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ABSTRACT: The molecular pathology of breast cancer is challenging due
to the complex heterogeneity of cellular subtypes. The ability to directly
identify and visualize cell subtype distribution at the single-cell level within a
tissue section enables precise and rapid diagnosis and prognosis. Here, we
applied mass spectrometry imaging (MSI) to acquire and visualize the
molecular profiles at the single-cell and subcellular levels of 14 different
breast cancer cell lines. We built a molecular library of genetically well-
characterized cell lines. Multistep processing, including deep learning,
resulted in a breast cancer subtype, the cancer’s hormone status, and a
genotypic recognition model based on metabolic phenotypes with cross-
validation rates of up to 97%. Moreover, we applied our single-cell-based
recognition models to complex tissue samples, identifying cell subtypes in
tissue context within seconds during measurement. These data demonstrate
“on the spot” digital pathology at the single-cell level using MSI, and they
provide a framework for fast and accurate high spatial resolution diagnostics and prognostics.

■ INTRODUCTION

In breast cancer, genomic and transcriptomic heterogeneity has
been extensively described.1,2 In addition, the breast tumor
microenvironment can vary, resulting in tumor subtypes that
are associated with distinct clinical behaviors3,4 and used as
prognostic markers. For example, oestrogen receptor (ER) and
progesterone receptor (PR) expression serve as predictors of
hormone therapy responses5,6 and provide information on
response to chemotherapy: ER− tumors respond better than
ER+ tumors. Similarly, human epidermal growth factor
receptor 2 (HER2) overexpression and/or gene amplification
predict response to anti-HER2-targeted therapy. HER2 also
provides prognostic information and can be used to help with
diagnosis (i.e., Paget’s disease).7 Today, immunohistochemis-
try (IHC) is used as a standard to test these protein expression
levels, despite the following major disadvantages: it is
nonautomated, time-consuming, subject to human error, and
relies on (subjective) pathologist interpretations. Furthermore,
stains are not standardized worldwide, and different fixation
times and methods lead to pre-analytical variability lacking
robust internal controls.7 Furthermore, IHC is generally
applied to proteins, and insights into the function and
mechanism of lipid molecules and their role in the diagnosis
and prognosis of breast cancer are steadily increasing.8

Eiriksson et al. showed that the heterogeneity of breast
cancer subtypes is reflected in the expression levels of enzymes
in lipid metabolism and, as a consequence, of lipid levels and

ratios.9 This rich and valuable molecular information on lipid
levels and ratios is currently neglected in routine pathological
analysis because of technical, analytical, and interpretation
challenges. Several alternatives to traditional IHC are available.
The assessment of ER/PR/HER2 status based on mRNA
expression can provide more objective, quantitative, and
reproducible test results. However, mRNA analysis is
challenging to apply to fixed tissue and very time-consuming.
A newer and chemically information-rich approach for digital
pathology on breast cancer that is described as midinfrared
spectroscopic imaging. It was shown to offer label-free
molecular recording and virtual staining by probing the
fundamental vibrational modes of molecular components.10,11

Digital pathology, which includes scanning tissue slides and
automating their analysis, offers many advantages over manual,
analogue microscopic examination of glass slides alone. Digital
images have improved the overall analysis, reduced the number
of errors, and provided better contextual views of the tissue
under study.12 Advances in machine learning have enabled the
synergy of artificial intelligence and digital pathology, which in
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theory offers image-based diagnosis possibilities.13 All of these
innovative approaches depend on information-rich images, rich
in spatial, spectral, or molecular detail. Digital pathology
applied to breast cancer has been limited by complications and
challenges posed by its disease heterogeneity as described
above.
Thus, the in-depth unraveling of the molecular differences,

including lipids and their ratios, of breast cancer subtypes and
developing an online subtype recognition method are of great
prognostic and therapeutic interest and value. To interrogate
whether transcriptomic differences are reflected in the local
lipidome of breast cancer subtypes, we visualized with
subcellular resolution the molecular profile distributions of
14 different in vitro cultured breast cancer lines with matrix-
assisted laser desorption/ionization-mass spectrometry imag-
ing (MALDI-MSI), in a mass range of m/z 200−1200,
representing different metabolite and lipid abundances. We
built recognition models based on these data and tested their
ability to distinguish the different cell lines. Our recognition
models successfully identified the breast cancer subtype on a
single-cell level in breast cancer xenograft tissue sections,
demonstrating its diagnostic applicability. As an ultimate proof
of concept, we performed “on-the-fly” cell typing while
scanning MDA-MB-231 tumor xenograft tissue sections.

■ MATERIALS AND METHODS
Cell Preparation on Slides. Thirteen different breast

cancer cell lines (full list in Supporting Information Table S1)
were purchased from the Leibniz Institute DSMZ (Germany);
a 14th cell line, MCF-7, was purchased from LGC Standards
(Germany). All the lines were cultured in growth medium as
indicated in Supporting Information Table S1. Indium tin
oxide (ITO, CG-40IN-S115, Delta Technologies, USA) glass
slides were coated with poly-L-lysine (20 μL of 1:1 dilution in
water). Slides were washed with water before being placed in a
60 mm Petri dish with the conductive side facing up.
Approximately 106 cells (∼1.5 × 106 cells/mL) were added
to the Petri dish and incubated overnight at 37 °C with 5%
CO2. Media was removed and slides were washed twice with
phosphate-buffered saline. Neutral-buffered formalin (10%)
was added for 10 min. Slides were washed twice with 50 mM
ammonium formate and twice with Millipore water and dried
under a gentle nitrogen stream.
For the cell pellets, the same cell culture was collected,

centrifuged, and diluted 1/1 with a norharmane matrix (80 mg
in 2 mL of MeOH). This solution was spotted on a Bruker
target plate and evaporated under the nitrogen stream before
loading into the timsTOF flex. The mean of five MALDI-1
spectra was taken by shooting directly on the cell pellet with
the same instrument settings and laser intensity as used for the
MSI experiments.
Breast Cancer Xenograft Models. All the animal

experiments were performed with appropriate ethical approval
(2014-108 at GROW Maastricht University and A3272-01 at
the Johns Hopkins University) and in compliance with the
respective institutional guidelines. To generate tumor xeno-
grafts, 1.0 × 106 MDA-MB-231 cells were resuspended in 50
μL of Matrigel basement membrane matrix (BD Biosciences,
USA) and injected orthotopically into the mammary fat pad of
female Crl:NU-Foxn1nu mice. When tumors were palpable,
tumor volume was assessed by measuring the tumor in three
dimensions using a vernier caliper and using the formula a × b
× c × π/6, where a, b, and c are orthogonal diameters of the

tumor, each corrected for the thickness of the skin (0.5 mm).
At a tumor volume of ca. 200−500 mm3, tumors were excised
and snap frozen. Xenografts were embedded in gelatin, then
stored at −80 °C before sectioning.

Sample Preparation for MSI. Tissue sectioning (12 μm,
at −20 °C) was performed on fresh-frozen tissues using a Leica
CM1860 UV cryotome (Wetzlar, Germany). Slides with tissue
sections and cells were handled according to the same
protocol: samples were kept at −80 °C prior to analysis.
Beforemass spectrometry imaging (MSI), sublimation of 80
mg of norharmane at 140 °C for 180 s was performed using an
HTX sublimator (HTX Technologies, USA). The sample
preparation of tumor xenografts was the same for offline and
online recognition.

TimsTOF fleX (MALDI-1-MSI and MALDI-2-MSI).
Unless otherwise noted, MALDI, MALDI-2, and ion mobility
MSI were performed on the timsTOF fleX MALDI-2 (Bruker
Daltonics, Germany) in the positive ion mode with 50 laser
shots per pixel and an interlaser pulse delay of 10 μs. Transfer
settings were 350 V peak-to-peak (Vpp; funnel 1 RF), 400 Vpp
(funnel 2 RF), and 600 Vpp (multipole RF). Focus pre-time-
of-flight (TOF) transfer time was set at 90 μs and pre-pulse
storage at 10 μs. The quadrupole ion energy was 5.0 eV with a
low mass of m/z 300. Collision cell energy was 10.0 eV with
collision RF at 200 Vpp. All the spectra were recorded using a
1 kHz laser repetition rate with 250 laser shots accumulated at
each pixel. The average acquisition rate was 20 pixels per
second over an m/z range between 200 and 1200 using a 5 × 5
μm2 pixel size for cells and a 30 × 30 μm2 pixel size for tissue
analysis. Calibration of the instrument was carried out prior to
every measurement with red phosphorus.

Synapt. A Waters Synapt G2-Si HDMS system equipped
with a prototype uMALDI source and provided with a
Nd:YAG laser (Waters Corporation, UK) was used for online
recognition experiments. For more detailed information about
the uMALDI source, see Barre ́ et al.23 Data acquisition was
performed using MassLynx version 4.1 and HDImaging
version 1.5 software (Waters Corporation). For online
recognition, our model was built using the AMX Model
Builder, which was loaded into AMX recognition software that
was coupled to the data acquisition file. All the measurements
were performed in the sensitivity mode with a scan rate of 1.0 s
per scan, trap collision energy (CE) of 4, and transfer CE of 2,
1000 Hz laser repetition rate, and mass range of m/z 300−
1200 in the positive ion mode. The instrument was calibrated
with red phosphorus for the positive ion mode before each
measurement. The spatial resolution was 30 × 30 μm2.

Orbitrap Elite. Data were acquired via data-dependent
acquisition (DDA) using a MALDI/ESI injector (Spectroglyph
LLC, USA) coupled to an Orbitrap Elite hybrid ion trap-
orbitrap mass spectrometer (Thermo Fisher Scientific GmbH,
Germany). The MS1 data was acquired at a nominal mass
resolution of 240,000 (full width at half maximum @ m/z 400)
across m/z 200−1300, while MS/MS data was acquired in
parallel using the ion trap with an isolation width of 1 Da, an
activation Q of 0.170, and a normalized CE of 30
(manufacturer units).

RapifleX. A Bruker RapifleX MALDI Tissuetyper TOF
instrument equipped with a smartbeam laser (Nd:YAG, 355
nm) operating at 5000 Hz with 500 laser shots accumulated at
each pixel was employed for MALDI-MSI. MALDI analyses
were performed in the reflector positive ion mode in the mass
range of m/z 200−1200 at a sample rate of 1.25 GS/s.
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Calibration was carried out in the positive ion mode using red
phosphorus. The instrument was used at a 5 × 5 μm2 pixel size.
Data and Statistical Analysis. After acquisition, data

were imported and analyzed using MassLynx version 4.1 and
HDImaging version 1.5 software for Synapt data (Waters
Corporation), SCiLS Lab MVS for Rapiflex and timsTOF flex
data (Version 2020b Premium 3D, build 8.01.12082, Bruker
Daltonics), FlexImaging for Rapiflex and timsTOF flex data
(Version 5, Bruker), XCalibur for Orbitrap Elite data (version
4.2.28.14, Thermo Scientific), and LipostarMSI for all the
acquired data (version 1.10b17, Molecular Horizon). Figures
were prepared using Abstract Model Builder (AMX, version
0.9.2092.0 [beta], Waters), SCiLS Lab, mMass (5.5.0, www.
mmass.org), and Office 2016 software (Microsoft). The LIPID
MAPS Structure Database (http://lipidmaps.org) and the
ALEX123 lipid database (http://alex123.info/ALEX123/MS.
php) were employed for molecular identification. Full details,
including the lipid identification workflow, are described in
Ellis et al.19

For offline recognition (i.e., post-data acquisition), a model
was built using SCiLS Lab. Here, cells were randomly assigned
to a training set and a validation set (two-thirds and one-third
of the cells, respectively). For online recognition (i.e., during
acquisition), AMX Model Builder and recognition software
(Waters, v1.1.1966.0) were used. In order to evaluate the
classification rate, the AMX model building data set was
divided into five partitions (fivefold), each of which contains a
representative proportion of each class within it (stratified).
Four partitions (80%) of the data set were used to build a
model under the same conditions as the original model. This
model was used to predict the classifications of the one
partition (20%) of the training set that was left out. 20% of the
samples were left out. For cross-validation, outliers were
defined based on the standard deviation with multiplier 3.

Staining. Hematoxylin and eosin (H&E) staining was
performed on the same sections used for MALDI-MSI
experiments. Following MALDI experiments, ITO slides
were first dipped in a 70% EtOH solution for 5 min in order
to remove the residual matrix. H&E staining was subsequently
conducted. Briefly, slides were hydrated in water for 1 min,
followed by hematoxylin staining for 3 min, washed under
running tap water for 3 min, stained with eosin for 30 s, and
washed under running tap water for 3 min. Slides were then
immersed in 100% EtOH for 1 min, transferred to xylene for 2
min, carefully covered with a coverslip, and dried at room
temperature. The optical images were acquired at high
resolution using the Leica AperioCS2 scanner with Aperio
ImageScope (version 12.4.3.5008) software (Leica Biosystems
Imaging, Germany).

■ RESULTS AND DISCUSSION

Single-Cell MSI to Digital Pathology Strategy. We
sought to design a robust analytical workflow from cell and
tissue preparation to clinically relevant digital pathology and
interpretation. To be applied to patient tissue, our workflow
must successfully address the following criteria. First, a robust
single-cell culturing and a MALDI-MSI sample preparation
method that maintains single-cell molecular and spatial
information needs to be developed. Second, the MALDI-
MSI method needs to be able to acquire molecular data with
subcellular spatial resolution combined with high sensitivity to
detect lipids and metabolites within a single cell. Third,
statistical analyses to discover and characterize cell subtype
differences need to be implemented in a subtype recognition
system. This recognition system needs to be clinically relevant
and directly applicable to MALDI-MSI data of patient tissue,
preferably independent of the MALDI-MSI equipment used.
Fourth, ideally, this recognition method can be applied directly
during a pathological imaging run, so fast and “on the spot”

Figure 1. Experimental workflow from cell preparation to digital pathology. (A) Cell preparation on poly-L-lysine-coated ITO slides. (B) Sample
sublimation and MSI analysis. (C) Data analysis encompassing ROI selection for every single cell, determination of the mean mass spectrum of
every cell after rms normalization, model building using PCA/LDA analysis, and applying the generated method offline and online for pathological
identification. H&E-based staining is considered the gold standard to which results should be compared.
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diagnostics become possible. An overview of the full
experimental workflow is shown in Figure 1.
What are clinically relevant cell subtypes for digital

pathology and interpretation? We selected 14 different breast
cancer cell lines (Table S1) that represent three major breast
cancer subtypes according to the status of ER, PR, HER2−
HER2+, ER+PR+, and triple negativewhich are considered
to be predictors of therapy response and survival prognosis of a
patient. Patients with hormone receptor-positive tumors often
clinically benefit from receiving hormonal therapies that target
the ER signaling pathway.14,15 Triple-negative tumor types
(ER−, PR−, and HER2−) are described as the most
aggressive, with the lowest survival rate.15−17 Because it was
previously described that lipid expression patterns are directly
linked to estrogen receptor expression rates,18 we selected
these 14 lines in order to interrogate whether these different
subtypes harbored different molecular profiles including lipids
and their ratios. If statistical analysis of these molecular profiles
is found to be subtype specific, we can implement them in a
subtype recognition system and test whether it can be used for
direct subtype identification in the context of the breast tissue
environment. Altogether, our assay will allow direct spatial
subtype detection according to the receptor status, meaning
fast and automatic diagnostics and prognostics without any
(immunohistochemically) staining process.
Development of MSI Assay for Cultured Single Cells.

Individual cells of the selected 14 human breast cancer cell

lines (Supporting Information Table S1) were prepared on
poly-L-lysine-coated ITO slides. MALDI- and MALDI-2-MSI
data were acquired in the positive mode (Figure 2) to study
the molecular composition of single breast cancer cells. The
repeatability of the method was tested by comparing the
molecular information of different cell cultures (n = 2) (Figure
S2) and different ITO sample plates of the same cell line (n =
3). Moreover, the same samples were repeatedly measured on
different days to rule out day-to-day variation. Before and after
imaging, cell distribution, density, and shape were checked
using light microscopy. All single cell types had a diameter of
between 20 and 150 μm. A 5 × 5 μm2 pixel size allowed the
acquisition of a minimum of four spectra per single cell. This
high spatial resolution made it possible to visualize the
intracellular distribution of compounds (Figure S1). Full
single-cell spectra were analyzed by manually assigning the
region of interest (ROI) for every cell and determining the
mean spectrum of this ROI after root mean square (rms)
normalization. For every slide, the highest-intensity cells were
selected for incorporation into the database and recognition
model. For every cell line, three different slides were measured
on different days; in every measurement, 3−5 individual cells
were randomly selected as the ROI. We were able to acquire a
total of 229 single-cell spectra (ROIs) of the 14 different cell
lines based on timsTOF fleX MALDI-2 data. Altogether, our
assay allows to robustly image at subcellular resolution and
determine the molecular profile of cultured single cells.

Figure 2. Example of the spatial distribution of PC 34:1 for all 14 analyzed cell subtypes after rms normalization. The scale bar represents 200 μm.
Measurements were performed using timsTOF fleX MALDI-2 with a 5 μm pixel size.
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Why do we specifically want to use single-cell MSI in order
to develop a molecular library? Indeed, it takes much more
time and effort to perform our developed single-cell MSI

method, and one could state that the same molecular (not
spatial) information can be gathered from cell pellets. Because
mean single-cell spectra will be used in molecular databases

Figure 3. DDA identification of lipids measured on Orbitrap Elite. (A) Sample full MS spectrum in the positive ion mode and (B) MS2 of m/z
788.61 (PC 36:1), both measured in MDA-MB-231 cells. (C) Heat map of 79 identified lipids based on DDA analysis of single cells from the 14
breast cancer cell lines. Lipids identified are shown for three representative individual cells from three different cell cultures of the same cell line.
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and recognition models anyway, it might save time and effort
to directly use the molecular cell pellet profiles from pure cell
lines. To prove that molecular profiles obtained from cell
pellets are not the same as profiles obtained with single-cell
MSI, we compared profiles from both (MSI and pellet) for two
different cell types (MDA-MB-231 and HCC 1143). For every
comparison, we used the same cell culture batch and the same
instrument settings as used for the MSI experiments. As shown
in Figure S3, lipid ratios clearly differ when mean spectra are
taken from MSI or directly acquired from cell pellets.
Lipid Identification at the Single-Cell Level. In the next

step, we want to compare our acquired single-cell molecular

profiles with earlier published findings and determine their
relevance according to receptor expression rates and cell
subtypes. Because it was previously described that lipid
expression patterns are directly linked to estrogen receptor
expression rates,18 we performed an automated, parallel MSI
and structural identification of lipids using the Orbitrap-Elite-
DDA.19 These measurements were acquired (Figure 3A,B) on
the same slides as used in the imaging experiments and allowed
the identification of 79 lipids present in all 14 cell lines (Figure
3C). Crucial to the success of this DDA approach is a
sufficiently large number of cellular pixels being present in the
image. We acquired a minimum of 10 (MS) and 8 (MS/MS)

Figure 4. Classification models in AMX Model Builder (Waters) of (A) different molecular breast cancer subtypes based on ER, PR, and HER2
status and (B) different human breast cancer cell lines, based on single-cell profiles obtained from timsTOF fleX imaging experiments.
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pixel scans per identified mass in a single data set to increase
identification confidence. The identities were consistent with
earlier described lipids found in cell pellet extracts analyzed
with ultrahigh performance liquid chromotagraphy-quadrapole
TOF-MS9 and in MSI data on MDA-MB-231 xenografts.20 For
example, TG C-46 was found to be upregulated in MCF-7 (ER
+/PR+/HER2−) and has low abundancies in MDA-MB
(triple negative) subtypes. PC 30:1 and SM 42:2 are
significantly more present in MCF-7 (ER+/PR+/HER2−)
compared to MCF-10A (triple negative). The PC 42 series is
highly abundant in MDA-MB-231 (triple negative).
The heatmap of the 79 identified lipids (Figure 3C)

indicates that every cell line has a specific lipid profile,
meaning different ratios of the same identified lipids, that
allows genetically different breast cancer cells to be
distinguished. Moreover, our data shows that these lipid
profiles are robust within different cultures of the same cell
subtype. These robust and unique lipid profiles linked to

genetically different breast cancer cells are very promising for
cell typing purposes. In the next step, we investigate if these
differentiating profiles can be incorporated into recognition
models for tissue cell identification.

Recognition Models. Single-cell, MSI-based molecular
models require two crucial elements to come together: (1)
subcellular level spatial resolution with a minimum of 3 pixels
per cell, meaning that for cells of 20 μm in diameter, we need a
pixel size of 5 μm and (2) high sensitivity to acquire as much
molecular information as possible in a broad m/z range. At the
moment, these two requirements are best achieved by using
timsTOF fleX MALDI-2. Indeed, it was described that
timsTOF fleX MALDI-2 technology increases the sensitivity
by approximately 3 orders of magnitude.21−23

In order to investigate whether our generated single-cell
molecular profiles can be used for cell identification, we built
recognition models based on the 229 single-cell timsTOF fleX
MALDI-2 mass spectra between m/z 600−950. An AMX

Figure 5. Comparison of mean normalized mass profiles of 10 differentiating lipids of single MDA-MB-231 cells after rms normalization measured
on six different MSI instruments (positive mode). Error bars represent standard deviations from three randomly chosen cell profiles.
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model was built for online (during measurement) recognition
and a SCiLS Lab model for offline (post measurement)
recognition, both using the same single-cell data.
Using these models, we were able to separate the three

breast cancer subtypes (triple negative, HER2+, and ER+PR+)
with principal component analysis/linear discriminant analysis
(PCA/LDA) analysis (Figure 4A). This model had a
classification rate of 93.98% (excluding outliers) and 88.65%
(including outliers) (Figure S4A), indicating that it could be a
valuable diagnostic or therapy-response prognosis tool in
breast cancer.
We also investigated whether we could make an even more

detailed recognition model that is able to differentiate between
the 14 cell subtypes. Thus, we acquired 229 single-cell spectra
using timsTOF fleX MALDI-2 in the positive ion mode
(Figure 4B) and built a classification model. A mass range of
m/z 600−950 was also used with a binning of m/z 0.2. Cross-
validation with 20% out and a standard deviation of 3 showed
excellent classification performance, at 97.55% excluding
outliers and 86.90% including outliers (Figure S4B). Based
on the mass and loading plots of the recognition model and
after DDA analysis, the 10 most prominent differentiating m/z
values were all identified as lipids. Plots of single-cell intensities
of these 10 lipids confirmed a specific profile for each cell line
investigated in our study (Figure S5).

These results show that the acquired single-cell molecular
profiles are indeed unique and specific for the different cell
subtypes of breast cancer, with excellent cross-validation
classification results. The last steps toward the clinical
application of these single-cell molecular profiles and related
recognition models are to investigate whether (1) these unique
and distinguishing profiles are robust and independent across
instrumentation platforms and (2) the same cellular profiles
are also relevant in the complex tissue environment.

Comparative Analysis of Single-Cell Mass Spectrom-
etry Profiles on Different MALDI-MSI Instruments. Cell
profiles must be independent of the MALDI instrument used
to be able to broadly deploy the recognition model as a
standard diagnostic and prognostic tool. We thus investigated
if the acquired single-cell profiles are robust across
instrumentation platforms including MALDI instruments
with different spatial resolutions and/or sensitivities. To
evaluate this, the same samples were measured on timsTOF
fleX MALDI-1 mode (Bruker Daltonics), timsTOF fleX TIMS
mode (Bruker Daltonics), Rapiflex (Bruker Daltonics),
MALDI-LTQ Orbitrap Elite (Thermo Fisher Scientific), and
Synapt G2-Si HDMS (Waters). Single-cell spectra from the
MDA-MB-231 line (n = 3) acquired on different instruments
were normalized to the most abundant differentiating lipid
(PC 34:1). The obtained ratios of the 10 most differentiating

Figure 6. Automatic recognition of human breast tumor MDA-MB-231 xenografts from timsTOF fleX MALDI-1. (A) Annotated H&E staining
(left), optical image of section (middle), and the distribution of identified cells combined with the overlayed optical image (right). (B) Separated
images showing the distribution of the identified cells. (C) Comparison of cell recognitions measured on timsTOF fleX MALDI-1 and Synapt G2-
Si HDMS. Percentages are calculated as the percentage of pixels classified (100% is the full measured region).
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lipids were comparable on all six MALDI instruments (Figure
5).
Statistical analysis of these ratios using single factor analysis

of variance showed F values below the critical F value of 3.105,
confirming that there is no significant difference between the
lipid profiles acquired on the different MALDI instruments.
Moreover, the trend line clearly indicates a comparable pattern
of these lipids for the different MALDI systems. This result
indicates that the model, based on the timsTOF fleX MALDI-2
TOF spectra, is applicable to other MALDI-MSI instruments
tested. In practice, this means our recognition models go
beyond individual marker patterns, recognizing individual cell
types based on full mass profiles, independent of the MALDI
instrument used. Together, our analytical workflow, acquiring
single-cell molecular profiles and translating them to cell
subtype recognition models, can be applied to any MALDI-
MSI instrument. Moreover, it is expected that this workflow is
translatable to other cell subtypes, opening up new and fast
diagnostic and prognostic tools in cell research.
Spatial Analysis of Cell Subtypes in the Tissue

Environment. Having found that the lipid profiles were
consistent across six different MALDI-MSI setups, we tested
whether they could be used for complex tissue samples, a
requirement for clinical applications. To do so, we assessed the
model on MDA-MB-231 breast tumor xenograft samples and
compared it with H&E staining-based annotation. Using
timsTOF fleX, tumor tissue samples were measured with 30
× 30 μm2 spatial resolution. The acquired imaging data were
post-processed using the cell subtype recognition model in
SCiLS Lab, and showed that the main cell subtype was
identified correctly (Figure 6). Two other cell lines (CAL120
and MCF-7) were recognized, probably a consequence of the
typical properties of the SCiLS Lab recognition system, which
forces all the data points into one of the 14 cell classes of the
model rather than classifying them as outliers (such as necrotic
tissue, background signal, gelatin, etc.). H&E staining
confirmed that MCF-7 and CAL120 classified regions partly
correspond to necrotic regions.
The same MALDI-MSI data were also post-processed

against the genetic phenotyping model (Figure S6). In all
the cases, the correct (ER−/PR-HER−) phenotype was
indicated by the model.
These findings clearly show that the recognition models

generated by our robust single-cell analytical MSI workflow are
relevant for the identification of cell subtypes in a tissue
environment. Moreover, our method provides detailed spatial
information in an automatic and thus objective manner on
where these subtypes are present in the tissue, highlighting the
enormous clinical potential of the method. Indeed, as
described above, genetic phenotyping is linked to diagnostic
and therapy prognostics. Being able to identify the correct
breast cancer phenotype in a fast and objective manner without
generally known staining disadvantages will significantly
improve diagnosis speed and accuracy, leading to better
patient treatment and outcome.
Toward Automated Online Contextual Cell Type

Recognition. As addressed in the fourth criteria of the
workflow, ideally the subtype identification based on the
developed recognition models can be applied “on-the-fly”, that
is, during the imaging run. This would save post-processing
time, and intraoperative diagnostics would become possible.
To move toward online “on the spot” recognition, we need an
MALDI system that is compatible with online recognition

software. Unfortunately, timsTOF fleX is not (yet) compatible
with any online recognition software for on-demand measure-
ments. However, because we showed that Synapt G2-Si
HDMS results in similar molecular single-cell profiles, we
expect that both instruments, measuring the same sample and
using the same recognition model, will result in the same
identified cell subtypes. To verify this hypothesis, we first
performed measurements with both instruments on a MDA-
MB-231 xenograft sample with 30 × 30 μm2 spatial resolution.
Post-processing was performed on both analyses (SCiLS Lab
for timsTOF flex and AMX recognition for Synapt G2-Si
HDMS), resulting in the correctly identified main cell subtype
MDA-MB-231 with comparable percentages (64.71%tim-
sTOF and 65.94%Synapt) (Figure 6). These percentages are
the % of pixels (100% is the full measured region/area)
classified as the indicated cell type. Meaning that about 65% of
the full tissue is recognized as being MDA-MB-231. The rest of
the tissue is necrotic area, thus recognized as an outlier, CAL
120 or MCF7. This corresponds with the information that is
given by the pathologist based on the H&E staining (necrotic
areas indicated in Figure 6). Other reported cell types (CAL
120 and MCF-7) by SCiLS Lab can be seen as errors related to
the use of the SCiLS Lab program itself. Indeed, unlike SCiLS
Lab, AMX recognition software allows outliers to be classified,
for which 32.42% were assigned. It should be noted that this
rate is very similar to the total misclassified cell subtypes
(35.29%) reported by SCiLS Lab and is related to the necrotic
regions present in the sample.
Taking these into consideration, these results confirm once

again our earlier findings that the same recognition model is
applicable independently of the used MALDI instrument and
that the percentage of the main recognized cell type is
independent of the used offline recognition program (SCiLS
Lab or AMX recognition).
Finally, to test the real-time “on the spot” recognition

capability of our developed system, our AMX subtype
recognition model was loaded into AMX online recognition
software and MDA-MB-231 xenografts were analyzed on
Synapt G2-Si HDMS at a 30 × 30 μm2 pixel size. As shown in
the video (Figure S7), we were able to correctly identify the
correct cell subtype for every single laser spot within a second.
These data demonstrate that on-demand breast cancer cell
recognition using MSI can be achieved for digital pathology.
This fully automated recognition system is objective, does not
require any prior staining or labeling, and identifies single cells
much faster than any other pathological diagnosis system on
the market.

■ CONCLUSIONS

We developed a robust method to conduct imaging MS at the
subcellular level and extract molecular profiles of cultured
single individual cells. We were able to investigate subtype
heterogeneity and identify 79 different lipids present in
different ratios in all 14 cultured breast cancer cell subtypes.
These subtype-specific molecular profiles were implemented in
cell subtype recognition models and their tissue relevance was
successfully shown. Our repeatable imaging method opens the
possibility to discover molecular differences at a single-cell
level, including inter- and intracellular processes and
alterations. This represents major opportunities for basic
research (understanding the origin and development of
cancer) and clinical diagnostics and prognostics.
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Our model was generated based on the full mass spectrum,
which means that other compound classes, including potential
biomarkers, may have contributed to the excellent cross-
validation results. The presented models can be utilized as
research tools for the pathway and biomarker discovery, as
they can pinpoint significant differences in molecular profiles.
Future studies will focus on the further optimization of these
subcellular molecular imaging possibilities, for example, by
increasing spatial resolution and sensitivity and targeting
intracellular pathways. Our presented methodology opens up
research possibilities that investigate changes in intracellular
pathways as a consequence of diseases and therapy responses.
This will lead to a better understanding of diseases and more
pathway-focused therapy development. Indeed, when visualiz-
ing single cells and directly identifying them in a tissue
environment, their molecular behavior and interaction in the
context of a (disease-related) changing tissue environment can
be studied.
This contextual single-cell recognition and cell typing, with

MSI and recognition models, also offers several advantages
over traditional diagnostic and prognostic approaches for
breast cancer. First, it rapidly detects ER, PR, and HER2 status
without using labeling techniques or antibody stains. More-
over, the presented MALDI-MSI approach is automated, and
therefore much less susceptible to technical variance (e.g.,
fixation time in IHC) and subjective scoring and interpreta-
tion. This newly developed approach enables objective
analyses that could directly lead to better patient care.
MALDI-MSI-based cell recognition also opens opportunities
for studying the effects of new treatments on tumor
heterogeneity, possibly facilitating personalized medicine in
the near future. Future studies that apply our method and
develop single-cell databases of other cancer-associated cell
lines could significantly enhance our knowledge and insight
into compound distributions and cell−cell interactions.
The presented MALDI-MSI-based cancer cell recognition

model fulfills the main requirements for digital pathology: (1)
robustness, repeatability, and independence of the instrument
platform; (2) speed; and (3) clear and objective interpretation
without the need for in-depth MS knowledge. Furthermore, it
complements time-consuming IHC tests in the digital
pathology toolbox. The potential of MSI to be integrated
routinely into digital pathology workflows will increase as
vendor-independent data analysis software, including model
builders and online recognition software, becomes available.24
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