients, all data points within each patient

http://igraph.sourceforge.net
http://igraph.sourceforge.net
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(c) (d)

Figure 1. Network visualization of the diversity of BCR sequences obtained from untreated patient 3 at week 4 (a) and week 108 (b), and from treated patient 4 at
week 4 (c) and week 108 (d ). Each vertex represents a unique sequence, and the size of each vertex is proportional to the number of reads identical to that
sequence. Edges are drawn between vertices that are one nucleotide substitution apart. See §2(f ) for further details.
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were summarized using two means. Because ART will have a

significant effect on many variables, such as viral load, we calcu-

lated separate means for values from early time points (weeks

4–24; i.e. during ART for treated patients) and from late time

points (weeks 52–108; when no patients were receiving ART).

These means were calculated by linearly interpolating between

adjacent time points, and then calculating the mean of the result-

ing function between the first and last points (weeks 4 and 24 for

early only, 52 and 108 for late only). ANOVAs were used to

explore how the Gini index and other BCR summary statistic

values vary among patients, time points, treatment status and

read depth. To make linear regression coefficients of each

regression more comparable, all variables besides viral load

and CD4þ count were scaled to a mean of zero and variance of

unity before linear regression and ANOVA analysis.

(i) Comparison with healthy controls
To test whether BCR sequence diversity differs between HIV-

infected and uninfected individuals, we analysed previously

published data from a cohort of six healthy patients [26]. For

each, non-gapped Illumina MiSeq reads were obtained from

PBMCs. See [26] for full details of RNA capture, PCR and

sequencing for the healthy controls. To ensure that these non-

gapped sequences are directly comparable to the gapped

sequences obtained from HIV patients, we only used the first

and last 110 bp of each read, placing a gap of unknown length

between. Because these patients were sequenced at a lower

read depth (5087–8475 reads) than HIVþ patients, all datasets

from healthy controls were randomly sub-sampled (as described
in §2g) to remove any potential bias arising from variable read

depth. Further, when comparing with healthy controls, only

within-time point edges were allowed when identifying clones in

HIV patients (because sequences from only one time point were

available from the control individuals). Differences in BCR diver-

sity statistics between control and HIV-infected individuals were

tested using Wilcoxon tests.
3. Results
Figure 1 provides a qualitative visualization of BCR sequence

diversity, and its change between the beginning and end of

the study period (weeks 4 and 108, respectively). The data

shown are from patients 3 and 4 and the plots were computed

using the network approach developed in [8]. For both

patients, the sequences at week 4 are clearly more clonally clus-

tered compared with those at week 108, although the BCR

diversity for patient 4 (figure 1c) appears more polyclonal

than for patient 3 (figure 1a) at this time. As expected, at neither

time point is the BCR population dominated by a single large

clone, as was often observed in samples from B-cell lymphoma

patients [8]. The plots shown in figure 1 are largely typical of

those observed for other patients.

Full results from all patients are summarized in figures 2

and 3. All patients had seroconverted recently (median ¼ 56

days) before the start of the study (week zero). Patients 1–3

were untreated through the course of the study period
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Figure 2. BCR diversity statistics and viral load values for patients 1 – 4 (a – d ) over the study period of 108 weeks. Patients 1 – 3 were untreated, while patient 4
received ART until week 48. Four plots are provided in each panel. The top plot shows viral load, with each point representing a clinical sample. The second plot
shows vertex Gini index values of the BCR sequences obtained at each time point. The third plot shows the proportion of reads at each time point that belong to
‘large’ clones, i.e. those that occupy more than 0.1% of reads at any time point. The bottom plot in each panel shows the proportion of all reads at each time point
that are occupied by the 20 largest clones observed across all time points. Each of the 20 largest clones is represented by a bar of a different colour, and lines
connect bars at adjacent time points that represent the same clone.
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(weeks 0 to 108). Patients 4–8 received an ART regimen

between weeks 0 and 48, after which they were untreated.

BCR sequencing was performed on PMBC samples from

each time point for each patient (yielding 7.4 � 104 to 1.0 �
106 filtered BCR reads per sample). BCR network analysis
was applied to these sequencing datasets to quantify the

clonal architecture of these samples according to Bashford-

Rogers et al. [8]. Four plots are shown for each patient, which

show the change through time in (i) viral load, (ii) the vertex

Gini index of BCR sequences, (iii) the proportion of BCR
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Figure 3. BCR diversity statistics and viral load values for patients 5 – 8 (a – d) over the study period of 108 weeks. All patients received ART until week 48.
See figure 2 legend for details.
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sequences in ‘large clones’, and (iv) the size distributions of the

20 largest clones as a proportion of the total number of reads at

each time point.
(a) Untreated patients
All three untreated patients (1–3) showed peak viral loads at or

within four weeks of enrolment, and reduced, but persistent
viraemia after 52 weeks corresponding to set point viral load.

Patient 1 had an additional peak in viral load at 24 weeks,

suggesting a superinfection event, and showed a higher viral

load for a longer duration than patients 2 and 3. In all untreated

patients, Gini indexes and the proportion of reads in large

clones were typically higher during the first half of the study,

when viral loads were higher. Hence at these times, a higher

proportion of the BCR sequence population was composed



Table 1. Regression analysis of BCR diversity statistics and clinical variables.

clinical variable BCR diversity statistic correlation adjusted p-valuea

log(viral load), early period mean clone size 20.005 0.99

Gini index 20.13 0.92

proportion of reads in large clones 20.19 0.92

log(viral load), late period mean clone size 0.3 0.92

Gini index 0.37 0.92

proportion of reads in large clones 0.28 0.92

CD4 count, early period mean clone size 20.3 0.92

Gini index 20.43 0.92

proportion of reads in large clones 0.13 0.92

CD4 count, late period mean clone size 20.34 0.92

Gini index 20.47 0.92

proportion of reads in large clones 20.34 0.92

days from seroconversion at week 0, early period mean clone size 20.17 0.92

Gini index 20.19 0.92

proportion of reads in large clones 0.25 0.92

days from seroconversion at week 0, late period mean clone size 20.29 0.92

Gini index 20.36 0.92

proportion of reads in large clones 20.21 0.92
ap-values were adjusted using the Benjamini – Hochberg procedure [28].
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of common sequences/clones. When ‘large clones’ dominated

the BCR population (e.g. week 24 in patient 2), that dominance

was not the result of a single dominant clone, but rather

resulted from the concurrent increase in frequency of a large

number of different clones (see bottom plot of each panel in

figure 2). Further, the relative frequencies of individual

clones that were found at high frequencies (colours in bottom

plot of each panel in figure 2) fluctuated through time with

no discernable pattern; in almost all cases, clones were

common at only one time point.

(b) Treated patients
All five treated patients (4–8) showed a rapid decrease in viral

load soon after the start of the study, with counts in weeks

16–24 below 100 copies ml21 (often less than 50, or undetect-

able), coinciding with the period of ART. As expected, viral

load values across all time points were significantly lower in

the treated group than the untreated group (one sided t-test;
p , 0.0001). Patients 5–8 showed a rebound in viral load at

week 52, after the cessation of ART, while the rebound in patient

4 was not as strong and viral loads remained relatively low (less

than 21 000 copies ml21) throughout the study period. In

patients 5–7, viral load decreased in week 60 before stabilizing

at 108 weeks at a similar level to that in untreated patients.

The dynamics of B-cell diversity and clonality in the treated

patients were highly variable. Patient 7 showed a striking pat-

tern after cessation of ART: at week 60, there was a polyclonal

expansion (such that most BCR sequences fell into ‘large’

clones) which remained in week 108. Patient 8 also showed

polyclonal responses and an increase in the proportion of

sequences in large clones at weeks 52 and 108.

BCR diversity dynamics in patient 6 in many ways

resembled those of untreated patients 2 and 3, with a peak

in the prevalence of ‘large clones’ in week 24, and low
clonality in week 108. Patient 4 exhibited high viral load

and clonality at week 4, after which both remained low for

the rest of the study. Patient 5 showed a comparatively

stable level of clonality through time, with the proportion

of sequences in large clones ranging from 0.13 to 0.45. Nota-

bly, patient 5 is the only patient to exhibit a ‘large clone’ that

persisted throughout the study period (red bars in the bottom

panel of figure 3a). Across time points, this persistent clone

occupied between 2.4 and 5.1% of all BCR sequences.

(c) Relationship between clinical variables
and B-cell diversity

We sought to test whether statistics of BCR diversity were

associated with clinical variables, such as viral load, time since

seroconversion and CD4þ cell count (electronic supplementary

material, figure S6). To enable direct comparisons among

patients, all datasets were sub-sampled to exactly 70 000 reads

(see §2g). For each patient, mean values during the early and

late periods were used to account for autocorrelation (see §2h).

As shown in table 1, there was no significant association

between log viral load, CD4þ cell count, or estimated days

since seroconversion with any of the three BCR diversity stat-

istics. In all cases, correlations were non-significant both

before and after correction for multiple hypothesis testing. The

results also remained non-significant when repeated without

adjusting for temporal autocorrelation (i.e. each time point in

each patient counted as an independent data point).

(d) Analysis of B-cell receptor diversity and sub-
sampling

To explore possible sources of variation in the three BCR

statistics, we used ANOVAs to test whether each statistic

was associated with patient identity, week of sampling and



Table 2. ANOVA analysis of BCR diversity statistics.

response factor
mean
square p-valuea

mean clone size patient 0.99 0.63

week 0.49 0.63

treatment 0.6 0.63

Gini index patient 1.7 0.57

week 2.3 0.57

treatment 0.2 0.74

proportion of reads

in large clones

patient 0.48 0.87

week 0.7 0.63

treatment 1.1 0.63
ap-values were adjusted using the Benjamini – Hochberg procedure [28].
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treatment group at each time point (table 2). All datasets were

sub-sampled to 70 000 reads. None of these factors explained a

significant proportion of variation in any of the BCR diversity

statistics. Thus, the association between Gini index and patient

identity observed prior to sub-sampling (see §2g and electronic

supplementary material, figure S4) was most likely an artefact

due to variation in read depth among patients.

We also explored the effects of sub-sampling on each of the

three BCR diversity statistics (electronic supplementary

material, figure S7). As might be expected, the ‘proportion of

reads in large clones’ statistic was almost unaffected by sub-

sampling. Although vertex Gini indices were slightly higher

before sub-sampling, this inflation was relatively constant

within patients. Mean clone size was substantially altered by

changes in read depth, justifying our use of sub-sampling

when comparing data from different patients (tables 1 and 2;

figure 4).
(e) Comparison with healthy controls
To enable direct comparisons between HIVþ patients and

healthy controls, all datasets were sub-sampled to 5000 reads

(see §2g). As before, values from HIVþ patients were grouped

into two periods, early (weeks 4–24) and late (weeks 52–108)

to avoid temporal autocorrelation. Comparisons of BCR

sequence diversity are shown in figure 4. All three statistics

(mean clone size, Gini index and the proportion of reads in

large clones) were significantly higher in early-period HIVþ
patients than in healthy controls ( p¼ 0.01, 0.02 and 0.03, respect-

ively). However, all comparisons between healthy controls and

late-period HIVþ patients were non-significant.
4. Discussion
The results presented here demonstrate that BCR sequence

diversity during HIV infection is highly dynamic and hetero-

geneous, both within and among patients. Individual clones

fluctuate substantially in relative frequency, and at no time

point did a single clone dominate the BCR sequence population

in any patient. This suggests an actively evolving antibody

response against HIV, likely due to the high turnover of HIV

genetic diversity within each patient generating novel antigenic

targets (e.g. [29]).
We observed significantly greater clonal structure in

HIVþ patients than in uninfected controls during the first

half of the study period, but not during the second half.

This is consistent with a pronounced humoral response to vir-

aemia during early infection. BCR diversity statistics during

the late period were highly variable, suggesting that strong

clonal structure was maintained in some patients but lost or

significantly reduced in others (figure 4). However, when

comparing HIVþ patients, we found no significant associ-

ation between BCR diversity statistics and clinical variables,

such as viral load or CD4þ count, suggesting a highly com-

plex relationship between the adaptive immune system and

viral dynamics. Previous studies have shown highly hetero-

geneous B-cell clonal responses to immune perturbations

such as vaccines over a timescale of weeks [4], so the vari-

ation observed here over a period of approximately 2 years

fits with established findings. Further, once differences in

read depth were accounted for, BCR diversity statistics did

not vary significantly with treatment group, time of sampling

or patient identity.

There are several possible explanations for the heterogen-

eity we observed among HIVþ patients and through time.

The first and simplest explanation is a lack of statistical

power and sampling resolution. With only eight patients,

the power of our study is almost certainly constrained by

small sample size. However, a previous study of B-cell lym-

phoma patients that had a similar sample size and which

used similar analytical techniques was able to establish sig-

nificant associations between BCR clonality and clinical

outcome in CLL patients, likely due to the exceptionally

large B-cell clones generated by this cancer [8]. Another

potentially important factor in our study is the coarseness

of temporal sampling relative to the dynamics of the BCR

sequence population. Each patient was sampled six to eight

times over 2 years, with all time points at least four weeks

apart. Further, the earliest sample taken after ART ended in

the treated group was obtained in week 52. This is potentially

significant because recent studies of vaccine responses that

sampled more intensively have shown that B-cell clones orig-

inating at vaccination tend to expand within the first week

after inoculation and afterwards rapidly contract, with little

persistent expansion after four weeks [4]. Though we might

expect clonal responses to chronic viral infection to be more

persistent than those to vaccination, our sampling scheme

(which was not initially designed with B-cell dynamics in

mind) may not reveal consistent trends in BCR clonality

during HIV infection. Fluctuations that might be associated

with acute infection may be difficult to discern because

(i) some patients were given early treatment, (ii) the time

between seroconversion and the start of the study varied

substantially (12–95 days), and (iii) in one patient there was

evidence of HIV-1 superinfection during the study period.

Further, BCR diversity changes associated with viral rebound

after cessation of ART may not be apparent because patients

were sampled several weeks later.

There are also biological explanations for absence of sig-

nificant relationships between clinical variables and BCR

diversity scores. While the BCR metrics used here were in-

formative when applied to B-cell lymphoma patients, those

patients often exhibited extreme clonality, such that one or

a few B-cell clones comprised the majority of BCR reads [8].

However, the response of the BCR sequence population to

viral infection is likely to be far more subtle and diverse.
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Because clonal expansion during infection is related to bind-

ing affinity to viral epitopes, BCR diversity will be related not

only to the amount of virus present at the time of sampling,

but also to the antigenic diversity of the virus population,

B-cell longevity and complex ecological dynamics arising

from antigenic cross-reactivity [17]. Further, the dynamical

interaction between viraemia, helper T-cell counts and

T-cell activation of HIV-specific B cells may further obscure

relationships between BCR diversity and other measure-

ments. The network visualizations (figure 1) and BCR

statistics (figures 2 and 3) reported here indicate that the

BCR clone size distribution during early HIV infection is

much less skewed than that observed for B-cell cancers [8],

meaning that HIV-specific clonal expansions may be difficult

to detect from bulk antibody samples without some form

of functional filtering or screening (e.g. antigen-specific cell sort-

ing or isolation of plasmablasts [30]). If so, then further progress

will require very close collaboration between experimental

researchers and theoreticians interested in developing new

analytical approaches. Another process of relevance to studies

of HIV infection is B-cell hypermutation, which has been

shown to generate substantial intra-clonal sequence diversity

and divergence through time [14,15]. If high rates of hypermu-

tation are common, then the conservative clustering algorithm

used here (which only links sequences that differ by one

mutation) may split large and diverse lineages into distinct

groups, thereby reducing its ability to capture BCR dynamics.

Further work is needed to discriminate between inter- and

intra-clonal diversity in a statistically rigorous manner.

Our results are more successful in highlighting the poten-

tial usability and performance of different statistics of BCR

diversity. Although the vertex Gini index proved informative

in prior work [8], we found that it is positively correlated

with sequencing read depth (electronic supplementary

material, figure S4). Application of the Gini index to simple

hypothetical datasets demonstrates why this correlation

may arise (see electronic supplementary material, table S5).

In short, as read depth increases, large clones grow in size

yet more unique singleton reads are also added, thereby

increasing the skew of the clone size distribution, resulting

in a higher Gini index. Bashford-Rogers et al. [8] also explored

the dependence of the Gini index on read depth, via random

sub-sampling of empirical data (electronic supplementary
material figure S9 in [8]), although in their study the effect

was small compared with the difference between case and

control patients. In analyses of HIV infection, meaningful

differences in Gini indices are likely more subtle and thus

this statistic may be less effective. One BCR statistic used

here, the ‘proportion of reads in large clones’, showed no sig-

nificant relationship with read depth and was unaffected by

sub-sampling (electronic supplementary material, figure S7)

and is thus worth considering further. Importantly, while

the Gini index attempts to characterize the entire clone size

distribution, and is thus affected by changes in the relative

frequency of very rare variants, statistics such as the pro-

portion of reads in ‘large clones’ focus on the dynamics of

large clones. Substantial theoretical work is needed to under-

stand the sampling properties of BCR diversity statistics and

to develop more powerful alternatives to those used to date.

It is likely that multiple informative statistics will be needed

to adequately summarize BCR repertoires obtained through

bulk sequencing, and may need to consider properties of

the data other than the distribution of clone sizes.

Further methodological challenges face the analysis of BCR

repertoire data obtained through bulk sequencing. A formal,

phylodynamic analysis of BCR sequence data is appealing

because it would allow for model-based inference of par-

ameters such as hypermutation rates and the relative growth

rates of clonal populations. However, because BCR lineages

are created through somatic V(D)J recombination, bulk BCR

sequences do not coalesce to a single common ancestor and

must be separated into distinct lineages before analysis can pro-

ceed. Further, probabilistic models of sequence evolution will

be computationally very demanding when applied to BCR

datasets, some of which—including those used here—contain

millions of unique sequences per patient. If they are developed

in future, phylodynamic methods may be best applied to indi-

vidual B-cell lineages that have been isolated or identified by

experimental, rather than computational, methods.
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7. Niklas N, Pröll J, Weinberger J, Zopf A, Wiesinger K,
Krismer K, Bettelheim P, Gabriel C. 2014 Qualifying
high-throughput immune repertoire sequencing.
Cell Immunol. 288, 31 – 38. (doi:10.1016/j.cellimm.
2014.02.001)

8. Bashford-Rogers RJM, Palser AL, Huntly BJ, Rance R,
Vassiliou GS, Follows GA, Kellam P. 2013 Network
properties derived from deep sequencing of human
B-cell receptor repertoires delineate B-cell
populations. Genome Res. 23, 1874 – 1884.
(doi:10.1101/gr.154815.113)

9. Stern JNH et al. 2014 B cells populating the
multiple sclerosis brain mature in the draining
cervical lymph nodes. Sci. Transl. Med. 6, 248ra107.
(doi:10.1126/scitranslmed.3008879)

10. Vollmers C, Sit RV, Weinstein JA, Dekker CL, Quake
SR. 2013 Genetic measurement of memory B-cell
recall using antibody repertoire sequencing. Proc.
Natl Acad. Sci. USA 110, 13 463 – 13 468. (doi:10.
1073/pnas.1312146110)

11. Wang C et al. 2014 B-cell repertoire responses to
varicella-zoster vaccination in human identical
twins. Proc. Natl. Acad. Sci. USA 112, 500 – 505.
(doi:10.1073/pnas.1415875112)

http://dx.doi.org/10.1126/scitranslmed.3000540
http://dx.doi.org/10.3389/fimmu.2013.00413
http://dx.doi.org/10.1016/j.coi.2013.09.017
http://dx.doi.org/10.1016/j.coi.2013.09.017
http://dx.doi.org/10.1073/pnas.1323862111
http://dx.doi.org/10.1073/pnas.1323862111
http://dx.doi.org/10.1126/scitranslmed.3004794
http://dx.doi.org/10.1126/scitranslmed.3004794
http://dx.doi.org/10.4049/jimmunol.1301384
http://dx.doi.org/10.1016/j.cellimm.2014.02.001
http://dx.doi.org/10.1016/j.cellimm.2014.02.001
http://dx.doi.org/10.1101/gr.154815.113
http://dx.doi.org/10.1126/scitranslmed.3008879
http://dx.doi.org/10.1073/pnas.1312146110
http://dx.doi.org/10.1073/pnas.1312146110
http://dx.doi.org/10.1073/pnas.1415875112


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140241

11
12. Parameswaran P et al. 2013 Convergent antibody
signatures in human dengue. Cell Host Microbe 13,
691 – 700. (doi:10.1016/j.chom.2013.05.008)

13. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. 2012
B-cell-lineage immunogen design in vaccine
development with HIV-1 as a case study. Nat.
Biotechnol. 30, 423 – 433. (doi:10.1038/nbt.2197)

14. Sok D et al. 2013 The effects of somatic
hypermutation on neutralization and binding in
the PGT121 family of broadly neutralizing HIV
antibodies. PLoS Pathog. 9, e1003754. (doi:10.1371/
journal.ppat.1003754)

15. Fera D, Schmidt AG, Haynes BF, Gao F, Liao H-X,
Kepler TB, Harrison SC. 2014 Affinity maturation in
an HIV broadly neutralizing B-cell lineage through
reorientation of variable domains. Proc. Natl Acad.
Sci. USA 111, 10 275 – 10 280. (doi:10.1073/pnas.
1409954111)

16. Liao H-X et al. 2013 Co-evolution of a broadly
neutralizing HIV-1 antibody and founder virus.
Nature 496, 469 – 476. (doi:10.1038/nature12053)

17. Gao F et al. 2014 Cooperation of B cell lineages in
induction of HIV-1-broadly neutralizing antibodies.
Cell 158, 481 – 491. (doi:10.1016/j.cell.2014.06.022)

18. Moir S et al. 2010 B cells in early and chronic HIV
infection: evidence for preservation of immune
function associated with early initiation of
antiretroviral therapy. Blood 116, 5571 – 5579.
(doi:10.1182/blood-2010-05-285528)

19. Gall A et al. 2013 Restriction of V3 region sequence
divergence in the HIV-1 envelope gene during
antiretroviral treatment in a cohort of recent
seroconverters. Retrovirology 10, 8. (doi:10.1186/
1742-4690-10-8)

20. Chiorazzi N, Rai KR, Ferrarini M. 2005 Chronic
lymphocytic leukemia. N. Engl. J. Med. 352,
804 – 815. (doi:10.1056/NEJMra041720)

21. The SPARTAC Trial Investigators. 2013 Short-course
antiretroviral therapy in primary HIV infection.
N. Engl. J. Med. 368, 207 – 217. (doi:10.1056/
NEJMoa1110039)

22. Van Dongen JJM et al. 2003 Design and
standardization of PCR primers and protocols for
detection of clonal immunoglobulin and T-cell
receptor gene recombinations in suspect
lymphoproliferations: report of the BIOMED-2
concerted action BMH4-CT98 – 3936. Leukemia 17,
2257 – 2317. (doi:10.1038/sj.leu.2403202)

23. Watson SJ, Welkers MRA, Depledge DP, Coulter E,
Breuer JM, Jong MD, Kellam P. 2013 Viral
population analysis and minority-variant detection
using short read next-generation sequencing. Phil.
Trans. R. Soc. B 368, 20120205. (doi:10.1098/rstb.
2012.0205)
24. Lefranc M-P et al. 2009 IMGT(R), the international
ImMunoGeneTics information system(R). Nucleic
Acids Res. 37, D1006 – D1012. (doi:10.1093/nar/
gkn838)

25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.
1990 Basic local alignment search tool. J. Mol. Biol. 215,
403 – 410. (doi:10.1016/S0022-2836(05)80360-2)

26. Bashford-Rogers RJ et al. 2014 Capturing needles
in haystacks: a comparison of B-cell receptor
sequencing methods. BMC Immunol. 15, 29.
(doi:10.1186/s12865-014-0029-0)

27. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012 CD-HIT:
accelerated for clustering the next-generation
sequencing data. Bioinformatics 28, 3150 – 3152.
(doi:10.1093/bioinformatics/bts565)

28. Benjamini Y, Hochberg Y. 1995 Controlling the false
discovery rate: a practical and powerful approach to
multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57,
289 – 300.

29. Wei X et al. 2003 Antibody neutralization and
escape by HIV-1. Nature 422, 307 – 312. (doi:10.
1038/nature01470)

30. Palanichamy A et al. 2014 Immunoglobulin class-
switched B cells form an active immune axis
between CNS and periphery in multiple sclerosis.
Sci. Transl. Med. 6, 248ra106. (doi:10.1126/
scitranslmed.3008930)

http://dx.doi.org/10.1016/j.chom.2013.05.008
http://dx.doi.org/10.1038/nbt.2197
http://dx.doi.org/10.1371/journal.ppat.1003754
http://dx.doi.org/10.1371/journal.ppat.1003754
http://dx.doi.org/10.1073/pnas.1409954111
http://dx.doi.org/10.1073/pnas.1409954111
http://dx.doi.org/10.1038/nature12053
http://dx.doi.org/10.1016/j.cell.2014.06.022
http://dx.doi.org/10.1182/blood-2010-05-285528
http://dx.doi.org/10.1186/1742-4690-10-8
http://dx.doi.org/10.1186/1742-4690-10-8
http://dx.doi.org/10.1056/NEJMra041720
http://dx.doi.org/10.1056/NEJMoa1110039
http://dx.doi.org/10.1056/NEJMoa1110039
http://dx.doi.org/10.1038/sj.leu.2403202
http://dx.doi.org/10.1098/rstb.2012.0205
http://dx.doi.org/10.1098/rstb.2012.0205
http://dx.doi.org/10.1093/nar/gkn838
http://dx.doi.org/10.1093/nar/gkn838
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1186/s12865-014-0029-0
http://dx.doi.org/10.1093/bioinformatics/bts565
http://dx.doi.org/10.1038/nature01470
http://dx.doi.org/10.1038/nature01470
http://dx.doi.org/10.1126/scitranslmed.3008930
http://dx.doi.org/10.1126/scitranslmed.3008930

	Dynamics of immunoglobulin sequence diversity in HIV-1 infected individuals
	Introduction
	Material and methods
	HIV patients
	RT-PCR
	Sequencing and reference-based V-D-J assignment
	Alignment
	Clonal assignment
	Measurement of B-cell receptor diversity
	Sub-sampling
	Analysis of B-cell receptor diversity
	Comparison with healthy controls

	Results
	Untreated patients
	Treated patients
	Relationship between clinical variables and B-cell diversity
	Analysis of B-cell receptor diversity and sub-sampling
	Comparison with healthy controls

	Discussion
	Ethics
	Competing interests
	Funding
	Acknowledgements
	References


