
TECHNOLOGY REPORT ARTICLE
published: 06 February 2015

doi: 10.3389/fphys.2015.00026

OpenCOR: a modular and interoperable approach to
computational biology
Alan Garny* and Peter J. Hunter

Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand

Edited by:

Steve McKeever, Uppsala
University, Sweden

Reviewed by:

Joakim Sundnes, Simula Research
Laboratory, Norway
Zhihui Wang, The University of New
Mexico School of Medicine, USA

*Correspondence:

Alan Garny, Auckland Bioengineering
Institute, UniServices House, Level
6, 70 Symonds Street, Auckland
1010, New Zealand
e-mail: alan.garny@inria.fr

Computational biologists have been developing standards and formats for nearly two
decades, with the aim of easing the description and exchange of experimental data,
mathematical models, simulation experiments, etc. One of those efforts is CellML
(cellml.org), an XML-based markup language for the encoding of mathematical models.
Early CellML-based environments include COR and OpenCell. However, both of those tools
have limitations and were eventually replaced with OpenCOR (opencor.ws). OpenCOR is
an open source modeling environment that is supported on Windows, Linux and OS X.
It relies on a modular approach, which means that all of its features come in the form
of plugins. Those plugins can be used to organize, edit, simulate and analyze models
encoded in the CellML format. We start with an introduction to CellML and two of its
early adopters, which limitations eventually led to the development of OpenCOR. We
then go onto describing the general philosophy behind OpenCOR, as well as describing its
openness and its development process. Next, we illustrate various aspects of OpenCOR,
such as its user interface and some of the plugins that come bundled with it (e.g., its
editing and simulation plugins). Finally, we discuss some of the advantages and limitations
of OpenCOR before drawing some concluding remarks.

Keywords: computational biology, software, interoperability, CellML, metadata

INTRODUCTION
Traditionally, the development of a mathematical model starts by
laying down some ideas on paper. These ideas then get imple-
mented in some programming language, such as C++, MATLAB
or Python. A few iterations between paper and coding are usually
required to get a working model. Once this is done, the model
is shared with the community, which is typically done by writ-
ing and submitting a manuscript that describes the model, and
includes its equations, initial conditions, etc. Upon successful
peer-review, the manuscript is published, making it possible for
interested parties to implement and use the model (Garny et al.,
2009).

However, such an approach is error prone. Errors can be
introduced at every stage (e.g., during the publishing process,
during the implementation of a model by an interested party).
For this reason and others (e.g., the reproducibility of published
simulation results), a lot of effort has been put into the devel-
opment of standards and formats, with the intention of making
it easier to describe and exchange experimental data, mathemat-
ical models, simulation experiments, etc. Such efforts include
CellML (cellml.org; Cuellar et al., 2003), SBML (sbml.org; Hucka
et al., 2003) and SED-ML (sed-ml.org; Waltemath et al., 2011),
all of which are now coordinated under the COMBINE initiative
(co.mbine.org), as discussed in Hucka et al. (2015).

CellML is a format for describing and exchanging bio-
logical models. It is based on XML (w3.org/XML; Bray
et al., 2000) and relies on MathML (w3.org/Math; Ausbrooks
et al., 2001) for describing the mathematics and RDF/XML

(w3.org/TR/REC-rdf-syntax) for annotations. It is primarily used
in computational biology to encode and annotate systems of
ordinary differential equations (ODEs), as well as of differential
algebraic equations (DAEs). CellML was first released in August
2001 (CellML 1.0) and refined in February 2006 (CellML 1.1) by
allowing certain CellML concepts to be imported and reused.

COR (cor.physiol.ox.ac.uk) was the first publically available
CellML-based environment (Garny et al., 2003, 2009). OpenCell
(opencell.org), formerly known as PCEnv, came next. COR is still
being actively used, but it is a native Windows application and
it only supports CellML 1.0. OpenCell does not have those lim-
itations, but unlike COR its authoring capabilities are limited.
Also, it takes significantly longer to run simulations in OpenCell
compared with COR (Garny et al., 2008). For those reasons and
others, the two groups behind COR and OpenCell agreed to
discontinue their respective efforts and, instead, collaborate on
OpenCOR (opencor.ws).

OpenCOR is an open source environment that can be used to
organize, edit, simulate and analyze models of ODEs or DAEs
encoded in the CellML format. OpenCOR was built from the
ground up, using a modular approach to make it easier to expand
(unlike COR and OpenCell). It includes the features that have
made COR and OpenCell successful (e.g., their simulation capa-
bilities), as well as new ones (e.g., its annotation capabilities), and
works on Windows, Linux and OS X.

This technology report starts with a description of the gen-
eral philosophy behind OpenCOR (Section General Philosophy),
followed by some examples of its openness (Section Openness)

www.frontiersin.org February 2015 | Volume 6 | Article 26 | 1

http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/journal/10.3389/fphys.2015.00026/abstract
http://community.frontiersin.org/people/u/183196
http://community.frontiersin.org/people/u/12979
mailto:alan.garny@inria.fr
http://cellml.org
http://opencor.ws
http://cellml.org
http://sbml.org
http://sed-ml.org
http://co.mbine.org
http://w3.org/XML
http://w3.org/Math
http://w3.org/TR/REC-rdf-syntax
http://cor.physiol.ox.ac.uk
http://opencell.org
http://opencor.ws
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

and some information on its development process (Section
Software Development). Several aspects of OpenCOR are
then illustrated, including its user interface (Section User
Interfaces), its help plugin (Section Help Plugin), its organi-
zation plugins (Section Organization Plugins), its editing plu-
gins (Section Editing Plugins), its simulation plugin (Section
Simulation Plugin) and its solver plugins (Section Solver Plugins).
Some discussions on programming languages and frameworks
(Section Programming Languages and Frameworks), the CellML
API1 (Section CellML API), the Editing mode (Section Editing
Mode), the Simulation mode (Section Simulation Mode), other
standards (Section Other Standards) and other CellML tools
(Section Other CellML Tools) come next, completed by some
concluding remarks (Section Conclusion).

MATERIALS AND METHODS
GENERAL PHILOSOPHY
From the outset, OpenCOR was designed to be a modeling envi-
ronment that can be used to organize, edit, simulate and analyze
mathematical models. Initial support for those models was to
come through CellML. However, OpenCOR had to be modular,
so that support for other standards and formats (e.g., from the
COMBINE initiative: SBML, SED-ML, etc.) could be added to
it. This modularity was also to be used to add new capabilities
to OpenCOR (e.g., a new way to edit models, a new numeri-
cal solver). Finally, OpenCOR was to be usable both from the
command line and from a GUI, and this on Windows, Linux
and OS X.

OPENNESS
Open source license
OpenCOR was always intended to be an open source project, but
the license under which it was to be released had to be approved
by the Open Source Initiative (OSI; opensource.org), be busi-
ness friendly, offer patent protection, have no copyleft require-
ments, and be compatible with major OSI licenses. Apache 2.0
(opensource.org/licenses/Apache-2.0) is one such license and it is
the license under which OpenCOR is released.

Online presence
As a project, OpenCOR tries to be as transparent as possible
through its online presence. Its source code is thus available on
GitHub (github.com) at github.com/opencor/opencor, which is
also where all current (and former) bugs, feature requests, etc.
can be found (github.com/opencor/opencor/issues).

As part of its software development process (see Subsection
Codebase), OpenCOR is regularly built and tested on Linux and
OS X, using the free service provided by Travis CI (travis-ci.org).
The outcome of those builds and tests is available online at
travis-ci.org/opencor/opencor.

OpenCOR has its own website (opencor.ws). It consists of a
downloads section, which includes both the official releases and
the recent snapshots of OpenCOR (opencor.ws/downloads). It
also consists of a copy of both the user and developer documenta-
tions (opencor.ws/user and opencor.ws/developer, respectively).

1API, Application Programming Interface.

Except for one noticeable feature (see Section Help plugin), both
the online and the embedded (in OpenCOR) versions of the
user documentation are the same. The developer documenta-
tion is only available online, though it can also be found in
the OpenCOR GitHub repository (as can the rest of the website
contents).

SOFTWARE DEVELOPMENT
Prerequisites
The OpenCOR project is set up in such a way that only Git
(git-scm.com), CMake (cmake.org), a C++ toolchain and the Qt
framework (qt.io) are needed to build, test and run OpenCOR
(opencor.ws/developer/buildTestAndRun.html), and to package
it (opencor.ws/developer/package.html). However, compilation
can be sped up by using Ninja (martine.github.io/ninja),
and additional packages can be generated by using NSIS
(nsis.sourceforge.net) on Windows and PackageMaker on OS X
(opencor.ws/developer/prerequisites.html).

Codebase
A specific file structure (opencor.ws/developer/fileStructure.
html) is used to keep track of the various OpenCOR files. To
make the OpenCOR source code as consistent and as maintain-
able as possible, a specific coding style is also followed (opencor.
ws/developer/develop/codingStyle.html). Work on the OpenCOR
codebase is referenced in GitHub issues (opencor.ws/developer/
develop), which upon closing trigger a Travis CI job, to ensure
that OpenCOR still builds and tests fine on both Linux and OS
X (Travis CI does not currently support Windows). Depending
on the work that has been done, a snapshot version of OpenCOR
may also be released.

Modular approach
As a modular application, OpenCOR is effectively an empty
shell, to which features are added by enabling one or several
plugins (opencor.ws/developer/develop/plugins). To that end,
OpenCOR supports various interfaces. For example, the GUI
interface can be implemented by a plugin to let OpenCOR know
about the menus and menu actions that the plugin wants to
see added to the GUI, as well as for the plugin to be told
whenever the GUI needs to be updated. By implementing one
or several of those interfaces, it is possible to create differ-
ent types of plugins, including multilingual ones (opencor.ws/
developer/develop/internationalisation.html). Test-driven devel-
opment (TDD) is also supported, at the plugin level (opencor.ws/
developer/develop/tests.html), and plugins that implement TDD
have their tests automatically run by Travis CI.

The developer documentation provides some information
on how to develop plugins for OpenCOR. The Sample plugin
(opencor.ws/developer/develop/plugins/Sample.html) is a non-
selectable plugin (see Subsection Plugins window). It contains
a simple add() function that can be used by other plugins,
such as the Sample tools plugin (opencor.ws/developer/develop/
plugins/SampleTools.html). That latter plugin makes it possible
to add two numbers using either the CLI or the GUI version of
OpenCOR. The Sample window plugin (opencor.ws/developer/
develop/plugins/SampleWindow.html) implements another type

Frontiers in Physiology | Computational Physiology and Medicine February 2015 | Volume 6 | Article 26 | 2

http://opensource.org
http://opensource.org/licenses/Apache-2.0
http://github.com
http://github.com/opencor/opencor
http://github.com/opencor/opencor/issues
http://travis-ci.org
http://travis-ci.org/opencor/opencor
http://opencor.ws
http://opencor.ws/downloads
http://opencor.ws/user
http://opencor.ws/developer
http://git-scm.com
http://cmake.org
http://qt.io
http://opencor.ws/developer/buildTestAndRun.html
http://opencor.ws/developer/package.html
http://martine.github.io/ninja
http://nsis.sourceforge.net
http://opencor.ws/developer/prerequisites.html
http://opencor.ws/developer/fileStructure.html
http://opencor.ws/developer/fileStructure.html
http://opencor.ws/developer/develop/codingStyle.html
http://opencor.ws/developer/develop/codingStyle.html
http://opencor.ws/developer/develop
http://opencor.ws/developer/develop
http://opencor.ws/developer/develop/plugins
http://opencor.ws/developer/develop/internationalisation.html
http://opencor.ws/developer/develop/internationalisation.html
http://opencor.ws/developer/develop/tests.html
http://opencor.ws/developer/develop/tests.html
http://opencor.ws/developer/develop/plugins/Sample.html
http://opencor.ws/developer/develop/plugins/SampleTools.html
http://opencor.ws/developer/develop/plugins/SampleTools.html
http://opencor.ws/developer/develop/plugins/SampleWindow.html
http://opencor.ws/developer/develop/plugins/SampleWindow.html
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

of plugin by extending the Sample plugin and providing
a dockable window to add two numbers. Finally, there is
the Sample view plugin (opencor.ws/developer/develop/plugins/
SampleView.html), which can be used to get some information
on the current file (e.g., its SHA-1 value, its size).

Third-party libraries
OpenCOR makes use of the “official” CellML API (cellml-
api.sourceforge.net; Miller et al., 2010) and several
software- and image-based third-party libraries (opencor.ws/
developer/thirdPartyLibraries.html). To build the CellML API
requires additional build dependencies. As a consequence, it is
not included in the OpenCOR build process. Instead, the CellML
API is built on the side and its binaries are retrieved by CMake
when building the CellML API plugin.

Software-based third-party libraries are either built as part of
OpenCOR itself or as plugins, and are therefore included in the
OpenCOR codebase. However, to save compilation time, CMake
retrieves a pre-built version of the third-party plugins, although
those can be individually included in the build process, if
needed.

The third-party libraries built as plugins are LLVM (llvm.org),
QScintilla (riverbankcomputing.co.uk/software/qscintilla), Qwt
(qwt.sourceforge.net) and SUNDIALS (computation.llnl.gov/
casc/sundials; Hindmarsh et al., 2005). LLVM is a collection
of modular and reusable compiler and toolchain technolo-
gies (it includes Clang, a compiler frontend to LLVM; see
Section Simulation plugin), QScintilla an editing widget (see
Subsections Raw view plugin and Raw CellML view plugin), Qwt
a set of widgets (see Subsection Raw CellML view plugin and
Section Simulation plugin), and SUNDIALS a suite of non-linear
and differential/algebraic equation solvers (see Section Solver
plugins).

RESULTS
USER INTERFACES
OpenCOR can be run both as a CLI and a GUI application.
However, so far, the focus has mainly been on its GUI version.

Command line interface
Besides typical CLI features (help, version and about informa-
tion), the CLI version of OpenCOR can list the CLI plugins that
are available (only the CellML tools plugin for now), as well as
provide the status of all the plugins (i.e., the CellML tools plugin
and all the other plugins on which it depends), as illustrated at
opencor.ws/user/userInterfaces/commandLineInterface.html.

The CellML tools plugin works with both the CLI and GUI
versions of OpenCOR (opencor.ws/user/plugins/miscellaneous/
CellMLTools.html). It is used to export a CellML 1.1 file to CellML
1.0. It can also be used to export a CellML file to a user-defined
format. Several such formats for C, FORTRAN 77, MATLAB and
Python are shipped with OpenCOR.

Graphical user interface
Figure 1 shows what the GUI version of OpenCOR looks
like when started for the very first time (opencor.ws/user/
userInterfaces/graphicalUserInterface.html). Initially, no files are
opened, so the OpenCOR logo is shown in the central area of the

GUI. Upon opening a file, the logo is replaced with a rendering
of the file. The rendering is based on the selected mode and view
(to the left and to the right of the central area, respectively). There
are currently two modes available: Editing and Simulation. Each
mode offers one or several views. In the case of the Editing mode,
those views are the CellML Annotation view, the Raw view and the
Raw CellML view.

The four windows (the CellML Model Repository, the File
Browser, the File Organiser and the Help windows) to the left and
to the right of the central area can be docked anywhere around
that area. Alternatively, they can be hidden or undocked.

Plugins Window
As previously mentioned, every feature available in OpenCOR
comes as a plugin. Figure 2 shows the Plugins window. It lists all
the plugins available in OpenCOR, grouped in different categories
for convenience. There are two types of plugins: selectable and
non-selectable. Non-selectable plugins provide some functional-
ity (e.g., CellML support), but they are of no use on their own.
They can, however, be used by other plugins, be they selectable or
not (opencor.ws/user/plugins).

HELP PLUGIN
The Help window plugin provides a dockable window that
contains the user documentation (Figure 3; opencor.ws/user/
plugins/miscellaneous/HelpWindow.html). Its contents is the
same as the one that can be found online (opencor.ws/user).
This includes a menu that gets shown whenever you move your
mouse pointer over the information icon (top right of the Help
window).

In addition to what is shown online, the Help window also
displays special links, which when clicked send a command to
OpenCOR. For example, one such link is used to open the About
box. This feature has yet to be fully taken advantage of, but an area
where it could be useful is the development of tutorials where sim-
ilar links could be used to execute particular steps (e.g., to create
a new CellML file, to start a simulation).

ORGANIZATION PLUGINS
There are three organization plugins: the CellML Model Repository
window plugin, the File Browser window plugin and the File
Organiser window plugin (from top to bottom of the left hand
side of Figure 1).

CellML Model Repository window plugin
The CellML Model Repository window plugin offers a simple inter-
face to the CellML Model Repository (models.physiomeproject.
org/cellml). By default, it lists all the CellML models found
in the repository (opencor.ws/user/plugins/organisation/CellML
ModelRepositoryWindow.html). However, the list can be filtered
using either some plain text or a regular expression. To click on
any of the listed links will open the workspace for that model
in the user’s default web browser. From there, the user can, for
example, retrieve the latest exposure for that model.

File browser window plugin
The File Browser window plugin provides a convenient way
to access the user’s physical files (opencor.ws/user/plugins/

www.frontiersin.org February 2015 | Volume 6 | Article 26 | 3

http://opencor.ws/developer/develop/plugins/SampleView.html
http://opencor.ws/developer/develop/plugins/SampleView.html
http://cellml-api.sourceforge.net
http://cellml-api.sourceforge.net
http://opencor.ws/developer/thirdPartyLibraries.html
http://opencor.ws/developer/thirdPartyLibraries.html
http://llvm.org
http://riverbankcomputing.co.uk/software/qscintilla
http://qwt.sourceforge.net
http://computation.llnl.gov/casc/sundials
http://computation.llnl.gov/casc/sundials
http://opencor.ws/user/userInterfaces/commandLineInterface.html
http://opencor.ws/user/plugins/miscellaneous/CellMLTools.html
http://opencor.ws/user/plugins/miscellaneous/CellMLTools.html
http://opencor.ws/user/userInterfaces/graphicalUserInterface.html
http://opencor.ws/user/userInterfaces/graphicalUserInterface.html
http://opencor.ws/user/plugins
http://opencor.ws/user/plugins/miscellaneous/HelpWindow.html
http://opencor.ws/user/plugins/miscellaneous/HelpWindow.html
http://opencor.ws/user
http://models.physiomeproject.org/cellml
http://models.physiomeproject.org/cellml
http://opencor.ws/user/plugins/organisation/CellMLModelRepositoryWindow.html
http://opencor.ws/user/plugins/organisation/CellMLModelRepositoryWindow.html
http://opencor.ws/user/plugins/organisation/FileBrowserWindow.html
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 1 | Graphical user interface. The graphical user interface consists
of a central area where files are loaded and rendered (the OpenCOR logo is
shown, if no files are opened). The rendering of a file depends on the
selected view (to the right of the central area). In the case of the Editing
mode (to the left of the central area), the views currently available are the

CellML Annotation view, the Raw view and the Raw CellML view. Several
windows (the CellML Model Repository window, the File Browser window,
the File Organiser window and the Help window) are also available. By
default, they are docked around the central area, but they can also be hidden
or undocked.

organisation/FileBrowserWindow.html). It starts with the user’s
home directory and, from one session to another, remembers the
folder or file that was last selected. As can be expected, to dou-
ble click on a folder will expand its contents while double clicking
on a file will open it in OpenCOR. The rendering of the file will
depend on the mode and view being currently selected. Files can
be dragged from the File Browser window and dropped on to the
File Organiser window.

File Organiser window plugin
The File Organiser window plugin allows a user to organize
his/her files in a virtual manner, i.e., independently of where they
are physically located (opencor.ws/user/plugins/organisation/
FileOrganiserWindow.html). The virtual environment is remem-
bered from one session to another and is originally empty.
(Nested) virtual folders can be created to contain links to physical
files. A virtual folder can be moved around, renamed or deleted.
A link can also be deleted, if it is not needed anymore. Finally, in

addition to using the File Browser window to drag and drop files
on to the File Organiser window, any file manager can also be used
for that purpose.

EDITING PLUGINS
There are currently three view plugins that can be used to edit
CellML and non-CellML files: the CellML Annotation view plugin,
the Raw view plugin and the Raw CellML view plugin.

CellML Annotation view plugin
The CellML Annotation view plugin is used to annotate
CellML files (Figure 4; opencor.ws/user/plugins/editing/
CellMLAnnotationView.html). The annotation is done at the
CellML element level and consists of creating a clear relation-
ship between a CellML element and a resource. A CellML
element must be selected from the tree located to the left of
the view. Next, to ensure the unambiguity of the relationship,
we must select one of the several BioModels.net qualifiers

Frontiers in Physiology | Computational Physiology and Medicine February 2015 | Volume 6 | Article 26 | 4

http://opencor.ws/user/plugins/organisation/FileBrowserWindow.html
http://opencor.ws/user/plugins/organisation/FileOrganiserWindow.html
http://opencor.ws/user/plugins/organisation/FileOrganiserWindow.html
http://opencor.ws/user/plugins/editing/CellMLAnnotationView.html
http://opencor.ws/user/plugins/editing/CellMLAnnotationView.html
http://biomodels.net
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 2 | Plugins window. Several plugins are available, grouped in
different categories. Grayed out plugins cannot be manually selected
since they refer to a plugin that provides some functionality (e.g.,

CellML support), but that is of no use to OpenCOR on its own. Instead,
they are automatically selected if they are needed by a selected
selectable plugin.

(co.mbine.org/standards/qualifiers). Finally, a suitable resource
needs to be used. In the context of computational biology,
such a resource is understood to be a term from an established
ontology (e.g., CHEBI, FMA, GO). However, there are thousands
of ontological terms, so to help the user choose a suitable
ontological term, a search term or a regular expression can be
entered, for the view to use to retrieve a list of matching terms
from different ontologies. The retrieval itself is done by sending a
request to an instance of RICORDO (ricordo.eu; de Bono et al.,
2011). Using that list, the user can decide which ontological term
to use, after looking it up, if needed (as illustrated in Figure 4
by looking up the “voltage-gated sodium channel complex”
term from the GO ontology). Annotations are stored using RDF
triples (w3.org/TR/rdf11-concepts) with ontological terms in

the form of identifiers.org URIs 2 (MIRIAM URNs 3 are also
recognized, although they have now been deprecated in favor of
identifiers.org URIs; Laibe and Le Novère, 2007; Juty et al., 2011).

Raw view plugin
The Raw view plugin allows the editing of text-based files using
the QScintilla widget (Figure 5; opencor.ws/user/plugins/editing/
RawView.html). Its font size can be increased and decreased, as
needed, and traditional editing features, such as copying/pasting,
undoing/redoing, etc. are available. A find/replace feature is also
available, together with support for regular expressions.

2URI, Uniform Resource Identifier.
3URN, Uniform Resource Name.

www.frontiersin.org February 2015 | Volume 6 | Article 26 | 5

http://co.mbine.org/standards/qualifiers
http://ricordo.eu
http://w3.org/TR/rdf11-concepts
http://identifiers.org
http://identifiers.org
http://opencor.ws/user/plugins/editing/RawView.html
http://opencor.ws/user/plugins/editing/RawView.html
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 3 | Help window. The Help window shows the contents of the online user documentation (opencor.ws/user).

Raw CellML view plugin
The Raw CellML view plugin builds on the Raw view plu-
gin (Figure 5) by adding syntax highlighting for CellML
files (Figure 6; opencor.ws/user/plugins/editing/RawCellMLView.
html). The panel above the editor uses the Qwt library to visual-
ize mathematical equations in real-time, as well as to copy them
to the clipboard for use in other programs, if needed. For an
equation to be rendered, the editor’s caret must be within a valid
applyMathML block. If this is not the case, nothing is displayed
while a warning sign is displayed if the block is not valid. Different
aspects of the panel can be customized: its font size, the grouping
of digits, and the rendering of subscripts and Greek symbols. The
view can also be used to validate a CellML file. If the CellML file
is invalid, a list of errors and/or warnings will be displayed, and to
click on any of them will get the editor to jump to the offending
line/column.

SIMULATION PLUGIN
The Simulation mode currently consists of the Single Cell
view plugin (Figure 7; opencor.ws/user/plugins/simulation/
SingleCellView.html), which can be used to run CellML files that
describe a system of ODEs or DAEs. For the view to be usable,
it needs a model to be in the form of a runtime. In the case of a
CellML file, this first means converting the model to C code using
the CellML API. The runtime is then obtained by compiling, on
the fly, the C code using LLVM/Clang.

Graphical user interface
The view consists of two main parts, the first of which allows
the user to customize the simulation, the solver and the model
parameters, as well as to create graphs. The second part is used to
render the graphs using the Qwt library. All the model parame-
ters listed in the Parameters section have an icon associated with
them, based on their type: variable of integration (a cyan-filled
circle), (editable) constant (a red hollow circle), computed con-
stant (a red-filled circle), (editable) state (a blue hollow circle),
rate (a blue-filled circle) or algebraic (a green-filled circle).

Running a model
To run a model, the user needs to provide some information
about the simulation itself, i.e., its starting point, ending point
and point interval. Then, s/he needs to select and, if needed,
customize a solver. This done, the model can be run and its sim-
ulation data plotted and/or exported to a comma-separated value
(CSV) file.

However, this is assuming that there is enough memory to run
the model and keep all of its simulation data in memory. This is
so that graphs can be added after a model has been run, although
graphs can be added at any point in time, including prior to run-
ning a model. By default, the view has one graph panel with no
graphs associated with it, but additional graph panels and graphs
can be added, if needed. For example, in Figure 7, there are two
graph panels with one graph each.

Frontiers in Physiology | Computational Physiology and Medicine February 2015 | Volume 6 | Article 26 | 6

http://opencor.ws/user
http://opencor.ws/user/plugins/editing/RawCellMLView.html
http://opencor.ws/user/plugins/editing/RawCellMLView.html
http://opencor.ws/user/plugins/simulation/SingleCellView.html
http://opencor.ws/user/plugins/simulation/SingleCellView.html
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 4 | CellML Annotation view. The CellML Annotation view allows the annotation of CellML files using both BioModels.net qualifiers and ontological
terms from different ontologies (e.g., CHEBI, FMA, GO).

Plotting simulation data
A graph is the result of plotting a model parameter against
another. For instance, in the top graph panel of Figure 7, we plot-
ted the parameter V (from the component membrane) against
the variable of integration, which here is time. In the bottom
graph panel of that same figure, we plotted the same parameter
V, but this time against its derivative, i.e., V’, as can be seen under
the Graphs section.

The layout of the view is independent of the file that is cur-
rently selected. This is so that graphs can be created and used
with more than just one file and therefore simulation. Looking
at Figure 7, we could open and run another CellML file, and the
same graphs would be used. That is, as long as that other CellML
file has the same variable of integration and parameter V. If it is
not the case, then a warning sign will be displayed in front of the
graph entry.

A graph can be locked, in which case it will always be linked
to a particular CellML file. This feature can, for example, be used
to compare the simulation data of two CellML files A and B by
having two identical graphs with one of them locked (on, say, A)
and by having B selected.

Interacting with a simulation
By default, a simulation will run until it reaches its ending point,
but it can also be paused and one or several of its parameter values
changed, before being resumed. This is what was done in Figure 7

after ∼575 ms worth of simulation (see the top graph panel).
However, to pause a simulation at a suitable point can be tricky.
The view therefore offers a means to artificially slow a simulation
down, a feature which can also be useful in a teaching setup.

Multithreading
Finally, to keep the GUI responsive, each simulation is run in its
own thread. This means that several simulations can also be run
in parallel.

SOLVER PLUGINS
Solver plugins are of no use on their own, but they can nonethe-
less be selected (see Subsection Plugins window; Figure 2). This
is so that they can, based on the type of a model (i.e., ODE or
DAE), be made available to the user when in Simulation mode
(see Section Simulation plugin).

OpenCOR supports three types of solvers: ODE, DAE, and
non-linear algebraic (NLA). The latter type is for ODE and DAE
models that require solving one or several systems of NLA equa-
tions. To solve such a model, a simulation view like the Single Cell
view (Figure 7) needs access to an ODE or a DAE solver, as well
as to an NLA solver.

Most of the solvers currently shipped with OpenCOR are
for solving ODE systems. They implement simple methods
such as the Forward Euler method, the Heun’s method and
the (second- and fourth-order) Runge-Kutta methods. However,

www.frontiersin.org February 2015 | Volume 6 | Article 26 | 7

http://biomodels.net
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 5 | Raw view. The Raw view offers a way to edit files using a text-based editor.

more advanced solvers are also available through the SUNDIALS
library. They are CVODE, IDA, and KINSOL for ODE, DAE, and
NLA systems, respectively.

DISCUSSION
PROGRAMMING LANGUAGES AND FRAMEWORKS
OpenCOR and its plugins are written in C++ using the Qt frame-
work. In comparison, COR is written in Delphi (Object Pascal)
using the VCL framework while OpenCell is written in JavaScript
using the XUL framework. Those languages (and others; e.g., Java,
Python) and frameworks (and others; e.g., Swing, wxWidgets)
have been used or evaluated either by ourselves or some of our
close collaborators.

Qt framework
The general consensus was that we should use Qt for OpenCOR.
Qt is a cross-platform framework that has now been around for
nearly 20 years. It is used in some worldwide projects (e.g., KDE,
a cross-platform desktop environment), and it can nowadays be
fully used under open source license.

C++ language
The choice of the C++ language was more subjective, but it was
nonetheless made for mainly three reasons. Qt is written in C++,
so interaction with Qt is inherently easier in C++ and new Qt

releases can be used without delay. The same argument holds
true with many third-party libraries, which tend to be written
in C/C++ (e.g., LLVM, SUNDIALS). Finally, the overall speed
of a compiled language such as C++ is particularly valuable
when it comes to the responsiveness of a scientific application like
OpenCOR.

Python support
However, many people like the flexibility that comes with using
Python, in particular when used with libraries such as NumPy
(numpy.org) and SciPy (scipy.org). For this reason, we have
started work on adding support for Python in OpenCOR, via
PythonQt (pythonqt.sourceforge.net). As a proof of concept, we
came up with a simple Python console window, from which the
user can interact with simulation data (e.g., to calculate, using
SciPy, an FFT 4 from a time series). Ultimately, we will want to be
able to interact with various aspects of OpenCOR using Python
scripts, as well as have plugins written in Python.

CELLML API
“Official” CellML API vs.own CellML API
Neither CellML 1.1 nor the “official” CellML API was released
or available when work on COR started. COR therefore had to

4FFT, Fast Fourier Transform.

Frontiers in Physiology | Computational Physiology and Medicine February 2015 | Volume 6 | Article 26 | 8

http://numpy.org
http://scipy.org
http://pythonqt.sourceforge.net
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 6 | Raw CellML view. The Raw CellML view builds on the Raw view (Figure 5) by adding syntax highlighting for CellML files. For user convenience,
mathematical equations are rendered above the editor and in real-time. CellML files can also be validated, resulting in a list of errors/warnings, if needed.

rely on its own CellML API, which only supports CellML 1.0. In
contrast, both OpenCOR and OpenCell use the “official” CellML
API and, as such, support both CellML 1.0 and CellML 1.1 “out
of the box.”

Move to libCellML
However, the “official” CellML API is known to have some
limitations (e.g., it may wrongly (in)validate certain CellML
files). For those reasons and others, the CellML editorial board
(cellml.org/community/editorial_board) decided that a complete
rewrite of the API was necessary. So far, no specific timeline has
been set for the release of libCellML, the future “official” CellML
API. However, CellML support in OpenCOR is done through an
intermediate layer that sits between OpenCOR and the CellML
API. Support for libCellML should not therefore affect the layer
interface, just its implementation.

EDITING MODE
CellML annotation capabilities
CellML annotation in OpenCOR consists of annotating any
CellML element with one or several ontological terms. For exam-
ple, we may have Ca_i isVersionOf “calcium,” but this is not
precise enough. Ideally, we would like to be able to say that
Ca_i is “concentration” of “calcium” in “cytosol.” This type of

annotation is known as composite annotation and will eventually
be supported in OpenCOR through the RICORDO knowledge-
base (ricordo.eu; de Bono et al., 2011), as part of our contribution
to the Virtual Physiological Rat project (virtualrat.org).

CellML authoring capabilities
The Raw CellML view plugin allows the editing and validation of
CellML files, but to edit raw CellML is neither ideal nor efficient.
In COR, CellML authoring is done through an intermediate for-
mat, which is a mixture of C and Pascal syntax. Upon loading a
CellML file, COR converts the raw CellML code to its interme-
diate format, for the user to edit. This format is then converted
back to raw CellML code for saving on disk. This approach has
been well received by both novice and expert users of CellML,
with some novice users being able to encode their model with-
out any prior knowledge of CellML. Our intent is to replicate this
approach in OpenCOR, starting from the Raw CellML view plu-
gin and adding support for COR’s intermediate format, to create
a Pretty CellML view plugin.

SIMULATION MODE
CellML-based approach
CellML files must be processed before the mathematical model
they encode can be executed. In OpenCOR, this requires

www.frontiersin.org February 2015 | Volume 6 | Article 26 | 9

http://cellml.org/community/editorial_board
http://ricordo.eu
http://virtualrat.org
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

FIGURE 7 | Single Cell view. The Single Cell view can be used to run CellML files that describe a system of differential equations, be they ordinary or
algebraic. Different solvers can be used and any model parameter can be plotted against any other.

converting a CellML file to C code, which in turn is compiled to
get a runtime that is used to execute the encoded model. This is
in contrast with the traditional approach where a mathematical
model is directly implemented in some programming language.
Such an implementation can be optimized by using techniques
like partial evaluation and lookup tables (Vigmond et al., 2003),
or by targeting GPUs 5 (Neic et al., 2012). Similar optimization
techniques can also be (automatically, this time) applied to a
CellML file (Cooper et al., 2006), but the resulting code will never
be as fast as its handcrafted equivalent.

On the other hand, to implement a mathematical model
the traditional way is both time-consuming and error prone.
Also, the range of modeling studies that can be carried out
is limited to the models that have been implemented while,
with nearly 600 models, the CellML Model Repository (models.
physiomeproject.org/cellml) makes a CellML-based approach
very attractive (e.g., Fink et al., 2011).

Computational speed
Computational speed is an important consideration when run-
ning long and/or complex simulations. So far, COR has proven
to be the fastest among various CellML tools (Garny et al., 2008).

5GPU, Graphics Processing Unit.

This result is largely explained by the use, in COR, of advanced
computational techniques, as well as by some of COR’s own
limitations. For example, OpenCOR keeps track of all model
parameters while COR only keeps track of those that it plots.
Also, OpenCOR relies on LLVM (llvm.org), a generic compiler
solution, while COR uses a bespoke compiler. As a consequence,
OpenCOR was never going to be as fast as COR. Yet, not only it
is well within the same order of magnitude as COR, but it is also
faster than OpenCell.

Data formats
At the moment, simulation data can be exported to the CSV
format. This feature was originally part of the Single Cell view
plugin. However, support for other formats such as BioSignalML
(biosignalml.org; Brooks et al., 2011) would improve the
exchange and reuse of biosignals. Therefore, OpenCOR now
implements a data store architecture, which can be used by data
store plugins to add support for additional data formats. A CSV
data store plugin has been created, and is now shipped with
OpenCOR. A similar data store plugin will also be created for
BioSignalML. As for solver plugins, data store plugins are of no
use on their own, but they are selectable nonetheless, so that a
view plugin like the Single Cell view plugin can retrieve them and
make them available to users.

Frontiers in Physiology | Computational Physiology and Medicine February 2015 | Volume 6 | Article 26 | 10

http://models.physiomeproject.org/cellml
http://models.physiomeproject.org/cellml
http://llvm.org
http://biosignalml.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

OTHER STANDARDS
OpenCOR’s plugin architecture allows for other formats and
standards to be supported. SED-ML (sed-ml.org; Waltemath
et al., 2011) is one such (XML-based) format. It is used to describe
virtual experiments and is therefore critical for reproducible com-
putational biology. For that last reason alone, it is essential that
we add SED-ML support to OpenCOR, both to the Editing and
Simulation modes. The Simulation mode will have to be extended
to the CLI version of OpenCOR, so that SED-ML files can be gen-
erated (through Python scripting, for example) and executed in a
“batch mode” manner, if needed. Such a feature will also be use-
ful in parameter sweep studies where OpenCOR could be used on
facilities such as VPH-Share (vph-share.eu).

OTHER CELLML TOOLS
OpenCOR and its predecessors, COR and OpenCell, are the only
native CellML environments available. There are, however, several
tools that offer various levels of support for CellML.

“Official” CellML API vs.own CellML API
CSim (code.google.com/p/cellml-simulator), eSolv (esolv.nl)
and OpenCMISS (Bradley et al., 2011; physiomeproject.
org/software/opencmiss) use the “official” CellML API, which
means that they support both versions of CellML “out of
the box.” In contrast, tools that use either their own CellML
API (like COR; see Subsection “Official” CellML API vs. own
CellML API) or their own CellML import mechanism tend
to support only CellML 1.0. This is the case, for example,
with CESE (cese.sourceforge.net), Chaste (Mirams et al.,
2013; www.cs.ox.ac.uk/chaste), JSim (Butterworth et al., 2014;
physiome.org/jsim), Myokit (Clerx et al., 2014; myokit.org) and
VCell (Moraru et al., 2008; vcell.org).

Features of interest
Despite this shortcoming, some of those tools have features worth
pointing out. For instance, in the context of reproducible com-
putational biology, Chaste, CSim and Myokit offer attractive
alternatives to OpenCOR. Support for reproducibility in CSim is
done via SED-ML (see Section Other standards) while in Chaste
and Myokit it is done via their own syntax (Cooper et al., 2014).

An important aspect of CellML is that all the quantities used
in a model must have units associated with them. The “official”
CellML API does support units checking, but it is limited while
it is comprehensive in COR, JSim and PyCml (part of Chaste).
COR uses PyCml’s algorithm and therefore offers better units
checking than OpenCOR. However, this will soon change with
the release of the Pretty CellML view (see Subsection CellML
authoring capabilities).

CellML tools traditionally target CPUs 6. This is the case with
Myokit, but it also targets GPUs using either CUDA (nvidia.com/
object/cuda_home_new.html) or OpenCL (khronos.org/opencl).
This is a direction that OpenCMISS is also taking (Nickerson
et al., 2014), in addition to targeting FPGAs 7. It is hoped that
this work will be contributed back to the “official” CellML API,

6CPU, Central Processing Unit.
7FPGA, Field Programmable Gate Array.

which would thus make it possible for OpenCOR to target GPUs
and FPGAs too.

Both Chaste and OpenCMISS are numerical libraries that
can be used for multiscale modeling. As illustrated in Section
Simulation plugin, the focus of OpenCOR is currently on single
cell modeling. However, in a similar way to what has been done
with the “official” CellML API, it might be possible to make plu-
gins out of those libraries, in which case OpenCOR could also be
used for (some simple) multiscale modeling.

CONCLUSION
OpenCOR is a cross-platform modeling environment that
replaces both COR and OpenCell. It can be freely used by compu-
tational biologists to organize, edit, simulate and analyze models
that describe a system of ODEs or DAEs encoded in the CellML
format.

However, OpenCOR’s CellML authoring capabilities still lag
behind those of COR, but this issue is being addressed and will
soon result in the release of the Pretty CellML view, which in turn
will result in the official retirement of both COR and OpenCell.

Looking ahead, reproducibility is an important aspect of com-
putational biology and should be addressed in OpenCOR. We will
therefore be doing this by adding support for SED-ML in both the
Editing and Simulation modes of OpenCOR.

ACKNOWLEDGMENTS
This work is supported in part by the VPR Project NIH-NIGMS
GM094503. The authors would like to thank the Asclepios team at
Inria, France, for kindly hosting Alan Garny. The authors would
also like to thank David Brooks for his work on data stores and
Python support in OpenCOR.

REFERENCES
Ausbrooks, R., Buswell, S., Dalmas, S., Devitt, S., Diaz, A., Hunter, R., et al. (2001).

Mathematical Markup Language (MathML) version 2.0. Available online at:
w3.org/TR/MathML2

Bradley, C., Bowery, A., Britten, R., Budelmann, V., Camara, O., Christie, R., et al.
(2011). OpenCMISS: a multi-physics & multi-scale computational infrastruc-
ture for the VPH/Physiome project. Prog. Biophys. Mol. Biol. 107, 32–47. doi:
10.1016/j.pbiomolbio.2011.06.015

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and Maler, E. (2000). Extensible
Markup Language (XML) 1.0. (5th Edn). Available online at: w3.org/TR/REC-
xml.

Brooks, D. J., Hunter, P. J., Smaill, B. H., and Titchener, M. R. (2011). BioSignalML–
a meta-model for biosignals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011,
5670–5673. doi: 10.1109/IEMBS.2011.6091372

Butterworth, E., Jardine, B. E., Raymond, G. M., Neal, M. L., and Bassingthwaighte,
J. B. (2014). JSim, an open-source modeling system for data analysis [v3; ref sta-
tus: indexed, http://f1000r.es/3n0]. F1000Res. 2. doi: 10.12688/f1000research.2-
288.v3

Clerx, M., Volders, P. G. A., and Collins, P. (2014). Myokit: a framework
for computational cellular electrophysiology. CinC. Available online at:
http://www.cinc.org/2014/pre-prints/61-151.pdf.

Cooper, J., McKeever, S., and Garny, A. (2006). “On the application of partial eval-
uation to the optimisation of cardiac electrophysiological simulations,” in Conf.
Proc. PEPM’06. (New York, NY), 12–20. doi: 10.1145/1111542.1111546

Cooper, J., Vik, J. O., and Waltemath, D. (2014). A call for virtual experiments:
accelerating the scientific process. Peer.J. PrePrints, 2:e273v1. doi: 10.7287/peerj.
preprints.273v1. [Epub ahead of print].

Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., and
Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description
language. Simulation 79, 740–747. doi: 10.1177/0037549703040939

www.frontiersin.org February 2015 | Volume 6 | Article 26 | 11

http://sed-ml.org
http://vph-share.eu
http://code.google.com/p/cellml-simulator
http://esolv.nl
http://physiomeproject.org/software/opencmiss
http://physiomeproject.org/software/opencmiss
http://cese.sourceforge.net
http://www.cs.ox.ac.uk/chaste
http://physiome.org/jsim
http://myokit.org
http://vcell.org
http://nvidia.com/object/cuda_home_new.html
http://nvidia.com/object/cuda_home_new.html
http://khronos.org/opencl
http://w3.org/TR/MathML2
http://f1000r.es/3n0
http://www.cinc.org/2014/pre-prints/61-151.pdf
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Garny and Hunter OpenCOR

de Bono, B., Hoehndorf, R., Wimalaratne, S., Gkoutos, G., and Grenon, P. (2011).
The RICORDO approach to semantic interoperability for biomedical data
and models: strategy, standards and solutions. BMC Res. Notes. 4:313. doi:
10.1186/1756-0500-4-313

Fink, M., Noble, P. J., and Noble, D. (2011). Ca2+-induced delayed afterdepolar-
izations are triggered by dyadic subspace Ca2+ affirming that increasing SERCA
reduces aftercontractions. Am. J. Physiol. Heart Circ. Physiol. 301, H921–H935.
doi: 10.1152/ajpheart.01055.2010

Garny, A., Kohl, P., and Noble, D. (2003). Cellular Open Resource (COR): a public
CellML based environment for modelling biological function. Int. J. Bif. Chaos.
13, 3579–3590. doi: 10.1142/S021812740300882X

Garny, A., Nickerson, D. P., Cooper, J., Weber dos Santos, R., Miller, A. K.,
McKeever, S., et al. (2008). CellML and associated tools and techniques. Phil.
Trans. R. Soc. A. 366, 3017–3043. doi: 10.1098/rsta.2008.0094

Garny, A., Noble, D., Hunter, P. J., and Kohl, P. (2009). Cellular Open Resource
(COR): current status and future directions. Phil. Trans. R. Soc. A. 367,
1885–1905. doi: 10.1098/rsta.2008.0289

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E.,
et al. (2005). SUNDIALS: suite of nonlinear and differential/Algebraic equation
solvers. ACM Trans. Math. Soft. 31, 363–396. doi: 10.1145/1089014.1089020

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al.
(2003). The systems biology markup language (SBML): a medium for rep-
resentation and exchange of biochemical network models. Bioinformatics 19,
524–531. doi: 10.1093/bioinformatics/btg015

Hucka, M., Nickerson, D. P., Bader, G., Bergmann, F. T., Cooper, J., Demir, E., et al.
(2015). Community standards for modelling in biology: an overview. Front.
Physiol. XX.

Juty, N., Le Novère, N., and Laibe, C. (2011). Identifiers.org and MIRIAM Registry:
community resources to provide persistent identification. Nucl. Acids Res. 40,
D580–D586. doi: 10.1093/nar/gkr1097

Laibe, C., and Le Novère, N. (2007). MIRIAM Resources: tools to generate and
resolve robust cross-references in Systems Biology. BMC Syst. Biol. 1:58. doi:
10.1186/1752-0509-1-58

Miller, A. K., Marsh, J., Reeve, A., Garny, A., Britten, R., Halstead, M., et al. (2010).
An overview of the CellML API and its implementation. BMC Bioinformatics.
11:178. doi: 10.1186/1471-2105-11-178

Mirams, G. R., Arthurs, C. J., Bernabeu, M. O., Bordas, R., Cooper, J., Corrias, A.,
et al. (2013). Chaste: an open source C++ library for computational physiology

and biology. PLoS Comput. Biol. 9:e1002970. doi: 10.1371/journal.pcbi.10
02970

Moraru, I. I., Schaff, J. C., Slepchenko, B. M., Blinov, M. L., Morgan, F.,
Lakshminarayana, A., et al. (2008). Virtual Cell modelling and simula-
tion software environment. IET Syst. Biol. 2, 352. doi: 10.1049/iet-syb:200
80102

Neic, A., Liebmann, M., Hoetzl, E., Mitchell, L., Vigmond, E. J., Haase,
G., et al. (2012). Accelerating cardiac bidomain simulations using graph-
ics processing units. IEEE Trans. Biomed. Eng. 59, 2281–2290. doi:
10.1109/TBME.2012.2202661

Nickerson, D. P., Ladd, D., Hussan, J., Safaei, S., Suresh, V., Hunter, P. J., et al.
(2014). Using CellML with OpenCMISS to simulate multi-scale physiology.
Front. Bioeng. Biotechnol. 2:79. doi: 10.3389/fbioe.2014.00079

Vigmond, E. J., Hughes, M., Plank, G., and Leon, L. J. (2003). Computational tools
for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36, 69–74. doi:
10.1016/j.jelectrocard.2003.09.017

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F., Miller,
A. K., et al. (2011). Reproducible computational biology experiments with
SED-ML–The Simulation Experiment Description Markup Language. BMC
Syst. Biol. 5:198. doi: 10.1186/1752-0509-5-198

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 09 November 2014; accepted: 16 January 2015; published online: 06
February 2015.
Citation: Garny A and Hunter PJ (2015) OpenCOR: a modular and interoper-
able approach to computational biology. Front. Physiol. 6:26. doi: 10.3389/fphys.
2015.00026
This article was submitted to Computational Physiology and Medicine, a section of the
journal Frontiers in Physiology.
Copyright © 2015 Garny and Hunter. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licen-
sor are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology | Computational Physiology and Medicine February 2015 | Volume 6 | Article 26 | 12

http://dx.doi.org/10.3389/fphys.2015.00026
http://dx.doi.org/10.3389/fphys.2015.00026
http://dx.doi.org/10.3389/fphys.2015.00026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

	OpenCOR: a modular and interoperable approach to computational biology
	Introduction
	Materials and Methods
	General Philosophy
	Openness
	Open source license
	Online presence

	Software Development
	Prerequisites
	Codebase
	Modular approach
	Third-party libraries


	Results
	User Interfaces
	Command line interface
	Graphical user interface
	Plugins Window

	Help Plugin
	Organization Plugins
	CellML Model Repository window plugin
	File browser window plugin
	File Organiser window plugin

	Editing Plugins
	CellML Annotation view plugin
	Raw view plugin
	Raw CellML view plugin

	Simulation Plugin
	Graphical user interface
	Running a model
	Plotting simulation data
	Interacting with a simulation
	Multithreading

	Solver Plugins

	Discussion
	Programming Languages and Frameworks
	Qt framework
	C++ language
	Python support

	CellML API
	``Official'' CellML API vs.own CellML API
	Move to libCellML

	Editing Mode
	CellML annotation capabilities
	CellML authoring capabilities

	Simulation Mode
	CellML-based approach
	Computational speed
	Data formats

	Other Standards
	Other CellML Tools
	``Official'' CellML API vs.own CellML API
	Features of interest


	Conclusion
	Acknowledgments
	References


