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Abstract 

Background:  Triple-negative breast cancer (TNBC) is a biologically diverse disease, with characteristics such as 
homologous recombination deficiency (HRD), gene mutation, and immune reactions. Japan Breast Cancer Research 
Group 22 is a multicenter trial examining TNBC’s response to neoadjuvant chemotherapy (NAC) according to the HRD 
status. This translational research investigated the clinical significance of the immune microenvironment of TNBC in 
association with HRD, tumor BRCA1/2 (tBRCA1/2) mutation, and response to NAC.

Methods:  Patients aged below 65 years with high HRD or germline BRCA1/2 (gBRCA1/2) mutation randomly 
received paclitaxel + carboplatin (group A1) or eribulin + carboplatin (A2), followed by anthracycline. Patients aged 
below 65 years with low HRD or those aged 65 years or older without gBRCA1/2 mutation randomly received eribulin 
+ cyclophosphamide (B1) or eribulin + capecitabine (B2); nonresponders to the first four cycles of the therapy 
received anthracycline. A pathological complete response (pCR) was defined as the absence of residual cancer cells 
in the tissues. Pretreatment biopsy specimens were stained by multiplexed fluorescent immunohistochemistry using 
antibodies against CD3, CD4, CD8, Foxp3, CD204, and pan-cytokeratin. Immune cells with specific phenotypes were 
counted per mm2 in cancer cell nests (intratumor) and stromal regions. The immune cell densities were compared 
with clinicopathological and genetic factors including tumor response.

Results:  This study analyzed 66 samples. T1 tumors had a significantly higher density of intratumoral CD8+ T cells 
than T2 or larger tumors. The tBRCA1/2 mutation or HRD status was not associated with the density of any immune 
cell. The density of intratumoral and stromal CD4+ T cells was higher in patients showing pCR than in those without 
pCR. In a multivariate analysis, intratumoral and stromal CD4+ T cell density significantly predicted pCR independent 
of age, chemotherapy dose, HRD status, and treatment groups (P = 0.009 and 0.0057, respectively). In a subgroup 
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Background
Triple-negative breast cancer (TNBC) is a subset of 
breast cancer without the expression of estrogen recep-
tor (ER) and progesterone receptor (PgR) and without the 
overexpression or gene amplification of human epidermal 
growth factor receptor 2 (HER2) [1]. TNBC still has no 
specific target for treatment; thus, the current standard 
systemic therapy for early-stage TNBC is conventional 
chemotherapy, which includes anthracycline and taxane. 
However, the prognosis of patients with TNBC is unfa-
vorable compared with other subtypes of breast cancer 
and the clinical outcome still has to be further improved, 
and new treatment strategies are needed [1, 2].

TNBC is a biologically diverse disease. Its biological 
characteristics include homologous recombination defi-
ciency (HRD), gene mutation, and immune reactions 
[2–4]. Around half of TNBC has been reported to have 
HRD due to mutations or promotor hypermethylation of 
relevant genes such as BRCA1/2, PALB2, and RAD51C 
[5–7]. The assay to score HRD using cancer tissues has 
been developed based on loss of heterozygosity, telom-
eric allelic imbalance, and large-scale state transitions [8]. 
Several studies examined the association between HRD 
score and response to chemotherapy, in particular plati-
num agents, but the results were inconsistent [9–12].

TNBC shows a relatively high mutation burden com-
pared with other breast cancer subtypes, and TP53 is 
the most frequently mutated gene in TNBC [13–15]. In 
general, a higher mutation burden is considered to lead 
to more neoantigen production. Indeed, the association 
between higher mutation burden and greater immune 
reaction has been reported in a variety of cancers [16]. 
However, in TNBC, increased immune reactions have 
been reported to be associated with lower mutation 
burden and lower clonal heterogeneity, suggesting an 
immune editing effect where cancer progression by 
clonal expansion is suppressed by immune surveillance 
[15, 17].

Tumor-infiltrating lymphocytes (TILs) are associ-
ated with prognosis; they can predict TNBC response 
to neoadjuvant chemotherapy (NAC) [18–25]. The 
International Immuno-Oncology Biomarker Working 
Group published recommendations for the standardized 

assessment of TILs in breast cancer tissues [26, 27]. Sev-
eral international guidelines, such as the European Soci-
ety of Medical Oncology Guidelines, have included TILs 
as a prognostic biomarker [28]. However, the subsets of 
lymphocytes that contribute the most to the prognostic 
and predictive values of TILs for TNBC remain unclear.

Japan Breast Cancer Research Group 22 (JBCRG22) 
trial is a multicenter trial that examined response to 
NAC according to the HRD status in patients with TNBC 
and showed good pCR rates of 65% and 45% by weekly 
paclitaxel + carboplatin and eribulin + carboplatin, 
respectively [29]. This translational research aimed to 
investigate the clinical significance of the immune micro-
environment of TNBC in association with HRD, tumor 
BRCA1/2 (tBRCA1/2) mutation, and response to NAC in 
order to give further insights in TNBC biology including 
tumor microenvironment for the improvement of treat-
ment strategies of TNBC.

Methods
JBCRG22 study
The study design, endpoints, and results of JBCRG22 
have been reported previously [29]. Briefly, patients aged 
below 65 years with TNBC showing a high HRD status 
(HRD score ≧ 42) (Myriad Genetics, Inc., Salt Lake City, 
Utah) [8] or germline BRCA1/2 (gBRCA1/2) mutation 
randomly received 4 cycles of either weekly paclitaxel 
80mg/m2 on days 1, 8, and 15 + carboplatin AUC6 on 
day 1 of a 21-day cycle (group A1) or eribulin 1.4mg/
m2 on days 1 and 8 + carboplatin AUC6 on day 1 of a 
21-day cycle (group A2), followed by an anthracycline-
containing regimen (5-fluorouracil–epirubicin–cyclo-
phosphamide, FEC or doxorubicin–cyclophosphamide, 
AC) every 21 days for 4 cycles. Patients aged below 65 
years with TNBC showing a low HRD status (HRD score 
< 42) or those aged 65 years or older without gBRCA1/2 
mutation were randomly assigned to 6 cycles of either 
eribulin 1.4mg/m2 on days 1 and 8 + cyclophosphamide 
600mg/m2 on day 1 of a 21-day cycle (group B1) or eribu-
lin 1.4mg/m2 on days 1 and 8 + capecitabine 2000mg/
m2 b.i.d. for 14 days of a 21-day cycle (group B2); nonre-
sponders to the first 4 cycles of the therapy received an 
anthracycline-containing regimen (FEC or AC) every 21 

analysis, the predictive value of intratumoral and stromal CD4+ T cell density persisted in the platinum-containing 
chemotherapy group (A1+A2) but not in the non-platinum-containing group (B1+B2).

Conclusions:  Intratumoral and stromal CD4+ T cell density was an independent predictor of pCR in patients with 
TNBC. A larger study is warranted to confirm the results.

Trial registration:  UMIN0​00023​162
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days for 4 cycles. The major exclusion criteria included 
having bilateral breast cancer, multiple cancers other 
than breast cancer, axillary lymph node dissection before 
the study treatment, and severe uncontrolled systemic 
diseases [29].

All study participants provided written informed 
consent. The institutional review board approved the 
research protocol, which conformed to the Declaration of 
Helsinki.

Pathological assessment of treatment response
The centralized pathologic review committee, as well as 
each participating institution, assessed the pathological 
response. The absence of residual cancer cells in the tis-
sues indicated a pathological complete response (pCR).

Multiplex fluorescent immunohistochemistry
As previously described [30], pretreatment biopsy speci-
mens in formalin-fixed paraffin-embedded blocks were 
stained by multiplexed fluorescent immunohistochem-
istry with an Opal IHC kit (AKOYA Biosciences, CA, 
USA) using antibodies against CD3 (clone SP7; Abcam, 
Tokyo, Japan), CD4 (4B12; Leica Microsystems, Tokyo, 
Japan), CD8 (4B11; Leica Microsystems, Tokyo, Japan), 
Foxp3 (D608R; Cell Signaling Technology, Danvers, MA, 
USA), CD204 (SRA-E5; TransGenic, Kobe, Japan), and 
pan-cytokeratin (AE1/AE3, Dako). Briefly, a whole slide 
was scanned using an automated imaging system (Vec-
tra ver. 3.0, AKOYA Biosciences). After being stained 
by hematoxylin and eosin, the tissue slides were used 
to annotate the tumoral and stromal fields according to 
the International Immuno-Oncology Biomarker Work-
ing Group’s recommendation [27]. The whole specimens 
were captured, with an average of 20 areas at ×200 mag-
nification. Using an image-analyzing software (InForm, 
AKOYA Biosciences), we segmented tumor tissues into 
cancer cell nests and stromal regions and identified 
immune cells with specific phenotypes (Additional file 1: 
Fig. S1). Before the final evaluation, manual training ses-
sions for tissue segmentation and phenotype recognition 
were conducted, followed by automatic machine learning 
for the algorithm. An analytic software program (Spot-
fire, TIBCO software, CA, USA) counted the infiltrating 
immune cells with specific phenotypes per mm2 in can-
cer cell nests (intratumor) and stromal regions (stroma).

Statistical analysis
We used the Mann–Whitney test for comparing two 
groups, the Kruskal–Wallis test for comparing more 
than two groups, and the χ2-test for comparing pCR 
rates between groups. For multivariate analyses, logistic 
regression analysis was performed. The doses of pacli-
taxel in group A1 and eribulin in groups A2, B1, and B2 

were used for the analyses. All statistical data were ana-
lyzed using the JMP version 13.2.1 (SAS Institute, Inc., 
Cary, NC, USA). All P values were two-sided, and a P 
value of less than 0.05 was considered statistically sig-
nificant. All graphs were produced using the GraphPad 
Prism version 8.4.3 (GraphPad Software, San Diego, CA, 
USA) and the JMP version 13.2.1.

Results
Background characteristics of patients
A total of 66 TNBC samples from the JBCRG22 study 
were available and analyzed in this study. Table 1 summa-
rizes the background characteristics of these 66 patients. 
The age of patients in group A (A1 or A2) was lower than 
that in group B (B1 or B2) because treatment groups A 
and B have different entry criteria including age.

Immune cells in cancer tissues in association 
with background characteristics
The densities of CD3+CD4+ cells (CD4+ T cells), 
CD3+CD8+ cells (CD8+ T cells), CD4+Foxp3+ cells 
(Treg cells), and CD204+ cells were compared with the 
patients’ background tumor characteristics (Fig.  1). The 
density of intratumoral CD8+ T cells was associated with 
T stage (P = 0.025, Fig. 2), and it was highest in T1 tumor 
(≤2 cm). Conversely, nodal status, histological grade, and 
Ki67 labeling index were not associated with the density 
of any immune cell type.

Tumor BRCA1/2 mutation and HRD status and immune 
cells
Patients with tBRCA1/2 mutation had a relatively high 
density of intratumoral and stromal CD8+ T cells, but 
no statistical significance was observed (Fig. 3). The HRD 
status was not associated with the density of any immune 
cells (Fig. 4).

Treatment response and immune cells
Patients with pCR to NAC showed a higher density of 
intratumoral and stromal CD4+ T cells than those with 
non-pCR in the whole population (P = 0.036 and 0.031, 
respectively; Fig.  5). The multivariate analysis revealed 
that the density of intratumoral and stromal CD4+ T cells 
significantly predicted pCR independent of age, dose, 
HRD status, and treatment groups (P = 0.009 and 0.0057, 
respectively; Table 2).

Subgroup analyses of patients who received platinum-
containing chemotherapy (groups A1+A2) and those 
who received non-platinum-containing chemotherapy 
(groups B1+B2) were performed. The HRD status was 
excluded from the analysis because all patients in the 
platinum-containing chemotherapy group had tumors 
with a high HRD status (Table  1). Consistent with the 
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Table 1  Patient background characteristics and pathological response to neoadjuvant chemotherapy

A1 group taking paclitaxel + carboplatin, A2 group taking eribulin + carboplatin, B1 eribulin + cyclophosphamide, B2 eribulin + capecitabine, HRD homologous 
recombination deficiency, tBRCA​ tumor BRCA​, max. maximum, min. minimum, pCR pathological complete response

Treatment group Total A1 A2 B1 B2

Patient number 66 15 18 17 16

Age, years Median 54 44 47 58 56

min.–max. 26–70 31–64 26–63 35–70 41–70

T T1c 13 5 3 2 3

T2 48 9 13 14 12

T3 5 1 2 1 1

N N0 39 7 11 11 10

N1 27 8 7 6 6

Histological grade (B and R) 1 2 1 0 0 1

2 17 2 4 5 6

3 44 11 14 11 8

Unknown 3 1 0 1 1

Ki67 labeling index, % Median 57.7 55 64.2 51.6 50.4

min.–max. 16.2–90 20.2–90 36.4–89.6 20–89 16.2–82

HRD Low 18 0 0 9 9

High 33 15 18 0 0

Unknown 15 0 0 8 7

tBRCA1/2 mutation BRCA1 mutation 6 3 3 0 0

BRCA2 mutation 6 3 3 0 0

No mutation 43 9 12 12 10

Unknown 11 0 0 5 6

pCR Yes 23 10 8 2 3

No 43 5 10 15 13

% 34.8 66.7 44.4 11.8 18.8

Fig. 1  Representative images of multiplex fluorescent immunohistochemistry. Multiplex fluorescent immunohistochemistry was performed using 
antibodies against CD3 (blue), CD4 (yellow), CD8 (red), Foxp3 (pink), CD204 (green), and pan-cytokeratin (brown)
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whole population, both intratumoral and stromal CD4+ 
T cell densities independently predicted pCR in the 
platinum-containing chemotherapy group (P = 0.018 
and 0.022, respectively, Table  3), but not in the non-
platinum-containing chemotherapy group (P = 0.38 and 
0.73, respectively; Table  3). As an exploratory analysis, 
the predictive value of the density of each immune cell 

type for pCR was assessed in each treatment group, 
which showed no significant association of any immune 
cell type with pCR (Additional file 1: Fig. S2 A to D).

In the extended analyses of CD4+/CD8+, CD4+/
Foxp3+, Foxp3+/CD4+, and CD8+/Foxp3+ ratios, the 
pathological response was not associated with any of 
these ratios.

Fig. 2  Immune cell density according to T stage. The vertical axis indicates cell count/mm2 and the horizontal axis indicates tumor T stage. 
Statistically significant P values are shown in bold italics. The numbers of patients are as follows: T1, N = 13; T2, N = 48; and T3, N = 5. The density of 
intratumoral CD8+ T cells was higher in T1 tumors than in T2 or T3 tumors (P = 0.025)

Fig. 3  Immune cell density according to tumor BRCA1/2 mutation status. The vertical axis indicates cell count/mm2, and the horizontal axis 
indicates the tumor BRCA1/2 mutation status. The numbers of patients are as follows: positive, N = 12; negative, N = 43. Immune cell density 
showed no association with tumor BRCA1/2 mutation status
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We further performed exploratory analyses to examine 
whether pCR rates differ depending on the immune phe-
notypes [31]. We categorized the immune microenviron-
ment into three groups based on the densities of immune 
cells, either CD4+ T cells or CD8+ T cells, in cancer cell 
nests and stromal regions: immune inflamed, high cell 

density in both cancer cell nests and stromal regions; 
immune excluded, low cell density in cancer cell nests 
and high cell density in stromal regions; and immune 
desert, low cell densities in both cancer cell nests and 
stromal regions (Additional file 1: Fig. S3 A to C). No sig-
nificant differences in pCR rate were observed between 

Fig. 5  Immune cell density according to the pathological response. The vertical axis indicates cell count/mm2, and the horizontal axis indicates the 
pathological response. Statistically significant P values are shown in bold italics. The numbers of patients are as follows: pCR, N = 23; non-pCR, N = 
43. Patients with pCR to neoadjuvant chemotherapy showed a higher density of intratumoral and stromal CD4+ T cells than those with non-pCR (P 
= 0.036 and 0.031, respectively).

Fig. 4  Immune cell density according to the HRD status. The vertical axis indicates cell count/mm2, and the horizontal axis indicates the tumor HRD 
status. The numbers of patients are as follows: HRD high, N = 33; HRD low, N = 18. Immune cell density showed no association with the HRD status
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different immune phenotypes for both CD4+ T cells and 
CD8+ T cells (P = 0.43 and 0.33, respectively; Additional 
file 1: Fig. S3 D).

Discussion
This study demonstrated that intratumoral and stromal 
CD4+ T cell densities were independent predictive fac-
tors of pCR in patients with TNBC who received NAC, 

particularly platinum-containing chemotherapy. How-
ever, previous studies that examined the predictive 
values of TILs for pCR to neoadjuvant platinum-con-
taining chemotherapy obtained inconsistent results. A 
study using samples from GeparSixto showed that TILs 
were associated with pCR in patients with TNBC who 
received platinum-containing NAC [20]. In contrast, a 
pooled analysis of five phase II studies of neoadjuvant 

Table 2  Multivariate analysis for pCR

A1 group taking paclitaxel + carboplatin, A2 group taking eribulin + carboplatin, B1 eribulin + cyclophosphamide, B2 eribulin + capecitabine, CI confidence interval, 
HR hazard ratio, Dose dose of paclitaxel in group A1, eribulin in groups A2, B1 and B2, HRD homologous recombination deficiency, pCR pathological complete 
response

Statistically significant P values are shown in  italics

Intratumoral CD4 Stromal CD4

HR 95% CI P value HR 95% CI P value

Age 0.93 0.853–1.011 0.072 0.9 0.821–0.996 0.024

Dose 1.073 1.005–1.147 0.0073 1.059 0.994–1.13 0.032

HRD 0.92 0.848–1.005 0.053 0.92 0.841–1.007 0.058

Treatment 0.035 0.026

A1 Reference Reference

A2 0.48 0.35

B1 2.61×10−11 1.92×10−11

B2 0.016 0.013

Intratumoral CD4 1.008 0.997–1.019 0.009
Stromal CD4 1.0023 1.0002–1.0044 0.0057

Table 3  Multivariate analysis for pCR according to treatment groups

A1 group taking paclitaxel + carboplatin, A2 group taking eribulin + carboplatin, B1 eribulin + cyclophosphamide, B2 eribulin + capecitabine, CI confidence interval, 
HR hazard ratio, Dose dose of paclitaxel in group A1, eribulin in groups A2, B1 and B2

Statistically significant P values are shown in  italics

Platinum-containing chemotherapy (groups A1 + A2)

HR 95% CI P value HR 95% CI P value
Age 0.89 0.809–0.980 0.0066 0.88 0.797–0.973 0.0038

Dose 1.041 0.970–1.117 0.25 1.029 0.963–1.099 0.38

Treatment 0.32 0.19

A1 Reference Reference

A2 0.39 0.29

Intratumoral CD4 1.009 0.996–1.022 0.018
Stromal CD4 1.002 1.000–1.004 0.022
Non-platinum-containing chemotherapy (groups B1 + B2)

HR 95% CI P value HR 95% CI P value
Age 1.02 0.893–1.169 0.75 1.009 0.883–1.153 0.89

Dose 1.091 0.975–1.222 0.022 1.096 0.968–1.241 0.029

Treatment 0.42 0.70

B1 Reference Reference

B2 2.47 1.573

Intratumoral CD4 0.998 0.994–1.003 0.38

Stromal CD4 1.0003 0.998–1.002 0.73
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platinum-based chemotherapy in TNBC failed to show 
the predictive values of intratumoral and stromal TILs 
for pCR [32]. Although such discrepancy cannot be 
clearly explained, differences in combined chemothera-
peutic agents could be one reason. Another explanation 
would be that among TILs, different subsets of immune 
cells may have different clinical significance in TNBC. In 
patients who received NAC with anthracycline- and/or 
taxane-based chemotherapies, CD8+ TILs are associated 
with pCR [33, 34]. Our results indicate that of all the cells 
in cancer tissues, CD4+ T cells may predict pathological 
response to platinum-containing NAC in patients with 
HRD-high TNBC. Thus, different subsets of immune 
cells may have different clinical values. A detailed anal-
ysis of the subset of TILs will help elucidate the clinical 
utilities of tumor-associated immune cells, leading to 
improved treatment strategies for TNBC.

When examining the clinical significance of immune cell 
subsets, assessing how to define each immune cell subset is 
important. For example, CD4 may be expressed not only in 
T cells but also in a subpopulation of monocytes, causing 
a bias and discrepancies between studies [35]. Our stud-
ies used CD4 or CD8 markers together with CD3; thus, we 
could better identify CD4+ or CD8+ T cell subset. When 
comparing the results from different studies, knowing the 
definition of each immune subset is crucial.

Our study revealed that immune cells were not associ-
ated with either tBRCA1/2 mutation or HRD status, con-
sistent with a pooled analysis that showed no association 
between intratumoral or stromal TIL density and either 
the HRD status or tumor BRCA1/2 mutation status in 
TNBC [32]. Thus, TILs and the HRD status or tBRCA1/2 
mutation status may have distinct clinical values. In a 
study with 414 Danish patients with breast cancer show-
ing gBRCA1/2 mutation, patients with gBRCA1 mutation 
had a higher rate of CD4+ cells than those with gBRCA2 
mutation [36]. However, the present study did not com-
pare patients with and without gBRCA1/2 mutation and 
examined patients with tumor mutation but not those 
with germline mutation.

Immune editing is a concept depicting the immune 
cell status depending on the cancer progression stage 
[17, 37]. In the elimination phase, immune cells work 
actively to eliminate developing cancer cells, as reflected 
by immune cell accumulation. In the equilibrium phase, 
immunologic mechanisms prevent cancer growth. Then, 
in the escape phase, the immune cells no longer block 
tumor growth. In our study, T1 tumors had a higher 
density of intratumoral CD8+ T cells than T2 or larger 
tumors, which might be a reflection of immune editing. 
This result is similar to those studies showing that larger 
tumors had a lower density of immune cells than smaller 
tumors [33, 34].

This study has several limitations. One of the major lim-
itations is a small sample size in each treatment arm. Con-
sidering that JBCRG22 examined four different regimens 
according to the HRD status, each arm had a small num-
ber of patients; thus, the result in each single arm needs 
to be interpreted with caution. It is of clinical impor-
tance to conduct a larger study to validate the results in 
this study. Another limitation is that survival analysis was 
not performed because of the short follow-up period. The 
prognostic value of each immune subset needs to be clari-
fied in future studies with a longer follow-up. Lack of the 
analysis on different types of CD4+ T cells such as naive, 
central memory, effector memory, and effector in terms 
of response to NAC is another limitation. Furthermore, 
in addition to the previously known Th1 and Th2 types of 
CD4+ T cells, the existence of Th9, Th17, and Th22 types 
of cells has recently been reported, but their roles remain 
unclear. Because studies on the clinical significance of dif-
ferent types of CD4+ T cells will give further insights in 
the field of immune microenvironment of TNBC, it is of 
clinical value to conduct such studies in the future.

Conclusions
The density of intratumoral and stromal CD4+ T cells 
was an independent predictor for pCR to NAC, especially 
platinum-containing chemotherapies, in patients with 
TNBC. Because the sample size is limited in this study, a 
larger study is required to confirm the results.
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Additional file 1: Figure S1. Image analysis. Representative image of 
immunofluorescence with the following markers: CD3 (blue), CD4 (yel-
low), CD8 (red), FoxP3 (pink), CD204 (green), and cytokeratin (brown) (A); 
tissue segmentation of the intratumoral (red) and stromal (green) areas 
(B); cell segmentation (C) and cell phenotyping (D) which merged with 
tissue segmentation (E): cancer cells (orange), CD4+ T cells (yellow), CD8+ 
T cells (red), CD204+ cells (green), other stromal cells (gray). Figure S2. 
Immune cell density according to pathological response in each treat-
ment group: group A1 (A), group A2 (B), group B1 (C), group B2 (D). Figure 
S3. Immune phenotype and pCR. (A) Immune inflamed, high cell density 
in both cancer cell nests and stromal regions; immune excluded, low 
cell density in cancer cell nests and high cell density in stromal regions; 
immune desert, low cell densities in both cancer cell nests and stromal 
regions. (B) Immune phenotype for CD4+ T cells. (C) Immune phenotype 
for CD8+ T cells. (D) pCR rate according to immune phenotype for CD4+ T 
cells and CD8+ T cells.
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