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Simple Summary: CDK5 is a serine/threonine type kinase that is mainly found in nerves. It is
a target that has been studied primarily in neurological disorders, but recently it has been newly
recognised for its importance in cancer. In this review, we mentioned the role of CDK5 in normal
cells and the latest findings that CDK5 contributes to ten hallmarks of cancer and cancer-nerve
connections. Also, we introduced representative CDK5 inhibitors and suggested the possibility of
CDK5 inhibitors as treatments for refractory cancer.

Abstract: Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates
neuronal function but is also associated with cancer development and has been proposed as a target
for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflamma-
tion, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous
types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5
inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for
refractory cancer.
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1. Introduction

Cyclin-dependent kinase 5 (CDK5), a proline-directed serine/threonine kinase,
is known as a modulator of neuron function, including neurite outgrowth, neuron migra-
tion, and neuron degeneration [1–6]. Recently, CDK5 has been proposed to play a vital role
in cancer development, and the overexpression of CDK5 correlates with poor prognosis,
tumour proliferation, migration, and invasion in a variety of cancers [7–11]. Hence, CDK5
regulation is a potential cancer therapeutic target. In this review, we summarise the normal
function of CDK5, its role in cancer development, a potential CDK5-mediated tumorige-
nesis pathway, and potential therapeutic options. We hope that this review can provide
a reliable platform for future research about CDK5 as a target for cancer treatment.

2. Biology of CDK5

CDK5 was first identified by Hellmich in 1992 as neuronal cell division control 2-like
kinase due to its high sequence homology of the cell division cycle protein 2 (cdc2) [12].
It has 292 amino acids and around 5000 nucleotides. CDK5 is expressed in mammalian
tissue and culture cells, and it is co-localised with its substrates and activators [13,14].
Other cyclin-dependent kinases require the phosphorylation on the T loop, but the binding
of subunits is sufficient for the activation of CDK5 [15]. However, it seems that the
phosphorylation of Ser159 on the T loop of CDK5 and the binding of p35 are necessary to
exhibit maximum activity.

2.1. Basics of CDK5, Its Activators, and Inhibitors

Unlike other CDK family members that require cyclin for activation [16], CDK5 mainly
binds to p35 or p39 or their truncated products to convert to the active form (Table 1) [17–19].
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CDK5 can also be activated through binding to cyclin I in both neurons and podocytes [20].
In contrast, some cyclin proteins, such as cyclin D1, cyclin E, and glutathione S-transferase
P, can inhibit the activity of CDK5 (Table 1) [21,22].

Table 1. The regulatory subunits of CDK5.

Protein Position Interaction with CDK5

p35/p25
p35 mainly localises in the plasma membrane, perinuclear
region, and less in the nucleus [23], whereas p25 mostly
exists in the cytosolic region and nucleus [24].

p35 can activate CDK5 through binding to CDK5
[19]. However, the binding with p25 leads to the
hyperactivation of CDK5 [24].

p39/p29 p39 localises in the plasma membrane and nucleus [25]. p39/p29 can bind to CDK5 and then activate
CDK5 [25].

Cyclin I
Cyclin I could activate CDK5 by forming a
complex with CDK5, and this complex acts as an
anti-apoptotic factor [26].

Cyclin D1 During G1 phase, cyclin D1 is synthesised and localises in
the nucleus before entering S phase [27].

Cyclin D1 competes with p35 to inhibit CDK5,
contributing to neuronal apoptosis through the
MEK-ERK pathway [28].

Cyclin E All cell cycle phase, cyclin E is synthesised and
accumulated in the nucleus [29].

Cyclin E binds to CDK5 to prevent the interaction
between CDK5 and its activators, leading to effects
on synapse function and memory [30].

GSTP1
GSTP1 inhibits the activity of CDK5 through two
mechanisms: competing with p35 or p39 to bind to
CDK5; depleting oxidative stress [22].

Munc18 Munc18 binds to and protects the CDK5/p35
complex from the inhibitory effect of TFP5 [31,32].

2.1.1. p35

p35, a membrane–docked protein, consists of two parts: an N-terminal region contain-
ing a p10 component and a C-terminal region containing p25 [33]. The p10 component
encompasses a myristoylation sequence to localise p35 to the phospholipid membrane [24].
Moreover, p10 is the signal area for p35 degeneration. Hence, p35 is an unstable protein
with a short half-life [3,34,35]. Although p35 binds to the membrane through myristoyla-
tion, p35 is also found in the nuclei of neuronal and non-neuronal cells [36]. The transport
of p35 into nuclei is mediated through its interaction with importins [37]. This importation
leads to the disassociation of CDK5 from p35 [37].

The activity of p35 can be modulated by nerve growth factor (NGF) and brain-derived
neurotrophic factor (BDNF). NGF treatment in PC12 cells facilitates strong induction
of p35 expression via the activation of the extracellular-signal-regulated kinase (ERK)
pathway [38]. In a neuron, phosphatidylinositide 3-kinase (PI3K) is the target of BDNF.
The BDNF-mediated activation of PI3K leads to an increase in the level of p35 [39]. Interest-
ingly, CDK5 can phosphorylate p35 at Ser8 and Thr138 [40,41]. The phosphorylation of Ser8

diffuses cytoplasmic localisation [41]. This may be due to reduced interaction between p35
and membrane phospholipid, which increases the mobility of p35 on the membrane [41].
The phosphorylation of p35 at Thr138 interferes with calpain to convert p35 into p25 [40].

2.1.2. p25

CDK5 can be regulated by p25, the truncated product of p35 (Table 1) [19,24]. Under ox-
idative stress conditions, intracellular neuronal Ca2+ homeostasis is disrupted, resulting
in the activation of calpain [24,42]. Calpain cleaves p35 into p10 and p25, containing
the binding domain to CDK5 (Figure 1) [43–45]. Compared with p35, p25 is resistant to
ubiquitin-mediated degradation, so it is more stable and has a longer half-life [24,43,44].
This results in an extended CDK5 activation period, inducing the hyperphosphorylation of
CDK5 target molecules and neuronal toxicity [24]. For example, abnormal phosphorylation
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of protein tau caused by CDK5/p25 complexes leads to microtubule instability and the
formation of the neurofibrillary tangles that characterise Alzheimer’s disease [24,46,47].
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Figure 1. The mechanism of Cdk5 activation. The mechanism of Cdk5 activation. CDK5 alone is an inert catalyst
subunit. CDK5 is activated by the p35 CDK5 activator and moves to the membrane as p35 binds to the membrane through
myristoylation of the N-terminal region. p35 is a short-lived protein that is broken down by proteasomes. When cells
are stressed or met with death signal, calpain is activated and cuts p35 into p25 C-terminal fragments. The deletion of
p10 prolongs the half-life of p25. CDK5/p25 can be separate from the membrane and phosphorylate additional proteins.
(modified from Kimura et al. [46]).

The presence of p10 helps to localise CDK5/p35 mainly in the perinuclear and plasma
membrane regions and less prominently in the nucleus-the cleavage of p10 from p35
by calpain yields p25. Thus, CDK5/p25 complexes are enriched in the cytosolic region
and nucleus [23,24]. However, the p10 region of p35 can move into the nuclei when
myristoylation does not occur [23]. The mechanism underlying the translocation of CDK5
and its activators into the nuclei remains unclear.

2.1.3. p39 and p29

p39 is an isoform of p35 and an activator of CDK5; it also has the same position as p35
(Table 1) [41,48]. Similar to p35, p39 includes p10 with a myristoylation site and p29 [23,48].
Thus, the calpain-mediated conversion of p39 into p29 ensues in the same manner as the
cleavage of p35 into p25 [23]. However, unlike p35, p39 contains a small insertion (amino
acids 329–366) that allows it to bind to muskelin to promote cell adhesion [49].

Like p35, p39 is also phosphorylated by CDK5 at Ser8, leading to localisation in the
cytoplasm [41]. However, because of the Lys cluster in the p10 region of p39, p39 presents
stronger nuclear localisation rather than p35 [41]. CDK5-mediated Thr84 phosphorylation
of the C–terminal region of the Lys cluster in p39 attenuates stronger nuclear localisation
ability of p39 [41].

2.1.4. Other Activators and Inhibitors

Cyclin I is found at differentiated podocytes and neurons along with CDK5 (Table 1) [26].
Moreover, cyclin I is capable of binding and activating CDK5 to form cyclin I-CDK5
complexes, which in turn regulate the levels of pro-survival proteins B-cell lymphoma 2
(Bcl-2) and B-cell lymphoma-extra large (Bcl-XL) through facilitating the mitogen-activated
kinase (MEK)-ERK pathway [26,50]. This prevents the apoptosis of post-mitotic cells [26].
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Evidence indicates that cyclin D1 fails to stimulate CDK5 activity [28]. Abnormal
activation of the MEK-ERK pathway by neurotoxicity enhances the expression of cyclin D1,
subsequently causing neuronal cell cycle re-entry and neuronal apoptosis [28]. Moreover,
cyclin D1 prevents the interaction between CDK5 and p35, leading to the downregulation
of CDK5/p35 complex (Table 1) [28]. This, in turn, causes hyperactivation of the MEK-ERK
pathway and programmed cell death of neurons [28].

Cyclin E is expressed in neuron and forms complex with CDK5 (Table 1) [30]. Like cy-
clin D, cyclin E also inactivates CDK5 via the dissociation of CDK5 from its activators,
p35 and p39 to modulate the formation of synapses [30]. Also, the deletion of cyclin E
causes defective synaptic plasticity and memory deficits [30].

Glutathione-S-transferase P (GSTP1) inhibits the activity of CDK5 by dislodging p25
and p35 from CDK5/p25 and CDK5/p35 complexes, respectively (Table 1) [22]. Even in
the context of high p25 and p35 levels, GSTP1 upregulation is associated with decreased
CDK5 activity [22]. GSTP1 also indirectly inhibits the activation of CDK5 by eliminating
oxidative stress [22].

Munc 18 (p67) is part of a multimeric (supramolecular) complex containing Cdk5/p35
and regulates CDK5 activity (Table 1) [51,52]. Evidence showed that Munc18 could protect
CDK5/p35 complex from TFP5, which can exert an inhibitory effect on CDK5 activity [31,
53]. However, the effect of TFP5 on CDK5/p25 complex is not affected by Munc18 [31].
This could be explained by Munc18’s ability to bind to p10 component of p35, which is
lacking in p25 [31].

2.2. CDK5 Regulation by Posttranslational Modification

CDK5 can be controlled by posttranslational modifications, including phosphory-
lation, S-nitrosylation, and acetylation (Table 2). There is evidence that proto-oncogene
tyrosine-protein kinase Fyn, c-Abl, Eph receptor A4, and tropomyosin receptor kinase B
can phosphorylate CDK5 at Tyr15 to enhance the activity of CDK5 [54–57].

Table 2. The regulation of CDK5 by posttranslational modification.

Site Effect Ref.

Phosphorylation
Tyr15 Facilitates the activity of CDK5. [54–57]

Ser159 Is required for maximal activation of CDK5/p35 complex.
Facilitates the activity of CDK5/p25 complex. [58,59]

Ser47 Suppresses the interaction between CDK5 and p35, leading to
decreasing kinase activity of CDK5 and interfering with cell migration. [60]

Thr14 Inhibits the activity of CDK5. [61]

Thr77 Disrupts the interaction between CDK5 and p35, resulting in the
inactivation of CDK5. [62]

S-nitrosylation
Cys83 Inhibits the activity of CDK5. [63,64]

Cys157 Inhibits the activity of CDK5. [63,64]
Acetylation

Lys33 Inhibits the activity of CDK5. [65]

This ensues in neurite and spine retraction, dendrite outgrowth, and neuron death,
suggesting the importance of the phosphorylation of CDK5 at Tyr15 [54–57,66]. However,
the phosphorylation Tyr15 of CDK5 occurs with monomeric CDK5 but not with CDK5/p35
complexes [67]. Interestingly, tyrosine kinase can upregulate p35 to activate CDK5 [67].

To achieve the maximal activation, CDK5 requires binding to p35 and phosphorylation
at Ser159 [58]. Similar to this, an enzyme-containing CDK7 can facilitate the activity of
CDK5/p25 complexes through the phosphorylation Ser159 of CDK5, leading to pathological
events [59].

The phosphorylation Thr14 of CDK5 inhibits CDK5 kinase activity [68]. This phospho-
rylation can cause ATP phosphate moiety misalignment and changes in the hexacoordi-
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nated sphere of the Mg2+ [68]. The ablation of cub-domain containing protein-1 facilitates
the proto-oncogene tyrosine-protein kinase Src (c-Src)–mediated phosphorylation of p35,
which in turns binds to protein kinase C-delta (PKCδ) [62]. Subsequently, PKCδ phos-
phorylates CDK5 at Thr77 to sequester CDK5 away from p35 and restrain CDK5 kinase
activity [62]. Moreover, CDK5 is regulated by S-nitrosylation at Cys83 and Cys157, leading
to a reduction in CDK5 activity [63,64]. The ablation of S-nitrosylation of CDK5 promotes
dendritic growth [64]. This indicates the role of CDK5 S-nitrosylation in neuronal develop-
ment. Moreover, the acetylation-mediated modulation of CDK5 activity influences neurite
outgrowth in hippocampal neurons [65]. The acetylation of nuclear CDK5 at Lys33 restrains
its kinase activity by losing ATP binding [65].

2.3. Regulation of Transcription and Translation by CDK5

CDK5 is located in both the nucleus and cytoplasm. It can phosphorylate several
substrates resulting in the regulation of transcription and translation. Forty-nine per cent
of CDK5 substrates contain a consensus sequence (Ser/Thr)-Pro-X-(Arg/Lys/His) [69].

2.3.1. Transcription Regulation

CDK5 has been demonstrated as a critical transcriptional modulator of gene expres-
sion through the direct and indirect phosphorylation of transcription factors (Table 3).
Myocyte enhancer factor 2 (MEF2) is a major transcription factor associated with muscle
development [70]. CDK5/p25 complexes can phosphorylate MEF2, resulting in inhibition
of the pro-survival transcription function of MEF2 [71]. Consistent with this, nuclear CDK5
phosphorylates MEF2 at Ser444 to block MEF2 activity and facilitate the caspase-mediated
degradation of MEF2 [72,73].

Table 3. The modulation of transcription factors by CDK5.

Transcription
Factor CDK5 Complex Phosphorylation

Site
Physiological
Significance Ref.

MEF2 CDK5/p25 Ser444 Neuronal cell death [70–73]

STAT3 Ser727 Cancer [74–77]

MR CDK5/p35
CDK5/p25

Ser128

Ser250

Thr159
Neuron function [78]

GR
CDK5/p35 Ser203

Ser211 Neuron function [79]CDK5/p25

p53 CDK5/p35
Ser15

Ser33

Ser46
Neuronal cell death [80,81]

TonEBP/OREBP Thr135 Osmotic stress. [82]

MEK1 CDK5/p35 Thr286 Cell death [83]

mSds3 CDK5/p35 Ser228 Neuron and muscle
development. [84]

Signal transducer and activator of transcription 3 (STAT3) is phosphorylated by CDK5
at Ser727 [74]. This phosphorylation controls cell proliferation in medullary thyroid and
prostate cancer [75,76]. Although the phosphorylation Tyr705 is sufficient for the activation
of STAT3, Ser727 phosphorylation is required for the maximal transcription activity of
STAT3 [77]. Notably, the expression of c-fos and jun B and the transcription activity of
STAT3-targeted genes, are attenuated by the blockade of CDK5 activity [77].

Evidence shows that CDK5/p35 or CDK5/p25 complex can bind to phosphory-
late mineralocorticoid and glucocorticoid receptors, subsequently modulating their tran-
scriptional activity and neuronal functions [78,79]. CDK5/p25 complexes phosphorylate
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p53, contributing to the enhanced expression of p53, the transcription activity of TP53,
and the p53 target gene, p21 [80]. Similarly, Lee et al. have demonstrated that CDK5 can
phosphorylate p53 at Ser15, Ser33, and Ser46 to stabilise and accumulate nuclear p53 [81].
This facilitates the transcriptional activity of p53, leading to neuronal cell death [81]. Un-
der hyperosmotic conditions, CDK5 phosphorylates tonicity-responsive enhancer-binding
protein/osmotic response element-binding protein (TonERP/OREBP) at Thr135 to accu-
mulate TonEBP/OREBP in the nucleus and to promote its transcription of osmoprotective
target genes [82]. CDK5/p35 phosphorylates mitogen-activated protein kinase kinase-1
(MEK1) at Thr286, leading to the inhibition of cAMP response element-binding protein
(CREB) transcriptional activity, which in turn causes apoptosis [83]. Mouse Sds3 (mSds3)
can be negatively regulated via CDK5-mediated phosphorylation [84]. The interaction
between mSds3 and p35 allows CDK5 to phosphorylate mSds3 [84]. This regulates mSds3
homodimerisation and suppresses m-Sin3-dependent transcription, subsequently affecting
neuron and muscle development [84].

2.3.2. Translation Regulation

CDK5 can regulate translation (Figure 2). Through p35 and ERK2, interferon-gamma
(IFNγ) activates CDK5 to phosphorylate glutamyl-prolyl tRNA synthetase (EPRS) at Ser886,
subsequently phosphorylating Ser999 of EPRS in myeloid cells [85]. The process contributes
to the translocation of EPRS from tRNA multisynthetase complexes (MSC) into NS1-
associated protein (NSAP1) to form pre- IFN-γ–activated inhibitor of translation (GAIT)
complexes [85]. This, in turn, binds to phospho-ribosomal protein L13a and glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and inhibits inflammatory mRNA translation [85].
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Figure 2. Schematic of kinase pathway phosphorylating EPRS Ser886 and Ser999. IFN-γ–activated
CDK5 phosphorylate EPRS, leading to the formation of the GAIT complex. This inhibits inflammatory
mRNA translation. Abbreviations- interferon-gamma (IFNγ), glutamyl-prolyl tRNA synthetase
(EPRS), IFN-γ–activated inhibitor of translation (GAIT), tRNA multisynthetase complex (MSC).
(modified from Arif et al. [85]).

3. Role of CDK5 in Normal Cell Physiology

CDK5 is associated with cell physiology through its effects on cell adhesion, the cy-
toskeleton, the cell cycle and DNA damage [86–88].

3.1. CDK5 and Cell Adhesion

Cell adhesion is classified into two broad categories: cell-extracellular matrix (ECM),
and cell-cell adhesion, with the regulated adhesion molecules being integrin and cadherin,
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respectively [89,90]. Evidence indicates that CDK5 plays a role in regulating cell adhesion
through cell adhesion receptors (Figure 3) [87]. While CDK5 silence or p35 inhibition
contributes to increasing N-cadherin-mediated adhesion, CDK5 overexpression causes the
loss of adhesion [87].
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Figure 3. A summary of the various cyclin-dependent kinase 5 (CDK5)-mediated biological processes. CDK5 plays
important roles not only in the central nervous system but also in different biological processes. Functions in the central
nervous system include synaptic function, axon guidance, cell adhesion, and neurodegenerative diseases. Functions outside
of the central nervous system include androgen production, cell cycle, cancer cell proliferation/apoptosis, and tumour
metastasis. Abbreviations- microtubule-associated proteins 1B (MAP1B), focal adhesion kinase (FAK), doublecortin (DCX),
p21 activated kinase 1 (Pak-1), Wiskott-Aldrich syndrome protein-family verprolin homologous protein 1 (WAVE-1),
Eph receptor A4 (EphA4), transforming growth factor-β1′ (TGF-β1), retinoblastoma (Rb), E2F transcription factor 1 (E2F1).
(modified from Shupp et al. [19]).

The adhesion inhibition may be a prerequisite for the migration of neuronal cells [87].
This suggests that through N-cadherin-dependent adhesion, CDK5 controls neuron mi-
gration. Interestingly, p35 could bind to E-cadherin and play a role in CDK5-independent
regulation of precursor form of E-cadherin but not mature form [91].

When discussing the role of CDK5 in nonneuronal cells, one should not simply pay
attention to the expression of CDK5, but the presence or absence of activators such as p35
and p39; the enzymatic activity of CDK5 should also be checked. It was reported that the
expression of p35, an activator of CDK5, was observed in cell-cell adhesion in epithelial
lens cells and survival studies of pancreatic β-cells [92–94]. Moreover, CDK5 has been
reported to enhance cell-substrate attachment, whereas CDK5 upregulation reduces cell-cell
adhesion in rabbit lens [95]. Besides, treatment with roscovitine, a CDK5 inhibitor, promotes
cadherin-mediated adhesion but prevents adhesion of the cell to fibronectin through
integrin in human keratinocytes [96]. Increases of CDK5 kinase activity is concomitant
with an increase in cells adhering to fibronectin [97].

Moreover, CDK5 can phosphorylate the talin head domain at Ser425 to inhibit talin
head’s interaction with E3 ubiquitin-protein ligase SMURF1, inhibiting the degradation
of the talin head [98]. Through this pathway, CDK5 modulates cell adhesion and cell
migration [98].
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3.2. CDK5 and Cytoskeleton

The cytoskeleton consists of three elements: microtubule, intermediate filaments,
and actin [99]. These polymers modulate morphological changes and movement of eu-
karyotic cells [99]. Evidence shows that CDK5 plays a vital role in cytoskeletal regulation,
especially microtubule regulation, in controlling neuronal migration, neuritic growth,
and synaptogenesis [100,101]. Recently, the effect of CDK5 on cytoskeletal elements has
been expanded to non-neuronal cells such as cancer cells [102–104].

3.2.1. CDK5—Microtubule

Via its existing microtubule-polymerizing function, p35 acts as a modulator of micro-
tubule architecture [105]. The p10 component of p35 contains microtubule- and tubulin-
binding domain [105]. That is, the microtubule polymer inhibits CDK5-p35 activity
by blocking the interaction between p35 and CDK5. Interestingly, the CDK5-mediated
phosphorylation of p35 promotes the microtubule-binding and polymerising activity of
p35 [106]. Moreover, CDK5/p25 complex upregulates the phosphorylation of microtubule-
associated proteins 1B (MAP1B), which is among the microtubule dynamics regulators [107].
However, this cannot occur when CDK5 binds to p35 [107].

Furthermore, Ser732 phosphorylation of focal adhesion kinase (FAK) by CDK5 plays
an essential role in microtubule organisation and microtubule fork formation to facilitate
neuronal migration [108]. In contrast, the overexpression of non-phosphorylatable mutant
of FAK or a CDK5 insufficiency results in disorganised microtubule fork formation [108].
CDK5 phosphorylates doublecortin (DCX) at Ser297, leading to the decreased binding
between DCX and microtubules and the polymerising effect of DCX [109]. This makes
microtubule more dynamic, which promotes cell migration [109]. According to these
findings, CDK5 may regulate microtubule dynamics to affect cell migration.

3.2.2. CDK5—Intermediate Filaments

Neurofilaments (NFs) are a specific type of intermediate filament. NFs accumulation
leads to neurodegeneration and related diseases [110]. CDK5 can phosphorylate NFs and
control axonal movement and are involved in developing neuronal diseases [6].

Nestin, one of the intermediate filaments, is found in specific organs and cells, such as
neuroepithelial progenitor cells, myoepithelial breast cells, and renal podocytes [111].
Moreover, the expression of nestin increases in neoangiogenic blood vessels, injury and
cancer [111–113]. Additionally, the nestin insufficiency poses effects on focal adhesion
and cell migration, especially in the context of cancer [111]. Nestin is phosphorylated
by CDK5 at Thr316 residue to monitor the reorganisation and dynamics of nestin [114].
Interestingly, p35 can bind to nestin after treatment with roscovitine, suggesting that the
interaction between p35 and nestin serves to regulate CDK5 activity [114]. Moreover,
nestin modulates the conversation of p35 into p25, regulating the activity of CDK5 in
differentiating myoblasts [115].

3.2.3. CDK5—Actin Cytoskeleton

CDK5 and p35 co-localize with actin filaments in neurite terminals [116]. Moreover,
another activator of CDK5, p39, has been found to co-localize with actin at growth cones of
hippocampal neurons [25]. In this environment, p39 can bind to actin, and the disruption of
actin cytoskeleton leads to changes in the localisation of p39 and the activity of CDK5/p39
complex [25]. CDK5 regulates actin dynamics through interactions with actin regulatory
proteins (Figure 3). For example, in a neuron, p35 can directly bind to Rac Family Small
GTPase 1 (Rac-1) in a GTP-dependent manner, which forms a complex with CDK5 [117].
This causes the downregulation of p21 activated kinase 1 (Pak-1), subsequently affecting
actin polymerisation and cell migration as well as neurite growth [117].

Through the phosphorylation of p27 at Ser10, CDK5 stabilises and increases the amount
of p27, resulting in the upregulation of the non-phosphorylated form of cofilin via the sup-
pression of RhoA [118]. This facilitates actin reorganisation in the migration activity [118].
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This facilitates actin reorganization in the migration activity. CDK5 phosphorylates Wiskott-
Aldrich syndrome protein-family verprolin homologous protein 1 (WAVE-1) to inhibit
actin polymerisation [119]. In contrast, inhibition of the CDK5-mediated phosphorylation
of WAVE-1 promotes actin polymerisation along with an increased number of dendritic
spines [119]. Also, the activation of Eph receptor A4 (EphA4) phosphorylates and activates
CDK5, which promotes the activation of ephexin-1. This contributes to enhanced actin
dynamics [56].

3.3. CDK5 Cell Cycle and DNA Damage

DNA damage is an initiator of neuronal cell death and a stimulator of protein calpain,
which is involved in the cleavage of p35 into p25 [120]. CDK5 has been shown to increase
in the early stages of DNA damage [121]. In a neuron, through the CDK5-dependent
phosphorylation of ataxia-telangiectasia mutated (ATM) protein, DNA damage induces
cell death [122]. In contrast, disruption of the CDK5-ATM pathway protects the neuron
from DNA damage [122].

CDK5 does not directly affect the cell cycle, but nuclear CDK5 plays a role as a cell
cycle checkpoint [123–125]. The cell cycle is blocked when CDK5 is upregulated in the
nucleus but not the cytoplasm [124]. Moreover, cells that re-enter the cell cycle have a lower
abundance of nuclear CDK5 [124]. More critically, cell cycle disruption requires the binding
of CDK5 to p35, but not p25 or p39 [36].

CDK5/p35 plays a role in transforming growth factor-β1 (TGF-β1)-induced cell cycle
arrest at the G1 phase [126]. The inhibition or knockdown of CDK5 dramatically reduces
the frequency of TGF-β1-mediated cell cycle arrest [126]. Interestingly, TGF-β1 enhances
the p35-dependent activity of CDK5 [126].

However, neurons are at risk of death when they re-enter the cell cycle [36]. CDK5 can
prevent cell cycle re-entry as a neuroprotective mechanism when CDK5 is activated by p27
or p35 [36,123,127]. CDK5/p27 or CDK5/p35 complexes in turn binds to E2F transcription
factor 1 (E2F1) [36,127]. This disrupts the interaction between E2F1 and transcription factor
DP-1, resulting in cell cycle inhibition [36,127].

In contrast, under hyperactive conditions through p25 or p35 overexpression, CDK5
phosphorylates retinoblastoma (Rb), which can re-enter the cell cycle (leading to cell
death) through the CDK5-Rb-E2F pathway [128,129]. This could not occur under normal
condition [129].

Moreover, the CDK5-mediated phosphorylation of casein kinase 1 (CK1) results in
diminished CK1 activity [130]. CK1 plays a vital role in an array of signalling path-
ways, such as DNA repair, apoptosis, proliferation, and cell differentiation [130,131].
Thus, CDK5 may have an indirect effect on the cell cycle as well as cell proliferation.

4. The Role of CDK5 in Cancer Cells

To date, characteristics for tumour development have been outlined. Ten features
are considered to be the hallmarks of cancer [132,133]. CDK5 can be regarded as a po-
tential target for anticancer treatment through its effects on these hallmarks (Figure 4).
We present the influence of CDK5 on cancer to shed light on the potential role of CDK5 in
the tumorigenesis pathway.
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4.1. Effects of CDK5 on Cancer Hallmarks from Tumour Itself

CDK5 upregulation has been associated with a variety of cancers such as colorec-
tal cancer (CRC), lung cancer, and nasopharyngeal cancer (NPC) [10,136,137]. Besides,
high expression of CDK5 suggests a poor prognosis for CRC, lung cancer, and liver cancer
along with short overall survival in lung cancer and ovarian cancer [136–140]. In par-
ticular, the high enzymatic activity of CDK5 was also confirmed in liver and prostate
cancer [75,141]. However, some authors argued that CDK5 acts as a tumour suppres-
sor in gastric cancer [142–144]. Low expression of CDK5 displays poor patient survival,
while nuclear CDK5 accumulation prevents the proliferation and metastasis of gastric
cancer cells [142,143]. This is associated with serine/threonine-protein phosphatase 2A
(PP2A) and p27 expression [142,144].

4.1.1. Effect of CDK5 on the Proliferation and Growth of Cancer

CDK5 may phosphorylate tumour suppressors and transcriptional factors. In lung
cancer, CDK5 promotes the tumour’s progression by inhibiting the tumour-suppressive
function of bridging integrator 1 (BIN1) [7]. When binding to c-Myc, BIN1 can suppress cell
proliferation, inducing apoptosis [145,146]. However, the phosphorylation of c-Myc at Ser62

acts as a barrier preventing the interaction between c-Myc and BIN1 [147]. Zhang et al.
showed that CDK5 could phosphorylate Ser62 of c-Myc, inhibiting the BIN1-c-Myc in-
teraction and indirectly facilitating cancer proliferation [7]. It has been demonstrated
that epidermal growth factor receptor (EGFR)-activated CDK5 phosphorylates and binds
to tripartite motif-containing 59 (TRIM59), translocating TRIM59 into the nucleus [148].
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This makes histone variant, macroH2A1, a tumour suppressor, more prone to the ubiq-
uitination and degradation [148]. This promotes STAT3 signalling activation and tumori-
genesis [148]. Moreover, CDK5 is also a positive regulator to cell proliferation through
STAT3 activation and STAT3-mediated androgen receptor (AR) activation via the phos-
phorylation of STAT3 at Ser727 in prostate cancer [75]. Correspondingly, in medullary
thyroid cancer (MTC), through the Ser727 phosphorylation of STAT3, CDK5 modulates cell
proliferation [76]. According to these findings, CDK5 is a crucial regulator of cancer cell
proliferation and survival.

4.1.2. Effect of CDK5 on the Migration and Invasion

The migration of malignant tumours to adjacent sites and distant sites is the first
step of cancer metastasis [149]. There is much evidence showing the role of CDK5 in
the migration of numerous cancers, including pancreatic cancer [150], breast cancer [9],
lung cancer [151], liver cancer [139], glioblastoma [152], prostate cancer [102], and pitu-
itary cancer [153]. CDK5 downregulation marginally attenuated the migration of these
cancers [102,139,150–153].

In response to epidermal growth factor (EGF), Gα-interacting vesicle-associated pro-
tein (GIV) is phosphorylated by CDK5, subsequently activating Gαi and promoting promi-
gratory Akt signals [154]. Consequently, these events enhance cancer migration [154].
Liu et al. demonstrated that, in glioblastoma, CDK5 could activate nuclear Akt to favour
the cancer migration and invasion via the phosphorylation of isoform A of phosphatidyli-
nositol 3-kinase enhancer (PIKE-A) [152].

Tumours can migrate to second sites via epithelial-mesenchymal transition (EMT),
in which carcinoma cells undergo the loss of cell polarity and cell-cell adhesion and
act as mesenchymal stem cells. CDK5 is introduced to stimulate the activity of target-
ing protein for Xklp2 (TPX2) [139], leading to the migration of hepatocellular carcinoma
cells [139,155]. TPX2 can enhance EMT via EMT-related proteins, such as E-cadherin,
N-cadherin, β-catenin, Slug, MMP-2, and MMP-9 [156]. Liang et al. reported that, in breast
cancer, CDK5 overexpression facilitates transforming growth factor-β (TGF-β)-induced
EMT via Ser732 phosphorylation of FAK [9]. In contrast, the deletion of CDK5 attenuates
TGF-β-induced EMT and suppresses cell motility [9]. In head and neck squamous cell
carcinoma, CDK5 also plays an important role when cooperating with the miR-21 gene to
facilitate EMT [157].

Blocking CDK5 activity results in failed cytoskeletal remodelling in lung cancer cells,
causing them to lose the cell polarity and decline in cellular mobility [103]. Strock et al.
pointed out that CDK5 inhibition leads to changes in cytoskeletal properties, cellular
polarity, and invasion potential [102]. In breast cancer, while CDK5 inhibition causes
the depolymerisation and the rearrangement of F-actin, CDK5 upregulation potentiates
F-actin bundles [9]. Evidence also indicates that CDK5-mediated phosphorylation of actin-
binding protein adducin-1 (ADD1) at Thr724 decreases the affinity of ADD1 with F-actin,
which might, in turn, reorganise actin during cell migration [104]. Hence, the inhibition of
migration factors by suppressing the CDK5 signalling pathway is an attractive strategy for
preventing cancer invasion.

4.1.3. Effects of CDK5 on the Genome Instability, Mutation, and Replicative Immortality

Genome instability is among the characteristics that cause mutation in DNA repair
genes to lead to cancer [158]. CDK5 may be essential for the activation of intra-S and
G2/M checkpoints, which are prerequisite to DNA repair [159,160]. CDK5 phosphorylates
replicating protein A subunit (RPA32), which is subsequently conducive for the intra-S
phase checkpoint induction and DNA repair [159]. Additionally, CDK5 can phosphory-
late STAT3 at Ser727 so that p-STAT3 could interact with endonuclease essential meiotic
structure-specific endonuclease 1 (Eme1) [161]. This facilitates the rescue of damaged
replication forks [161].
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In a neuron, through CDK5-mediated phosphorylation Ser794 of ATM, CDK5 activates
tumour suppressor, p53, and modulates cell death [122]. Interestingly, in HCC, CDK5 inhi-
bition increases DNA double-strand breaks via the presence of DNA damaging agents [141].
Relatedly, with the inhibition of CDK5, the response to DNA damaging agents of HCC
cells significant increases [141].

Moreover, signs of DNA replication stress include oncogene-mediated senescence [162].
Although at an early stage, senescence can prevent malignant transformation, prolonged
senescence can facilitate cancer development [163]. Mao et al. reported that Rb-dependent
senescence requires the CDK5 activation by p35 [164]. Subsequently, CDK5 inhibits GTPase
Rac1, which is associated with senescent cytoskeletal changes [165]. This suggests the
indispensable role of CDK5 in senescence and cellular immortalisation.

4.1.4. Effects of CDK5 on Cancer Cell Metabolism

There is not much evidence regarding the impact of CDK5 on cancer metabolism.
However, evidence has indicated that insulin-activated CDK5 leads to the phosphorylation
of extended synaptotagmin-1 (E-syt1) [166]. This facilitates the association between E-syt1
and glucose transporter type 4 (GLUT-4) so that 3T3-L1 adipocytes take up glucose [166].
Moreover, it is also demonstrated that CDK5 inhibition or knockdown inhibits the con-
sumption of glucose [166]. Also, CDK5 regulates the secretion of insulin in response to
high levels of glucose [167].

Another study revealed that, in podocytes, the expression of p35 and the kinase
activity of CDK5 are driven by TGF-β1/extracellular signal-regulated protein kinases 1 and
2 (ERK1/2)/early growth response-1 (Egr-1) pathway in hyperglycaemic conditions [168].
With its function being a critical player in the proliferation, differentiation, and morphology
of podocyte [169], CDK5 contributes to the development and progression of diabetic
nephropathy [168].

Interestingly, with the presence of glucose, phorbol-12-myristate-13-acetate-induced
protein 1 (Noxa) is phosphorylated at Ser13 by CDK5, subsequently inhibiting the pro-
apoptotic function of Noxa and modulating glucose metabolism in the haematopoietic
lineage [170]. CDK5 knockdown or the hypoglycemia lead to Noxa dephosphorylation,
initiating Noxa-mediated apoptosis [170]. More importantly, Noxa stimulates glucose
uptake and turns over glucose through the pentose phosphate pathway (PPP) to promote
cell growth [170].

4.2. Effects of CDK5 on Tumour Microenvironments

Tumour microenvironments (TME) support the growth of tumour cells or hinder anti-
cancer agents from accessing to tumour cells [171,172]. Thus, research on TME and factors
influencing TME is essential. Also, various cells, including macrophages and fibroblasts,
constitute the TME. Cancer-associated fibroblasts (CAFs), a constituent of TME, is a vital
contributor to proliferation, migration, invasion, and angiogenesis [173–175]. However,
little research has been done on the role of CDK5 in CAF. In CAFs, it has been reported
that CDK5 is activated in the HOTARI-induced EMT via accumulation of trimethylation
of H3K27 in the promoter region of CDK5RAP1 (CDK5 Regulatory Subunit Associated
Protein 1), the suppressor of CDK5 [176,177].

Among the hallmarks of cancer, inducing angiogenesis, tumour-promoting inflam-
mation, and the blockade of immune destruction are associated with the TME, and we
describe the effects of CDK5 on these hallmarks. Also, we add the effects of CDK5 on
cancer-nerve connection since nerve contribution can be one of the emerging TME.

4.2.1. Effects of CDK5 on Angiogenesis

Angiogenesis is a multi-step process in which new blood vessels involving endothelial
cells grow from the pre-existing blood vessels [92]. Tumour angiogenesis is the proliferative
penetration of blood vessels into cancerous tissues to supply nutrients and oxygen [178].
CDK5 is involved in the proliferation and migration of endothelial cells [179].
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In comparison to quiescent cells, CDK5 significantly expresses higher in proliferating
cells. CDK5 induces the formation of lamellipodia to promote cell migration [179]. Accord-
ingly, pleiotrophin (PTN) is a secreted growth factor that stimulates human endothelial cell
migration by binding to receptor proteins tyrosine phosphatase beta/zeta (RPTP β/ζ) and
ανβ3 integrin. CDK5 mediates the PTN-induced movement of endothelial cells [180,181].
CDK5 also promotes the stabilisation and transcriptional activity of hypoxia-inducible
factor-1α (HIF-1α) through the phosphorylation of HIF-1α at Ser687, thus accelerating the
formation of blood vessel [182]. CDK5 is also involved in controlling lymphatic develop-
ment and function by phosphorylation of Foxc2 [183]. These facts suggest that CDK5 is an
important target in regulating angiogenesis.

Treatment with CDK5 inhibitor suppresses the growth and induces the apoptosis of
bovine aortic endothelial cells and human aortic endothelial cells [184]. CDK5 inhibitor also
reduces migration of the endothelial cells [179]. Moreover, CDK5 knockdown diminishes
DLL4-induced Notch downstream target expression and the active Notch intracellular
domain generation [185]. The suppression of DLL4-Notch pathway prevents the devel-
opment of tumour through the facilitating non-productive angiogenesis and preventing
tumour vasculature. The ablation of CDK5 suppresses angiogenic processes in hepatocel-
lular carcinoma (HCC) [182]. In line with this, CDK5 inhibition resulted in the reduced
expression of vascular endothelial growth factor (VEGF), a vital protein for the initiation of
signalling cascades responsible for angiogenesis [186].

4.2.2. Effects of CDK5 on Inflammation and Immune Evasion

Inflammation contributes to tumour development [187–189]. Firstly, chronic inflam-
mation can produce reactive oxygen and nitrogen species, which cause genetic dam-
age [190]. Inflammation response processes recruit inflammatory cells, including cytokines,
chemokines, and enzymes [191]. These cells establish inflammatory microenvironment
to cancer development, promotion, progression, and invasion [190]. There are limited
evidence regarding the impact of CDK5 on inflammation related to cancer development.
However, it has been shown that CDK5-mediated phosphorylation of Ser56 vimentin pro-
motes the GTP-dependent secretion of pro-inflammatory molecules by neutrophils [192].
This secretion can promote inflammation, leading to tumour development and metasta-
sis [193]. In line with this, in melanoma, CDK5 could directly phosphorylate vimentin
at Ser56 [194]. The decreased kinase activity of CDK5 leads to blocking the metastasis by
losing both phosphorylation form of vimentin and soluble vimentin [194]. This suggests
that CDK5 can regulate inflammation factors conducive to the development of cancer.

Immune evasion is among the significant mechanisms inhibiting the effectiveness
of anticancer drugs [195]. For overcoming immune surveillance, tumours induce diverse
mechanisms such as down-regulating antigen factors, tolerant strategies, and generating
several immunosuppressive cytokines [195]. CDK5 can regulate the expression of pro-
grammed cell death ligand 1 (PD-L1) to prevent antitumour immunity [196]. CDK5 silence
results in the phosphorylation of interferon regulatory factor 2 binding protein 2 (IRF2BP2),
which in turn increases the expression of interferon regulatory factor (IRF2) and declines
the expression of PD-L1 [196]. Through the depletion of PD-L1, CDK5 deficiency can
promote CD4+ T-cell-mediated cancer cell death [196]. Besides, evidence also showed the
role of CDK5 in T cells through its effect on histone deacetylases (HDACs) and Foxp3 gene
expression [197,198]. The disruption of CDK5 activity reduces the IL-2 expression through
increased activity of HDACs and suppresses the binding of STAT3 to Foxp3 gene promoter
through decreased phosphorylation STAT3 at Ser727 [197,198]. This, in turn, regulates
the differentiation and survival of T-cells [197,198]. Hence, further studies are needed to
confirm the effect of CDK5 on immune, especially in cancer.

4.2.3. CDK5-Nerve and Cancer Connection

Nerves are an essential part of the tumour microenvironment and contribute to tumour
progression [199,200]. For example, almost peripheral cancer types have been observed to
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interact with nerve structures at least at an advanced stage, especially in bladder cancer,
prostate cancer, pancreatic cancer, colon cancer, lung cancer, head and neck cancer, and bile
duct cancer [201]. Stress-induced sympathetic activation promotes cancer, and a decrease
in tumour innervation indicates a higher survival rate without recurrence [202,203]. The in-
crease in chemotherapy response by β-blockers is due to anticancer and antiangiogenic
activity [204]. As you can see from these examples, the hypothalamic-pituitary-adrenal axis
(HPA) and autonomic nervous system (ANS) release neurotransmitters that bind to their
receptors and contribute their functions in diverse tissues, including tumour tissue [205].
This, in turn, exerts effects on tumour growth and metastasis [205]. Indeed, matrix met-
alloproteinases (MMPs) are involved in the degradation of ECM proteins, the activity of
cytokines, and the production of growth factors. Thus, the HPA axis and ANS serve as
regulators of metastasis [206,207].

Shapiro and Warren have indicated that nerve fibres are found in several cancer
tissues [205,208]. Moreover, CDK5 and p35 are correlated to nerve fibres outgrowth [209].
This suggests that CDK5 can be involved in nerve fibres-mediated cancers. Glial cell line-
derived neurotrophic factor (GDNF) is an essential factor for neuronal proliferation [210].
In pancreatic cancer, GDNF can positively regulate the expression and activity of MMP-9 to
facilitate cancer invasion [211]. Another neurotrophic factor, NGF, released from neuronal
tissue, increases the amount of MMP-2 and the activity of MMP-2, subsequently promoting
invasiveness [212]. Interestingly, in the neuron, GDNF serves as a chemoattractant factor,
which increases the activity of CDK5 to facilitate the migration of rostral migratory stream
cells [213].

Catecholamine hormones such as norepinephrine and epinephrine, modulate tumour
development through MMPs and VEGF, a pro-angiogenetic factor, in nasopharyngeal
cancer [214]. Additionally, norepinephrine and epinephrine are stress-related mediators,
and they promote the release of VEGF through β-adrenoreceptor to control the process of
angiogenesis in ovarian cancer [215]. More importantly, CDK5 is also a crucial protein for
neuronal function via the control of catecholamine neurotransmitter release [216], neuro-
transmitter synthesis [216], and Munc18-mediated exocytosis [32]. CDK5 may modulate
tumour development and metastasis through neurotransmitters. Although there is not
much evidence showing the association between CDK5 and cancer via neurotransmitters,
this can be a potential target for cancer treatment.

Therefore, CDK5 seems to be able to promote cancer progression through its role
in the nerves surrounding the tumour in addition to its role in cancer cells, and further
research is needed.

5. Potential Therapeutic Options

To date, there are many reports regarding the CDK inhibitors, but highly selective
inhibitors of CDK5 are not available. We classify the CDK5 inhibitors as early pan CDK
inhibitors, multitarget CDK5 inhibitors, and selective CDK5 inhibitors according to report
of Whittaker et al.’s (Figure 5) [217].
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5.1. Early Pan CDK Inhibitors

Olomoucine, roscovitine, and flavipiridol belong to broad pan CDK inhibitors (Figure 5)
[218]. Olomoucine is a selective CDK5 inhibitor [218,219]. It inhibits CDK1 (IC50 = 7 µM),
CDK2 (IC50 = 7 µM) and CDK5 (IC50 = 3 µM) (Table 4) [218]. Olomoucine induces apoptosis
in human cancer [218,220]. The combination of olomoucine with androgen-antagonist
bicalutamide exerts the synergic effect on prostate cancer cell lines [221].

Table 4. IC50 values of CDK5 inhibitors.

Inhibitor IC50 (µM) Ref.

Roscovitine 0.16 [222]
Flavopiridol 0.014 [223]

Dinaciclib 0.001 [223]
Olomoucine 3 [222]
Purvalanol A 0.075 [218]

Indirubin-3′-monoxime 0.1 [224]
20-223 0.0088 [225]
AT7519 0.011–0.013 [226]

Among the first CDK inhibitors, roscovitine (seliciclib) and flavopiridol (alvocidib)
have entered the clinical trial phase [217]. Roscovitine [CY-202, (R)-roscovitine, seliciclib] is
a small molecule that inhibits cyclin-dependent kinase (CDK) through direct competition
with ATP at the ATP binding site [227–229]. It is a broad-spectrum purine inhibitor that
inhibits CDK1, CDK2, CDK5, and CDK7 (IC50 = 0.2–0.5 µM), but a weak inhibitor for
CDK4 and CDK6 (IC50 > 100 µM) (Table 4). Also, only a few kinases such as CaMK2,
CK1α, CK1δ, DYRK1A, EPHB2, ERK1, ERK2, FAK, and IRAK4 in the 1–40 µM range are
sensitively inhibited by roscovitine [227]. In certain cancers such as breast cancers, roscov-
itine (100 mg/kg) can decrease tumour development and drug resistance in a xenograft
model [230].

Flavopiridol (alvocidib), which has orphan drug designation in chronic lymphocytic
leukaemia (CLL) from the FDA and the EMA [231], can inhibit the activity of CDKs, which
in turn prevents tumour proliferation and facilitates apoptotic process [232,233]. Flavopiri-
dol inhibits several CDKs such as CDK1, CDK2, and CDK4 and inhibits CDK5/p25
formation [234]. Flavopiridol induces cell cycle arrest in NSCLC cells and apoptosis in oral
cancer cells [235,236].

Indirubin-3′-oxime is also a potent inhibitor of CDK5/p25 (IC50 = 0.10 µM) and GSK3β
(IC50 = 0.022 µM) (Figure 5) [237]. Indirubin-3′-monoxime represses tumour proliferation,
along with a low concentration of phosphorylated-CDKs in the nucleus [238]. Moreover,
indirubin-3′-monoxime inhibits the migration and invasion of pancreatic cancer cells
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through the downregulation of MMP-9 [238]. Indirubin-3′-monoxime inhibits tumour
formation of oral cancer through downregulation of survivin at 10 µM [239].

5.2. Multitarget CDK5 Inhibitors

Dinaciclib (SCH 727965) is a small molecule multi-CDK inhibitor targeting CDK
2/5/9 with an improved therapeutic index in comparison with flavopiridol (Figure 5) [223].
Through restraining Rb phosphorylation, dinaciclib leads to apoptosis in tumour cell
lines and reduces tumour volume in xenograft mode at 48 mg/kg [223]. In the phase I
study, dinaciclib, combined with rituximab, was well tolerated and revealed encourag-
ing clinical activity in relapsed/refractory chronic lymphocytic leukaemia patients [240].
As a single agent, it showed a positive treatment effect in patients with relapsed multiple
myeloma [241].

AT7519 was discovered through a structure-guided, fragment-based, screen and
AT7519 inhibits CDK1 (IC50 = 0.21 µM), CDK2 (IC50 = 0.047 µM), CDK4 (IC50 = 0.1 µM),
CDK5 (IC50 = 0.13 µM), CDK6 (IC50 = 0.17 µM), and CDK9 (IC50 = 0.13 µM) (Figure 5;
Table 4) [242]. AT7519 inhibits the growth and promotes the death of paclitaxel-resistant
cervical cancer cells and 5-fluorouracil-resistant colon cancer cells [243]. This suggests the
potential role of AT7519 in drug resistance.

Like AT7519, 20-223 (CP668863) is a CDK inhibitor derived based on the 4- aminopy-
razole core (Figure 5) [225,242]. 20-223 was more potent than AT7519, and 20-223 was
equipotent against CDK2 and CDK5 compared to other CDK family members [225]. Treat-
ment with 20-223 (CP668863) decreases tumour growth as well as the weight and volume
of tumours in xenograft model of colorectal cancer [225]. Moreover, compared to control,
HCT116 cells decrease migration upon treatment with 20-223 [225].

5.3. Selective CDK5 Inhibitors

There seems to be no specific inhibitor for CDK5 yet. Purvalanol A was derived by
a combinatorial chemistry approach as a selective inhibitor for CDK2 (IC50 = 4–70 nM)
and CDK5 (IC50 = 75 nM) (Figure 5; Table 4) [218]. Through cell cycle arrest, purvalanol
A is mentioned as an apoptotic inducer in various cancers, such as breast and prostate
cancer [244–246]. Some purvalanol A-related pathways have been reported, such as the
activation of polyamine catabolic pathway and natural polyamines catabolic pathway [245,
246].

Recently, TFP5/TP5, a peptide derived from p35, was found to inhibit the hyperactivity
of CDK5/p25 complex without influencing endogenous CDK5/p35 complex [247–249].
In glioblastoma, TP5 reduces cell viability and growth through the prevention of ATM
phosphorylation [247]. TP5 is synergistic with the current standard of cancer care in the
treatment of glioblastoma [247,250,251].

Although there are various types of CDK5 inhibitors and researches are ongoing to
develop selective CDK5 inhibitors [252], specific CDK5 inhibitors are not yet available
for chemotherapy in the clinical area. Thus, further studies and efforts for specific CDK5
inhibitors are needed.

6. Perspectives

We have presented a summary of CDK5 as a biomarker and a new target in cancer
treatment. CDK5 is overexpressed in various cancer, and this upregulation has been pro-
posed to facilitate tumour proliferation and metastasis. There is much research regarding
the effect of CDK5 on cancer hallmarks. However, the effects of CDK5 on some hallmarks
have not yet been studied.

Notably, CDK5 is involved in the metabolic processes associated with glucose con-
sumption and facilitating cell proliferation. Glucose is known as an essential nutrient
for cancer development. This raises the question of whether CDK5 manipulates tumour
development through glucose uptake. This novel role of CDK5 needs to be studied further.
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CDK5 was first known as a kinase regulating neuronal function. Recently, evidence
has shown the involvement of CDK5 in cancer. Therefore, among the several findings that
have been studied in neurons, for example, the roles of CDK5 related to the reorganisation
of cytoskeletons, including microtubules, are likely to apply to cancer research. CDK/p35
is activated in several cancers and promotes proliferation and migration of cancer cells.
However, other groups reported that CDK5 inhibits proliferation and migration of cancer
cells. Recently, Sharma et al. have utilised the melanoma cells expressing analogue-
sensitive CDK5, which made it possible to specifically inhibit CDK5 in cancer cells, clearly
demonstrating that inhibition of CDK5 in melanoma cells inhibits the metastatic spread of
melanoma [194].

If the researchers’ approach can be applied to various carcinomas involving CDK5,
clear conclusions can likely be drawn from the conflicting results associated with CDK5 in
different cancers. If it becomes clear that CDK5 promotes cancer development and progres-
sion, the development of CDK5 specific inhibitor is expected to accelerate further. Since
the research results on inhibitors of CDK5 have been conducted to develop therapeutics
for neurological diseases, if these results can be used to develop therapeutics for various
cancers, it is expected to create a specific inhibitor for CDK5 at a relatively rapid pace.
Besides, since CDK5 is a target present in nerves, the neurological side effects of concern
can be minimised through a strategy that prevents the passage of the blood-brain barrier,
and a study of CDK5 therapy in carcinomas where nerves are involved in the growth
and progression of cancer. In conclusion, CDK5 is a fascinating target in cancer. We look
forward to the day that the development of CDK5 specific inhibitors through many studies
will be successful, and it will become a therapeutic agent for various refractory cancers.
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