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Abstract

Likelihood-based phylogenetic inference posits a probabilistic model of character state change along branches of a
phylogenetic tree. These models typically assume statistical independence of sites in the sequence alignment. This is a
restrictive assumption that facilitates computational tractability, but ignores how epistasis, the effect of genetic back-
ground on mutational effects, influences the evolution of functional sequences. We consider the effect of using a
misspecified site-independent model on the accuracy of Bayesian phylogenetic inference in the setting of pairwise-site
epistasis. Previous work has shown that as alignment length increases, tree reconstruction accuracy also increases. Here,
we present a simulation study demonstrating that accuracy increases with alignment size even if the additional sites are
epistatically coupled. We introduce an alignment-based test statistic that is a diagnostic for pairwise epistasis and can be

used in posterior predictive checks.
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Introduction

Epistasis is the phenomenon where the effect of a mutation at
one site in a sequence is dependent on the identity of another
site or sites. This dependence is pervasive in data sets for
phylogenetic inference and can manifest as interactions be-
tween different genes (Cohen et al. 2012; Schubert et al. 2019),
between different sites in a protein (Dimmic et al. 2005;
Rodrigue et al. 2009; Kryazhimskiy et al. 2011), or between
different sites in RNA molecules (Shapiro et al. 2006; Nasrallah
and Huelsenbeck 2013; Meyer et al. 2019; Golden et al. 2020).
Phylogenetic models of epistasis (and more broadly coevolv-
ing sites) have focused on models of pairwise interactions
within a single locus. Although there has been work on mod-
els with larger alphabets (amino acids and context-sensitive
mutation models) and high-order epistasis (Robinson et al.
2003; Rodrigue et al. 2009), these models are computationally
burdensome, spurring the development of approximate com-
putational approaches in order to fit them (Hwang and
Green 2004; Saunders and Green 2007; Rodrigue et al. 2007;
Laurin-Lemay et al. 2018). Phylogenetic models of pairwise
epistasis include both general models of pairwise of interac-
tions (Dib et al. 2014; Meyer et al. 2019) and explicit models of
RNA evolution (Nasrallah and Huelsenbeck 2013; Golden et
al. 2020). In the case of RNA evolution, stem and loop sec-
ondary structures are conserved by paired substitutions at
specific sites to maintain Watson-Crick pairing (A-T and G-
Q). Relaxing the independence assumption in this setting of

pairwise interactions requires two new pieces of information:
specifying the paired sites and a model of coupled character
state change for pairs.

The issue of site pairings poses a practical difficulty for
using an epistatic phylogenetic model as these pairings
must be defined a priori or integrated out during inference.
Defining pairings before analysis requires that such informa-
tion is available in a database (e.g, Wuyts et al. 2004), or that
one can infer the RNA secondary structure from the sequence
itself (e.g, Lorenz et al. 2011). Approaches to integrate out the
pairings are computationally costly. Common models that
assume sites are independent and identically distributed
(site-iid models) require computing the likelihood for each
of n sites. To integrate out pairings, one could calculate the
likelihood for all possible site pairings, as in Golden et al.
(2020), but this requires (g) computations instead of n,
greatly increasing run time. Meyer et al. (2019) employ
reversible-jump Markov chain Monte Carlo (MCMC)
(Green 1995) to sample possible pairings, but the number
of possible pairing schemes grows faster than n!, requiring
longer runs to adequately explore the pairings.

Unmodeled pairwise interactions have been shown to
decrease the accuracy of phylogenetic inference in simula-
tions (Nasrallah et al. 2011). That is to say, phylogenies
estimated from alignments simulated with epistatic interac-
tions are farther from the true phylogeny than phylogenies
estimated from alignments simulated without epistasis.
Unmodeled epistasis could cause such differences in two
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ways. These differences could arise from bias caused by
unmodeled epistasis (such bias is sometimes referred to
systematic error, see, e.g, Jeffroy et al. 2006). In this scenario,
inference with a model that ignores epistasis is expected to
become more accurate if interacting sites are identified and
omitted from the alignment. However, it is also possible
that unmodeled epistasis reduces the effective number of
sites in the alignment and increases the estimator variance
without introducing bias. In this scenario, estimates are
expected to worsen if the interacting sites are identified
and omitted. As an example, consider two alignments,
one of which has all sites simulated without epistasis, the
other of which is the same as the first except that a pro-
portion of sites are erroneously duplicated (copy-pasted
into “new” alignment columns). This is akin to the larger
alignment being drawn from a particularly extreme model
of pairwise epistasis. The larger alignment contains no new
information, so the expected accuracy of the inferred phy-
logenies is the same for both alignments. However, com-
pared with alignments of equal size, but where all sites were
simulated without pairings, this larger alignment has re-
duced accuracy. It is effectively a shorter alignment. In
this case, if one could remove one site from each pair in-
ference should largely remain unchanged. In less extreme
cases, where sites are not perfect duplicates, removing half
of the paired sites would remove some new information
and thus decrease the accuracy of inference.

A number of methods have been proposed for detecting
epistasis in multiple sequence alignments. This literature is
largely based on mapping substitutions along a phylogeny
and examining patterns of substitution. Shapiro et al.
(2006) devise a test for epistasis based on multiple co-
occurrences of substitutions along a phylogeny, whereas
Kryazhimskiy et al. (2011) use the order of substitutions
through time to test for epistasis. However, these approaches,
and others which map substitutions along a phylogeny, often
ignore a potentially large source of uncertainty by condition-
ing on a single, estimated phylogney. Poon et al. (2007) pro-
pose a bootstrap procedure to account for phylogenetic
uncertainty, and Dimmic et al. (2005) use a fully Bayesian
approach to integrate out the phylogeny. A promising yet
unexplored approach is to use posterior predictive checks of
model performance with which both the detection of epis-
tasis and evaluation of model fit may be addressed
simultaneously.

Given the pervasiveness of epistasis in real data and the
difficulties involved in applying epistatic phylogenetic models
to data sets, we seek to understand the cost of employing
nonepistatic models to data sets with pairwise epistasis using
simulations. In this paper, we ask two questions regarding the
use of standard models, where sites are independent and
identically distributed, in a misspecified setting, where the
alignment is generated from an evolutionary process with
pairwise epistasis. First, can we detect the presence of unmod-
eled pairwise epistasis in data sets using posterior predictive
model checks? Second, what is the effect of including epistati-
cally paired sites on the quality of trees inferred with a site-
independent model?

4604

To address these questions, we perform a simulation study
using the pairwise epistatic model of RNA from Nasrallah and
Huelsenbeck (2013). Briefly, this model aims to capture a
common mutational process among all sites while implicitly
accounting for the effect of selection against single mutations
at predefined paired stem sites, which would break the sec-
ondary structure. We simulate alignments on a 3D parameter
grid, defined by the number of sites in the alignment that are
site-iid n;, the number of sites that are epistatically paired n,
and the strength of epistatic interactions d (the relative rate of
secondary structure preserving double mutations to single
mutations at paired sites). Our grid thus includes a range of
alignment sizes n = n; 4+ n. and a range of epistatic fractions
ne/n for each size.

We assess several alignment test statistics—one previously
described and several new ones designed to detect epistasis
specifically—for their ability to detect epistasis directly from
alignments using posterior predictive checks. This allows us to
address our first question, can we detect pairwise epistasis?
Next, we examine whether adding epistatic sites to an align-
ment makes inference better or worse. This allows us to ad-
dress our second question, whether the inclusion of epistatic
sites in an alignment improves or worsens phylogenetic esti-
mates. We seek to quantify this second effect by estimating
the relative worth, r, of an epistatic site in the alignment to a
site drawn from a site-independent model. Using this concept
of relative worth, we define two scenarios under our regime of
model misspecification. In the best-case scenario (r > 0), the
epistatic sites contribute useful information that improves
phylogenetic inference whereas in the worst-case scenario
(r < 0), the inclusion of epistatically paired sites makes infer-
ence worse. Finally, we combine the two questions and ad-
dress whether pairwise epistasis is detectable when it is strong
enough to significantly impact tree inference.

Results

Alignment-Based Test Statistics Are Sensitive to
Pairwise Interactions between Sites

First, we use simulations to evaluate the sensitivity of
alignment-based test statistics to pairwise interactions be-
tween sites. This sensitivity is necessary for the posterior pre-
dictive tests we discuss in the next section. These statistics are
designed to be sensitive to the strength of the pairwise epi-
static interactions and the proportion of sites that are drawn
from the pairwise epistatic RNA model of Nasrallah and
Huelsenbeck (2013). However, it is also possible that the sta-
tistics can only detect epistasis if there are a sufficient number
of epistatically paired sites in a sequence alignment or that
they are sensitive to the alignment length in general. To in-
vestigate all of these possibilities, we simulate alignments on a
3D grid, defined by n; (the number of sites drawn from a site-
independent general time reversible [GTR] model), n. (the
number of sites drawn from the pairwise epistatic RNA
model), and the value of d, which controls the strength of
pairwise epistasis. Briefly, d accounts for the strength of epis-
tasis by controlling the relative rate of doublet substitutions,
or simultaneous substitutions at both paired (RNA stem)
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Fic. 1. The values of all three test statistics plotted against the proportion of sites in the alignment drawn from the epistatic model, colored by d.
Values are for the grid of observed alignments corresponding to figure 4b. All statistics show at least a degree of sensitivity to the proportion of
epistatic sites and some sensitivity to d. The plot is restricted to simulations, where 384 < n; +n. < 416 to remove the effect of the number of
sites on the G93 statistic. The results from the full simulation grid are found in supplementary figure S7, Supplementary Material online.

sites, to single substitutions affecting only one paired site. As
selection against single mutations (which would break RNA
pairing) increases, more double substitutions are expected,
and this is captured by a larger d. We simulate
d € {0.0,0.5,2.0,8.0,1,000.0}, which encompasses both
realistic and extreme values, and n;, n. € {0, 16,32, ...,400}
(a step size of 16 resulting in a 26 x 26 grid for each value of
d), excluding the cell in which n; = n, = 0. This results in
alignments that vary in length (16-800 nucleotides), in per-
centage of sites that are epistatically linked (0% to 100%),
and in expected percentage of substitutions that are double
substitutions (0% to 98.5%). For more information on the
simulation procedure, the model, and interpretation of the
parameter d see Materials and Methods subsections Model
and Simulating Parameters. Collectively, we simulate 3,375
alignments, which we refer to as our observed alignments.
We consider three posterior predictive test statistics that
may detect epistasis: the G93 statistic of Goldman (1993), the
maximum of all pairwise (sitewise) mutual information (MI)
values, Ml ., and the kurtosis of these Ml values, Mly,;. The
(93 statistic considers the likelihood of the alignment if sites
were drawn identically and independently from a multino-
mial distribution on all 4" site patterns and has been used as a
general diagnostic for model misspecification. Our MI-based
measures quantify how similar two site patterns are by com-
paring the joint distribution on paired states to the product
of the sitewise marginal distributions. These measures are
sensitive to the co-occurrence of pairs of nucleotides, so, for
example, the four-taxon alignment (fig. 4e) column ATAT
would have a higher mutual information with the column
GCGC (where every A co-occurs with a G and every Cwith a T)
than it would GTTG (where there is less-frequent co-occur-
rence). All of these measures are ignorant of the underlying
phylogeny, so in practice, one must account for its effect via
simulation. All three statistics display some sensitivity to d on
the observed alignments (fig. 1). This means in principle that
they are all capable of detecting epistasis in alignments.
However, the statistics differ in their sensitivity to d. Of the
three statistics, Ml;,,.x shows the most consistent separation

by d, with a steady increase in average value as d increases. In
contrast, both Ml and G93 show large leaps in average
values between d=28 and d=1,000. Similarly, the Ml
shows a consistent relationship of power to the proportion
of epistatic sites (ne/n) across all d, whereas the G93 and
Ml statistics which show clear differences between d =8
and d = 1,000 The G93 statistic is by far the most sensitive to
the total number of sites in the alignment, with a correlation
coefficient of —0.99 between G93 and n; + ne, where the
correlation coefficients for Ml and Ml were —0.19
and 0.28, respectively.

Posterior Predictive Tests Can Capture Model
Misspecification due to Pairwise Interactions
between Sites

In a posterior predictive framework (Gelman et al. 2004;
Brown and Thomson 2018), the value of a chosen test statistic
calculated for the observed alignment is compared with the
posterior predictive distribution of this statistic using poste-
rior predictive p-values. In phylogenetic models that lack
closed-form solutions for the posterior predictive distribution,
this is accomplished numerically by taking a number of pos-
terior samples, drawing new alignments given the parameter
values of each sample, and computing the test statistic on
each replicate alignment. The posterior predictive p-value is
then the proportion of replicate test statistics below the ob-
served value. Generally we are interested in two-tailed tests: If
the observed value of the test statistic is either extremely large
or extremely small, this indicates that the model is not ade-
quately capturing some aspect of the data. We use the test
statistics described in the section above to see if a site-iid
model is adequate over varying strengths and proportions
of epistatic interactions. We use the Bayesian phylogenetic
inference software RevBayes (Hohna et al. 2016) to draw
samples from the posterior predictive distributions for each
of our 3,375 observed alignments, allowing us to estimate the
posterior predictive p-values for all of our test statistics for
each of our observed alignments.
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Fic. 2. Power to detect epistasis using posterior predictive checks at « = 0.05. Power is the proportion tests yielding a statistically significant result,
that is, the true positive rate. Curves are averages over windows of 10% of the proportion of epistatic sites.

We find that both information theoretic summary statis-
tics outperform G93, with Ml,,,c performing the best. An
ideal test statistic has a high power (true positive rate) and
a false-positive rate no larger than the specified o, which we
take to be 0.05. We examine the relationship between the
power of each statistic and d both by examining power as a
function of d and the proportion of epistatic sites (fig. 2), and
by averaging the power over all proportions of epistatic sites.
In both approaches, we find that Ml is the most sensitive
to the presence of paired sites in the alignment. The true
positive rates in the extreme case of epistatic strength
(d = 1,000) for the G93 (0.18) and the Ml (0.56) statistics
are matched by the Ml statistic at much lower strengths of
epistatic interaction (0.17 at d=05 and 055 at d=2).
Looking over all values of d and all observed proportions of
epistatic sites, the maximum power of the G93 statistic is only
0.51, whereas the two information theoretic statistics achieve
maximum power of 0.92 and 1.0 for Mly,x and Ml ., respec-
tively (fig. 2). The Ml statistic has a false-positive rate of
0.06, whereas the Ml statistic has a false-positive rate of
0.0026, and the G93 statistic has a false-positive rate of 0.
Overall, the Ml statistic has by far the highest power
and the false-positive rate does not greatly exceed o, making
it the best-performing statistic we examine. We assess the
sensitivity of these results to the strictness of MCMC conver-
gence diagnostics and find that there is little difference be-
tween the results presented here and those based on either
strict or no convergence filtering (supplementary fig. S2,
Supplementary Material online).

Epistatic Sites Should Be Retained for Phylogenetic
Inference

For our second question, we want to quantify the effect of our
model misspecification by calculating the effective worth of
an epistatic site in the context of a site-iid model. Nasrallah et
al. (2011) define the effective sequence length, neg to be the
length of a hypothetical alignment drawn from a site-
independent model that yields the same phylogenetic accu-
racy as the epistatic alignment. We expand and reframe this
analysis to ask the worth of an epistatic site in units of
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independent sites and define worth in terms of either accu-
racy or precision. The relative worth, r, is a conversion factor
that expresses how many independent sites an epistatic site is
worth and thus also allows us to distinguish between different
model misspecification scenarios. In the best case,
0 < r < 1, and retaining epistatic sites in an alignment
improves inference. In the catastrophic case, r < 0, and retain-
ing epistatic sites in an alignment leads to worse inference. In
either case, it is most likely that the relative worth of a site is
dependent on the strength of epistasis, so the relative worth
should in fact be a function, r(d), and not a constant, r.

To infer the effective sequence length, we employ semi-
parametric  regression. In  this setup, we have
Ely] = g(ni 4+ r(d)ne), where y is a statistic summarizing
either inference accuracy or precision and the function g( )
is a third degree I-spline with five knots. Third degree (cubic)
splines are standard, and model fit is generally robust to the
choice of degree and knots (supplementary fig. S6,
Supplementary Material online). Broadly speaking, accuracy
refers to how close estimates are to the true value, and pre-
cision is inversely related to how much uncertainty surrounds
these estimates (high precision means low uncertainty). The
use of semiparametric models like I-splines allows us to avoid
specifying a functional form for the relationship between ac-
curacy (or precision) and the alignment size while still allow-
ing us to compare between data sets with similar accuracies
(or precisions) to infer r(d). For our summary measures, we
focus on one accuracy-based measure, the average posterior
Robins—Fould (RF) distance to the true tree, and one
precision-based measure, the percent of resolved splits in
the majority-rule consensus (MRC) tree. In order to quantify
the uncertainty in our estimates of r(d), we use nonparamet-
ric bootstrap (Efron 1992) and fit the model to 100 bootstrap
replicate data sets for each summary measure and each value
of d.

In all cases, we infer that ¥(d) > 0, meaning that the
model misspecification here falls into the best-case scenario
rather than the catastrophic one (fig. 3). For both our accu-
racy- and  precision-based  estimates, we infer
7(1,000) < 7(8) < ¥(2) < 7(0.5), meaning  that
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0 < r(d) < 1,and epistatically paired sites still contribute to phylogenetic accuracy and precision. In the catastrophic model misspecification
scenario, r(d) < 0, and epistatically paired sites decrease phylogenetic accuracy and precision. Inference was performed with semiparametric
regression using least squares. Boxplots summarize 100 bootstrap replicates for each value of d. Our accuracy measure is the average posterior RF
distance to the true tree, whereas our precision measure is the proportion of resolved splits in the MRC tree. The raw accuracy and precision
measure values from the full simulation grid are found in supplementary figure S7, Supplementary Material online.

increasing the strength of epistatic interactions decreases the
worth of a site. Additionally, we infer r(0) < 1.In the model
of Nasrallah and Huelsenbeck (2013), iid sites have a set of
stationary base frequencies, Ta, ¢, TG, T, whereas the
(paired) epistatic sites have their own set of stationary dou-
blet frequencies, (A a), T(AC), - - -, (1,T)- SO, €ven without
any doublet substitutions, there is model misspecification
when assuming a single set of base frequencies, explaining
the reduced accuracy at d = 0. Oddly, for our accuracy-based
modeling, we find that ¥(0) < 7(0.5). Perhaps most note-
worthy though is the fact that, for all values of d, we estimate
a lower relative worth 7(d) using accuracy than using preci-
sion. This means that inference is somewhat more precise
than it should be, because the increase in accuracy from
adding an epistatic site is smaller than the increase in preci-
sion. To give a concrete example, for d = 0.5, the relative
worth inferred using accuracy is 7(0.5) = 0.75, whereas the
relative worth inferred using precision 7(0.5) = 0.84. If one
added 50 pairs of dependent sites (100 sites total) to an
alignment, the accuracy would increase as if 75 independent
sites had been added, but precision would increase as if 84
independent sites had been added, a discrepancy of nine sites.

We also assessed the sensitivity of our inference of the
worth of a site to the MCMC convergence standards
employed and to the choice of summary measure. We find
that the overall patterns remain qualitatively unchanged re-
gardless of convergence cutoff (supplementary fig. S3,
Supplementary Material online). Our alternative accuracy
and precision measures broadly concur with the results we
have focused on thus far (supplementary figs. S4 and S5,
Supplementary Material online). All accuracy measures based
on the posterior distribution of RF distances to the true tree
provide very similar results. The inferred worth is notably
lower when defining accuracy based on the proportion of
incorrect splits in the MRC tree (though in all cases still

positive), and relative worth appears to peak at d = 2 rather
than d = 0.5. Thus, although the posterior distribution shifts
closer to the truth with increasing n., some incorrect splits
retain high support for longer than when increasing n;. Our
alternative precision measure has slightly higher inferred r(d)
than our main measure (15% higher on average), and a num-
ber of bootstrap replicates showing ¥(d) > 1. However, we
believe this is more likely a sign that the alternative measure
(the width of the posterior distribution of distances to the
true tree) is for some reason a questionable choice than it is
reflecting some actual increase in precision compared with
independent sites.

Discussion

We set out to understand the effect of unmodeled epistasis
on phylogenetic inference. Focusing on pairwise epistasis in
the form of RNA doublet models, we asked three questions.
Can we detect pairwise epistasis in alignments with posterior
predictive checks? What is the effect of pairwise epistasis on
the quality of phylogenetic inference? If pairwise epistasis is
problematic for inference, can we detect it when it is distort-
ing phylogenetic inference? Overall, we find that the right test
statistic can detect epistasis with good power (and an appro-
priate false positive rate), that pairwise epistasis is only mildly
harmful to phylogenetic inference, and that it can be detected
regardless of how much influence the epistasis has on
inference.

Posterior Predictive Checks

Our posterior predictive checks for epistasis show that pair-
wise epistasis can be detected with the appropriate summary
statistics. Although the standard multinomial likelihood sta-
tistic has some ability to detect epistasis at the extreme of
d = 1,000 (an average power across all simulations of 0.17), it
cannot detect realistic strengths of epistasis, and so it is not a
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Fic. 4. The workflow of our paper. Blue and gray boxes indicate steps with phylogenetic inference, green boxes indicate steps with simulation of
alignments. (a) We infer a maximum likelihood phylogeny (tree) for the tunicate data set and use that to infer parameters for independent sites
(site-iid model) and epistatically paired sites (epi model) using the epistatic doublet model of Nasrallah and Huelsenbeck. (b) We then simulate 675
alignments of varying numbers of independent (n;) and epistatic (n.) sites for each of five values of d (d € {0.0,0.5,2.0, 8.0, 1,000.0}). We call
these the observed alignments. (c) For each observed alignment, we use RevBayes to draw samples from the posterior distribution on tree
topologies (inferred tree) and GTR model parameters (inferred site-iid model). (d) We use RevBayes to sample alignments from the posterior
predictive distribution. (e) We assess whether any of our three test statistics (G93, Mlnax, M) can detect pairwise epistatic interactions in our
observed alignments in a posterior predictive model check. (f) We compare the posterior distribution on trees (and summary trees) with the
inferred tree to quantify how unmodeled pairwise epistasis affects the accuracy and precision of phylogenetic inference.

particularly useful statistic. We also introduced two statistics
based on mutual information. In both cases, we compute all
the mutual information for all site pairs in the alignment, our
statistics simply differ in how they summarize this distribu-
tion. One summary we considered, Ml is the kurtosis of
this distribution, which has decent power at d = 1,000 (power
of 0.54), but at d = 8, power is much lower (0.066) and it has
little ability to detect weaker epistasis. Our second summary
Ml the maximum of the pairwise mutual information
values, was much more successful. Averaging over all simu-
lations, power is 0.16 at d =0.5, 0.53 at d =2, 0.87 at d =8,
and 0.95 at d=1,000, and despite this power the false-
positive rate is not exaggerated (o = 0.05, false-positive
rate = 0.06, though the distribution of p-values does not
appear to be quite uniform under the null hypothesis).
Further research will be needed to understand the specif-
icity of mutual information-based test statistics and to extend
them. Although we have shown that the M, statistic can
capture pairwise epistatic interactions, it may also be sensitive
to higher-order epistatic interactions, to the presence of
context-sensitive mutation, or other dependencies between
sites. It is possible that one could identify interacting pairs of
sites using Mlax, and then test if these pairs are significantly
interacting using the posterior predictive distribution of
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mutual information for that pair of sites. Summary statistics
that take better advantage over the extreme upper end of the
distribution of pairwise mutual information could have even
better power to detect pairwise interactions.

The Worth of a Site

We defined two scenarios for the worth of an epistatic site. In
the catastrophic scenario, epistatic sites are worth some neg-
ative number of sites, such that adding epistatically interact-
ing sites to an alignment of independent sites will make
inference worse. In the best-case scenario, epistatic sites con-
tribute positively to inference but not as much as indepen-
dent sites. Our simulations demonstrate that the sort of
epistasis modeled by Nasrallah and Huelsenbeck (2013) falls
into the best-case scenario. When epistasis is simulated near
maximum strength, we estimate that epistatic sites are worth
45% of independent sites (in terms of accuracy), whereas
more realistic strengths lead to worths of 60-75%. One slight
caveat is that epistasis has slightly different effects on the
accuracy and precision of inference. When we define the
worth of a site in terms of the increase in precision, we get
slightly higher estimates of worth (62% at the extreme, 70—
84% for more reasonable values). This means that in practice
when epistasis is present in phylogenetic data sets, inference
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will be slightly overconfident (relative to a data set without
epistatic interactions but with the same accuracy). It also
highlights the fact that high precision does not imply
accuracy—strong support for a topology is not a guarantee
that the inferred topology is correct. Still, this effect is rela-
tively mild for realistic values of the strength of epistasis, and it
does not undermine the simple fact that adding epistatically
paired sites improves inference.

Base Frequencies

In our simulations, the model we used for inference was
misspecified due to both differences in the relative exchange
rates and in the stationary frequencies. We believe that this
difference may account for the increase in relative worth from
d=0to d=0.5. Our inference model is a standard GTR + G
model which works on individual sites, whereas our simulated
data include a mix of sites drawn from a site-iid GTR model
and an epistatic doublet model. The doublet model is inher-
ently a model of site pairs, both because it uses doublet sta-
tionary frequencies and because d allows for substitutions at
both sites. However, the doublet model still produces a pat-
tern of substitutions at individual sites, so we can decompose
the model misspecification into two parts: the portion due to
paired substitutions and the portion due to the fact that
there are essentially two different site-level GTR models.
The misspecification due to paired substitutions is a strictly
increasing function of d: the higher d is, the larger the pro-
portion of all substitutions that are doublet substitutions, and
this is completely unaccounted for by the site-independent
model. The misspecification due to the difference in under-
lying GTR models (the real one underling the independent
sites, and the hypothetical one underlying the epistatic sites)
is somewhat less transparent. However, it appears that the
difference is large between the two GTR models at d =0,
decreases until d =2, then increases with d. The interaction
of these two forms of misspecification could help explain our
observation that the worth of an epistatic site at d =0 is less
than for d = 0.5 but similar to d =2.

Alternative Summaries and Other Studies

Empirical applications of epistatic inference models have
shown that epistatic and site-independent models infer dif-
ferent trees from the same data set. Meyer et al. (2019) com-
pared inferences using their model of pairwise dependence to
inference with GTR + G on a number of real data sets, and
found that the inferred trees were quite different. One pos-
sible interpretation of this is that there is bias introduced by
using models of independent sites on epistatic data sets.
However, our simulations suggest that another possible ex-
planation for this phenomenon is simply that to site-iid mod-
els, the effective sequence length is smaller than the real
sequence length, and thus estimates from site-iid will vary
more about the truth than estimates made with epistatic
models. If this is the case, then there are two valid approaches
for obtaining better estimates of a phylogeny in the presence
of epistasis: building better models and/or using more data
(Philippe et al. 2011). Both approaches have drawbacks and
are not entirely independent. Better models will be more

difficult and computationally expensive to fit, may not be
as general purpose, and the increase in parameters may re-
quire an increase in data to fit. Adding more data means that
issues of heterogeneity of the evolutionary process across sites
and loci become more pronounced, which may require more
parameter-rich models even if epistasis is itself unmodeled.

Previous simulations have suggested that unmodeled epis-
tasis can be relatively problematic for inference. Nasrallah et
al. (2011) used simulations and found that accuracy was re-
duced by as much 50% in the presence of epistasis, and cal-
culated effective sequence lengths that were frequently 17—
33% of the true length. Our results suggest that the choice of
summary measure for defining the worth of a site is key to
understanding this discrepancy. For example, our precision-
based measures both produce more generous estimates of
the relative worth of an epistatic site than our accuracy-based
measures. Perhaps more importantly, though, our accuracy
results change somewhat if we change our definition of ac-
curacy to be based on the posterior or on a single summary
tree. Using accuracy measures based on the posterior distri-
bution of RF distances to the true tree, we estimate 0.45 < 1
(d) < 0.75 for all values of d considered, and 0.6 < 7(d)
< 0.75 for more realistic values. But using the MRC tree
alone to define accuracy (based on the proportion of splits
in the MRC not in the true tree), we instead infer 0.19 < r
(d) < 0.47 forall values of d, and 0.33 < ¥(d) < 0.47 for
more realistic values. These values are more closely aligned to
the results of Nasrallah et al. (2011), who focused on point
estimates of the phylogeny (specifically the maximum likeli-
hood phylogeny). Thus it seems that although epistatic sites
are relatively helpful for shifting the posterior distribution of
tree closer to the truth, they are less useful for removing
incorrect splits from the MRC tree. The issue of excess preci-
sion is exacerbated when focusing in on the summary tree:
the relative worth based on MRC tree precision is about twice
as high as the relative worth based on MRC tree accuracy. To
give a concrete example, at d = 0.5, using precision, we esti-
mate 7(0.5) = 0.84, while using our alternative accuracy
measure, we estimate 7(0.5) = 0.4. Thus, an alignment of
500 iid and 500 independent sites would have an MRC tree
with the same resolution as an entirely iid alignment of an
alignment of 920 sites, but that tree would have the same
number of incorrect splits as an alignment of 700 sites. We
thus urge caution in interpreting MRC trees from real data
sets, given the presumed prevalence of epistasis. Further, we
suggest that where possible, inferences about evolution inte-
grate out the phylogeny, as the overall posterior distribution
on phylogenies is much less strongly affected by the presence
of unmodeled pairwise epistasis.

Practical Applications

As dependencies between sites are likely common in real
data, our work has practical significance to phylogeneticists.
Model checking via posterior predictive simulations (or the
parametric bootstrap for maximum likelihood inference) is
always advisable. We suggest that when checking for model
violations, researchers include the Ml,,, statistic. The detec-
tion of dependencies between sites does not necessarily
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invalidate inference. Rather, if it reveals the presence of de-
pendent evolution, researchers need to be aware that their
effective sequence length is smaller than the real sequence
length. Consequentially, the estimated phylogeny may be far-
ther from the truth than expected whereas uncertainty
around that phylogeny is likely underestimated, and results
should be interpreted accordingly.

Other Forms of Model Misspecification

In this paper, we assume that every site evolves along one
single phylogeny of interest, and that the model misspecifica-
tion is due to unmodeled pairwise epistatic interaction. Many
other forms of model misspecification exist, which can make
phylogenetic inference difficult (see, e.g, Philippe et al. 2011).
Long branch attraction can lead inference astray even with
otherwise correct substitution models, and forces such as re-
combination, horizontal gene transfer, and incomplete lineage
sorting mean that real sequence alignments may have multi-
ple underlying phylogenies. It is possible that the notion of
relative worth could be useful in comparing the severity of
these, and other issues. For some problems, the relative worth
will be positive, and more sequence data will improve phylo-
genetic accuracy. In other cases, the relative worth may be-
come negative, in which case more sites will not solve the
problem. In general, more strongly negative relative worth
causes more difficulty for phylogenetic inference.

Conclusion

Overall, our results are quite promising for phylogenetic
inference in the face of unmodeled pairwise epistasis.
Although pairwise epistasis decreases the accuracy and pre-
cision of inference, it does not do so catastrophically. The
addition of epistatic site pairs to an alignment will still lead
to overall better inference, simply not inference as good as
adding an equal number of independent sites from the
true model. Moreover, when there is pairwise epistasis in
an alignment, we have shown that it can reliably be
detected with a new test statistic: the maximum pairwise
mutual information of sites. Thus, if one is worried that
pairwise epistasis is interfering with their estimates, they
can now detect it with good power and a low risk of false
positives. Further work will need to be done using other
models of epistasis (pairwise and higher order) to check
that our findings on the effect of epistasis are not simply
localized to one region of the space of epistatic models.
Additional investigations examining the effect of the tree
length could also prove useful. It is likely that our new test
statistic will be useful for detecting other forms of pairwise
epistasis, though this should also be tested. Our results
suggest that in practice, phylogenies inferred from align-
ments with pairwise epistasis are still reliable and valid
estimates.

Materials and Methods

Model
For our simulations, we employ the epistatic RNA doublet
model of Nasrallah and Huelsenbeck (2013), which we
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implemented in RevBayes (Hohna et al. 2016). In this
model, there are two categories of sites: paired sites evolv-
ing dependently (which we will refer to as epistatic sites)
and unpaired sites evolving independently (which we will
refer to as independent sites). Instead of directly param-
eterizing a selective coefficient against single mutations,
the model parameterizes an enrichment factor for doublet
substitutions, which controls how common doublet sub-
stitutions are relative to single substitutions. Within each
category, it is assumed that all sites (or site pairs) evolve
under the same model. The independent sites evolve un-
der a standard GTR + G substitution model (Tavaré
1986). The epistatic sites evolve under an extension of
the GTR + G model to the state space of doublets.
We abbreviate these models as iid and epi, respectively.
The (symmetric) nucleotide exchange rates and the shape
parameter of the gamma-distributed rate heterogeneity
are shared between epi and iid models. We now detail
the epistatic model.

For any pair of coupled sites, let Q° denote the instanta-
neous rate matrix describing changes from doublet x = (x,
X,) to doublet y = (y1,y,), where x,y € A* and A = {
A,C,G,T} is the character set. Without loss of generality,
let the first element refer to the more 5" nucleotide of the pair.
The rate matrix has the following elements:

Qy=¢
Ty Sxi 1 ifsinglesubstitutionatthes' site,
AT ifsinglesubstitutionatthe3’ site,

X A Sx 51 Sx.9,d ifdoublesubstitutionwherex,y € W,

0 ifanyotherdoublesubstitution,

- ZZEAZ:zqéx Qﬁ,z ifx = Y,

M

where S is the GTR exchangeability matrix (shared with the
independent sites) with, for example, S, ,, the rate of ex-
changeability between nucleotides x;,y, € {A,C,G, T} (by
definition, S is symmetric), wW={
(A, T),(C,G),(G,C),(T,A)} is the set of Watson—Crick
pairs, 1° = (T(an), (AC), - - - » 7(T,T)) are the stationary state
frequencies of the 16 possible doublet states, d is the relative
rate of double to single mutations between doublets, and ¢ is a
rate-scaling factor that normalizes Q¢ to one substitution per
single site for comparability with the independent sites. As with
mutation selection models on codons (e.g, Yang and Nielsen
2008), this approach localizes dependencies between sites by
working on groups of sites assumed to be mutually indepen-
dent. However, in the epistatic doublet model, simultaneous
substitutions at multiple sites are allowed, and selection is
modeled only implicitly, through the relative frequency of dou-
blet substitutions, d.

For completeness, we now review the rest of the model.
For any noncoupled sites, let Q' denote the instantaneous
rate matrix describing changes from state x to state y, where
x,y € Ais the character set of nucleotides as above. The rate
matrix has the following elements:
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i ,Sxy ifx %y,
Qx.y =0vX { i . (2)
T Luze Aiz£x *xz ifx = Y

where S is the GTR exchangeability matrix as above, shared
with the epistatically paired sites, n' = (7, ¢, 76, 7t7) are
the stationary state frequencies of the four nucleotides, and v
is a rate-scaling factor that normalizes Q' to one substitution
per site.

The likelihood of the multiple sequence alignment is com-
puted under the standard phylogenetic assumption that a
pair of epistatic sites is independent of all other pairs of sites
(and all unpaired sites), and that an unpaired site is indepen-
dent of all sites. Thus, the only site-to-site dependencies are
those modeled in Q¢, and we can write the likelihood of the
alignment as follows:

Pr(D|S,x¢, 7', o, 1)
= Pr(D¢|S, 7%, o, 7) x Pr(D'|S, @', &, 7)

(ﬂpr(oﬂs, n¢, 0, 1)) X (Hpr(vus, T, o, r)) ,
s=1 s=1
A3)

where D¢ and D' are the subalignments consisting of all
epistatically paired sites and all independent sites, respec-
tively, o is the shape (and rate) parameter of the Gamma-
distributed among-site rate variation, 7 is the tree topology
with branch lengths, and the per-site pair and per-site like-
lihoods, Pr(D¢ | S, m°, o, 7) and Pr(D! | S, @', o, 1), are com-
puted using the Felsenstein pruning algorithm (Felsenstein
1981) with the rate matrices Q¢ and Q' as defined above.
The parameter d controls the strength of epistatic inter-
actions. At d =0, there are no double substitutions, and if
both d =0 and n§ = 7, 7} , the epistatic model collapses to
the standard site-independent GTR + G model. Taking the
limit d — oo and & — 0 such that the expected number of
substitutions is constant, all substitutions (at paired sites) are
double substitutions. With 0 < d < o¢, a portion of sub-
stitutions at epistatically paired sites are expected to be dou-
blet substitutions, whereas the remainder will be single-site
changes. We can compute the expected fraction of the sub-
stitutions that are doublet substitutions as follows:

Fd
p= )
rg +rs

with r, defined as
ra = ZﬂiQ;yH(M # Y1, % # Y2)
X7y

(where I(xq # y1,%, # y2) is an indicator for doublet
substitutions) and r, defined as

re = Z nf‘Q;yﬁ — I(x1 # y1,%2 # y2)]-
X2y

Both r, and r; depend on d through the normalization
constant ¢, a dependency which we can remove by multiply-

ingp by &7'/E7, giving us

R

From the definition of Q°, we can see that, holding S
constant, £ 'ry increases linearly in d whereas E s a
constant in d. It can thus be seen that, for fixed values of
other substitution parameters, the proportion of doublet
mutations is a sigmoid function of logd.

Simulation

Parameter Grid

With the epistatic doublet model, there are two variables that
govern the capacity for epistasis to affect phylogenetic infer-
ence: the strength of the interactions and the proportion of
the alignment that is epistatically paired. To investigate the
effect of the strength of epistasis, we simulate with
d € {0.0,0.5,2.0,8.0,1,000.0}, which encompasses both
realistic (see below) and extreme values. These values corre-
spond to 0%, 11.2%, 33.6%, 66.9%, and 99.6% of all substitu-
tions being doublet substitutions at a pair of sites. The scaling
constant ¢ in Q° ensures that the expected number of sub-
stitutions per site remains constant across all values of d. To
understand the effect of adding epistatic sites, for each value
of d, we simulate a grid where we independently vary the
number of epistatic sites, n. and independent sites, n;. This
setup is more informative than one where we hold the total
number of sites constant while varying the proportion of
paired sites because it allows us to examine the sensitivity
of posterior predictive tests to both proportion and absolute
number of paired sites. By comparing the accuracy of tree
inference before and after adding epistatic sites, we can assess
if we are in the catastrophic model misspecification regime
(inference is degraded by the addition of epistatic sites) or the
best-case regime (inference is improved by adding epistatic
sites). For each value of d, we simulate an alignment from a
fixed tree at each cell of a parameter grid defined by
ni,ne € {0,16,32,...,400}, excluding the cell in which
n; = ne = 0. At each grid point, we simulate a single align-
ment, and we refer to these alignments collectively as the
observed alignments. We note that n. must be even because
epistatic sites are simulated as (nonoverlapping) coupled site-
pairs.

Simulating Parameters

To ensure that our simulation regime is realistic, we target our
simulating parameters on values inferred from the tunicate
data set of Tsagkogeorga et al. (2009). This data set is an
185 rRNA alignment for 110 taxa, including 95 species of
tunicates. We downsample (randomly) to 50 ingroup species
and infer a tree in RAXML (Stamatakis 2014) using a single
GTR + G model. Fixing the tree to the RAXML tree, we use
RevBayes (Hohna et al. 2016) to infer the parameters of the
epistatic doublet model. For the RevBayes analysis, we split
the alignment into a subalignment containing only unpaired
(loop) sites (682 sites total) and a subalignment containing
only paired (stem) sites (644 total nucleotides in 322 site-
pairs). The paired sites are recoded such that AA, AC,.. . TT
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are treated as RevBayes style standard characters 0,1,. . .,F. For
simulations, we use this RAXML tree and the posterior mean
parameter values from the RevBayes analysis. These parame-
ters include the underlying GTR model exchange rates, the
underlying GTR model stationary frequencies, the stationary
frequencies of the doublets, and the shape parameter of the
gamma-distributed rate heterogeneity. All continuous pa-
rameter values are available in supplementary table S1,
Supplementary Material online, and supplementary figure
S1, Supplementary Material online, depict the tree used for
simulation. The tree length is 4.58, meaning that on average,
there should be ~4.58 substitutions at each column in the
simulated alignments.

Our simulating values of d aim to include both extreme
values and biologically relevant values. We infer a value of d of
0.65 for this tunicate data set. Nasrallah and Huelsenbeck
(2013) inferred values of d of 7.59 and 9.72 on a data set
spanning eukaryotes for analyses fixing and inferring the
tree, respectively. We therefore chose simulating values of d
€ {0.5,2.0,8.0} to cover the range of values inferred from
data sets of natural sequences. Simulating d = 0 allows us to
disentangle the effect of model misspecification due to the
doublet stationary frequencies from model misspecification
due to paired substitutions. Finally, simulating d = 1,000
allows us to consider the extreme regime where almost all
(98.5%) substitutions at paired sites are doublet substitutions.

Bayesian Inference

We use RevBayes (Hohna et al. 2016) to infer unrooted phy-
logenies for each of the observed alignments. In all cases, we
use a single GTR + G substitution model, intentionally ignor-
ing the presence of epistasis in the data sets. Details of the
model setup, priors, and MCMC moves used are available in
the supplement. For each analysis we run two independent
MCMC chains. We exclude runs that fail convergence diag-
nostic tests from downstream analysis to avoid analysis arti-
facts. As we are interested in the phylogeny specifically, our
convergence diagnostics focus on the tree and branch
lengths. First, we use the average standard deviation of split
frequencies (ASDSF) to compare topologies between the two
chains. To account for the possibility of branch-length con-
vergence issues, we also check whether the tree length dis-
tributions differ between chains by using the potential scale
reduction factor (PSRF, Brooks and Gelman 1998). However,
we must balance the stringency of our convergence standards
against the number of analyses that must be discarded. To
this end, we discard all chains where either ASDSF > 0.05 or
PSRF > 1.1, and in the supplement, we present additional
results assessing sensitivity of our results to different conver-
gence standards.

Posterior Predictive Assessments

The posterior predictive distribution is the distribution on
new (replicate) data sets, D"P, that we could draw from
our posterior distribution, P(6 | D). It is obtained by inte-
grating the probability of a new data set, given a particular
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value of the model parameters P(D"™P | 6)), across the
posterior

P(D' | D) = P(D™ | 0)dP(0 | D).

Often we are more interested in a particular feature of a
data set, given by a test statistic T(D). The posterior predic-
tive distribution for this test statistic is given by

P(T(D™) | D) = JIP’(T(Dmp) | 0)dP(0 | D).

We can use the posterior predictive distribution of a test
statistic to determine whether our model is adequate, or in
other words, whether it fits the data in the absolute sense. If
the model is adequate, then the observed value of the test
statistic, T(D), is consistent with the posterior predictive dis-
tribution P(T(D™P) | D). We can thus compute a posterior
predictive p-value, P(T(D™P) < T(D)|D), and if the
posterior-predictive p-value is smaller than some threshold
o, we declare the model to be inadequate. In practice, one
obtains a Monte Carlo estimate of the posterior predictive p-
value by simulating new data sets using the draws from the
posterior obtained by MCMC, computing the test statistic for
each, and calculating the proportion greater than or equal to
the observed value. For a more complete introduction to
posterior predictive model checks, see Gelman et al. (2004),
or for a review of model adequacy in evolutionary biology, see
Brown and Thomson (2018).

One of our key questions is, can the presence of unmod-
eled epistatic interactions be detected with posterior predic-
tive checks? A test statistic should be chosen on the basis of
its ability to detect a particular form of model misspecifica-
tion. As epistasis has yet to be studied from a posterior pre-
dictive perspective, there are currently no posterior predictive
approaches designed explicitly to detect it. We first examine
whether a standard phylogenetic posterior predictive test
statistic—the multinomial likelihood test statistic of
Goldman (1993)—can detect this model misspecification.
We then develop two new information theoretic statistics
that directly address the expected behavior of epistasis.

We examine the performance of these test statistics on
simulated data sets in two ways. First, by using only the sim-
ulated observed alignments, we examine if these test statistics
are sensitive to the proportion of epistatic sites in an align-
ment or to d. Next, we perform posterior predictive checks for
all inferred phylogenies to determine if the statistics are able
to detect epistasis in practice. As an example of this distinc-
tion, consider that in principle, the G93 statistic is capable of
detecting the difference between certain GTR (Tavaré 1986)
models and certain Hasegawa—Kishino—Yano (HKY)
(Hasegawa et al. 1985) models. However, if we simulate an
alignment under HKY and infer it under GTR, we will not see
any evidence of misspecification (Bollback 2002), so in prac-
tice, it cannot detect all forms of misspecification.

Multinomial Likelihood
The multinomial likelihood test statistic treats the multiple
sequence alignment D as a draw from a multinomial
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distribution on all possible site patterns. For t taxa and a DNA
or RNA alignment, there are 4" such patterns, and for an
alignment of length n, we observe some number s < n
site patterns. If s; is the number of times we see site pattern
i, the maximum likelihood estimate of the multinomial prob-
ability of seeing pattern i is p(i) = s;/n. The test statistic is
simply the log-likelihood of this data set using these estimated
probabilities or L = ) _.[s; log(s;)] — n log(n).

Mutual Information

Under a phylogenetic model, all sites are conditionally inde-
pendent given the phylogeny. However, under the epistatic
doublet model, epistatic pairs of sites evolve dependently
along the phylogeny due to both d and the use of doublet
stationary frequencies. In particular, the presence doublet
substitutions make it more likely that when one site in a
pair changes along a branch, the other site does as well.
This should result in pairs of epistatic sites having more sim-
ilar patterns than independent sites, and the degree of this
similarity should depend on d. What is needed, then, is a way
to capture this idea of the similarity of sites.

Ml is a measure of the dependency of two variables, quan-
tifying the amount of information that one contains about
the other. The higher the MI, the more that knowing the
value of one variable tells you about the other, in other words,
the more similar the two variables are. As above, we assume
that we have an alignment D consisting of t taxa and » sites,
and here we again denote the alphabet of this alignment .A.
The MI of a pair of sites indexed by (i, j) is given by

My = 3 fi(a,b)lo (f’ )

a,bc A

where fi(a) is the relative frequency of character a at site i,

fia) = %Z Lip,y(a),

k=1

and fij(a, b) is the relative joint frequency of character a at
site i and character b at site j,

Z I[{Dkr

In nonphylogenetic contexts, MI has been used to predict
RNA secondary structure from multiple sequence alignments
(see Freyhult et al. 2005 and references therein).

As Ml is ignorant of the phylogeny, we need additional
context to interpret its value. If we had an a priori hypothesis
about a pair of interacting sites (i, j), we could compute the
posterior predictive distribution of MI; and compare the ob-
served value with this distribution. The posterior predictive
distribution accounts for similarity due to shared evolutionary
history, so if the observed value is larger than the posterior
predictive distribution, there must be some other factor at
play, such as pairwise epistasis. However, if one wants to test
for the presence or absence of pairwise epistasis at the level of
the entire alignment, this will not work. Instead, we can

H{Dkl}(b)

compute the MI of all pairs of sites. As we expect epistasis
to increase the MI between pairs of interacting sites, the up-
per tail of the distribution of pairwise MI values should be
informative with respect to the overall presence and strength
of epistasis. We consider two summaries of this distribution.
First we consider its kurtosis, which should be sensitive to the
strength of epistasis and proportion of epistatic sites, as the
more interactions the more values that should fall in the right
tail and the stronger the interactions the larger those values
should get. We also consider the max, which should be sen-
sitive to the presence or absence of epistasis, but is less likely
to be sensitive to the proportion of epistatic sites.

Computing the Relative Worth of an Epistatic Site
Let y be a statistic summarizing the accuracy or precision of
inference on a data set, and (y | n) denote conditioning on
the number n of sites in the alignment. The sites could be
drawn from a site-independent model, or a model that intro-
duces dependence among sites, such as the Nasrallah—
Huelsenbeck model of pairwise epistasis. As examples, y could
include the distance between the maximum likelihood tree
and the true tree or the variance of the posterior distribution
of trees. The effective sequence length is neg such that
Ely | n] = Ely | neg]. That is, if we repeatedly draw data
sets with n sites from some arbitrary, possibly pairwise de-
pendent, model and neg sites from the (site-independent)
model used for analysis, then neg is the number of indepen-
dent sites such that the average accuracy or precision is the
same as for the n sites from the arbitrary, possibly misspeci-
fied, model. If y is a statistic that summarizes the accuracy of
inference, then this definition includes the effective sequence
length of Nasrallah et al. (2011). Note that we can ignore the
number of taxa because it must be the same between the
data sets. It is also worth noting that this formulation of an
effective sequence length is broader than the formulation of
the effective sample size. Classically, the notion of effective
sample size, n* is defined with respect to the variance of an
estimator 0. Specifically, the effective sample size is n* such
that Var(0 | n) = Var(0 | n*). The variance of an estimator
is given by Var(0) = E[(@ E[GD |- Thus, if we take
= (0 —E[0])’, then we can see that our definition
includes the standard definition of effective sample size.

In our case, with n = n; + n., we can define a model for
the effective sequence length as nes = n; + r(d)n., where
r(d) is the relative worth of an epistatic site compared with
an independent one for a given value of d. The dependency
on d is necessary because we expect that as d increases and
more substitutions are paired, the relative worth should de-
crease. It is possible that, for a given value of d, r(d) is also not
a constant; if there is asymptotic bias and the estimated tree
does not converge to the true tree, then r(d) must eventually
go to 0. However, in our finite data regime, there is no evi-
dence of asymptotic biases, and a model with constant r(d)
will suffice. Estimating r(d) is complicated by the fact that we
do not know an appropriate functional form for E[y | n] for
any of our metrics. We know that accuracy and precision
should both increase with increasing neg, but how rapidly
this happens is unknown. Thus, to infer r(d), we turn to
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models where we do not need to explicitly specify this rela-
tionship. All modeling is done in R (R Core Team 2018).
Specifically, we use I-splines (Ramsay 1988) to model the re-
lationship between y and nes as Ely] = g(n; + r(d)ne),
where g is a spline. We use the R package splines2 (Wang
and Yan 2018) to obtain the basis matrix for the splines, using
degree three splines with five knots. Preliminary analyses sug-
gest that the inferred relative worth is generally stable if the
degree and/or number of knots are changed. To ensure that
g() is monotonically increasing, the coefficients that are fit to
this basis matrix must be nonnegative. We use log and logit
transformations to keep our response variables unbounded,
taking negatives where necessary to make them monotoni-
cally increasing rather than monotonically decreasing. For this
purpose, we employ the R package penalized (Goeman 2010),
which allows us to estimate maximum likelihood (least
squares) coefficients with bounds on the coefficients. By es-
timating r(d), we can determine whether we are in the cat-
astrophic model misspecification regime (r(d) < 0) or the
best-case regime (0 < r(d) < 1) for any value of d.

Accuracy

As we are interested in Bayesian inference, we are not pri-
marily interested in the accuracy of point estimates of the
phylogeny but in the overall goodness of the posterior distri-
bution of trees. As our distance measure, we employ the RF
distance (Robinson and Foulds 1981). RF distance is a purely
topological measure between a pair of trees, capturing the
number of splits (bipartitions of taxa) present in one tree but
not in the other. The quantity that we are interested in is thus
the posterior distribution on distances to the true tree. Given
that we have samples from our posterior distribution on
phylogenies, we can obtain samples from the posterior dis-
tribution on tree distances. We consider multiple univariate
summaries of this distribution, namely the mean, median,
minimum, and maximum of the distances.

Although comparisons based on the entire posterior dis-
tribution are useful for understanding the overall perfor-
mance of inference, they do not necessarily reflect the
experience of practitioners inferring phylogenies. In practice,
the posterior distribution is, at least for the purposes of visu-
alization, generally reduced to a single summary tree, often an
MRC tree. Thus, as an alternative accuracy measure, we take
the proportion of splits in the MRC tree that are not in the
true tree as an error measure of the point tree estimate.

Precision

To investigate precision-based effective sequence lengths, we
must define a measure of the precision or variance of our
posterior distributions. In the best-case scenario, where epi-
static sites are simply less informative than independent sites,
one would intuitively expect that the variance of the posterior
distribution on trees should increase. On the other hand, in
the catastrophic scenario, it is possible that there is an in-
crease in information about certain edges in the tree, and the
variance of the posterior distribution may actually decrease.
Although the variance of a phylogeny is defined (e.g, Willis
2019), the time required to compute this variance makes it
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prohibitively expensive for our purposes (Brown and Owen
2020). In order to address the matter of variance, we thus turn
to two surrogates.

The first metric we consider is the resolution of the MRC
tree. The MRC tree is obtained by including all splits in the
posterior that occur with a frequency above 50%. As the
amount of information in an alignment increases, there
should be more splits with sufficient signal to place in the
MRC tree and the MRC tree should include more splits. An
MRC tree on t taxa includes a maximum of t — 3 nontrivial
splits, so dividing the number of (nontrivial) splits in the MRC
tree by t — 3 produces a standardized value in [0,1] which we
call the proportion of resolved splits. At 0, the MRC tree is
completely unresolved (a star tree), whereas at 1, it is a fully
resolved tree. Although this metric takes a somewhat circu-
itous path to precision, the focus on the summary tree ties it
more closely to tangible effects of variance encountered when
reading a paper that estimates a phylogeny.

As an alternate metric, we consider the width of the 95%
Cl of the distances to the true tree. The more information
there is in an alignment, the narrower we expect the posterior
distribution on trees, and thus the narrower we expect the
distribution on distances to the true tree. We focus here on
the RF distance as it is a purely topological measure and does
not include any potentially confounding effects due to erro-
neously long (or short) estimated trees. This metric has the
downside of being linked to the accuracy of the inference,
which is less than ideal, but like our other metric, it is corre-
lated with the true precision of the distribution, and it has the
benefit of requiring no extra computations, somewhat reduc-
ing the otherwise heavy CO, cost of this paper.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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