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ABSTRACT: In the theory of traditional Chinese medicine
(TCM), “liver-qi” stagnation and heat-induced toxicity represent
the main etiologies of breast cancer. Recently, several TCMs with
heat-clearing and detoxification efficacy have shown inhibitory
effects on breast cancer. Jin’gan capsules (JGCs), initially approved
to treat colds in China, are a heat-clearing and detoxification TCM
formula. However, the anticancer activity of JGCs against breast
cancer and its underlying mechanisms remain unclear. First, we
assessed the antiproliferative activity of JGCs in breast cancer cell
lines and evaluated their effects on cell apoptosis and the cell cycle
by flow cytometry. Furthermore, we identified the potential
bioactive components of JGCs and their corresponding target
genes and constructed a bioactive compound−target interaction network by ultra-performance liquid chromatography−high-
resolution tandem mass spectrometry (UPLC-HR-MS/MS) and network pharmacology analysis. Finally, the underlying mechanism
was investigated through gene function enrichment analysis and experimental validation. We found that JGCs significantly inhibited
breast cancer cell growth with IC50 values of 0.56 ± 0.03, 0.16 ± 0.03, and 0.94 ± 0.09 mg/mL for MDA-MB-231, MDA-MB-468,
and MCF-7, respectively. In addition, JGC treatment dramatically induced apoptosis and S phase cell cycle arrest in breast cancer
cells. Western blot analysis confirmed that JGCs could regulate the protein levels of apoptosis- and cell cycle-related genes. Utilizing
UPLC-HR-MS/MS analysis and network pharmacology, we identified 7 potential bioactive ingredients in JGCs and 116 antibreast
cancer targets. Functional enrichment analysis indicated that the antitumor effects of JGCs were strongly associated with apoptosis
and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. Western blot analysis
validated that JGC treatment markedly decreased the expression levels of p-JAK2, p-STAT3, and STAT3. Our findings suggest that
JGCs suppress breast cancer cell proliferation and induce cell cycle arrest and apoptosis partly by inhibiting the JAK2/STAT3
signaling pathway, highlighting JGCs as a potential therapeutic candidate against breast cancer.

1. INTRODUCTION
In 2020, for the first time, the incidence of female breast cancer
exceeded that of lung cancer as the most common cancer
worldwide.1 Although progress has been made regarding
diagnostic and therapeutic strategies, including surgery,
chemotherapy, endocrine therapy, targeted therapy, and
immunotherapy, the prognosis of patients diagnosed with
breast cancer remains unsatisfactory.2,3 Notably, triple-negative
breast cancer (TNBC) is considered to be the most incurable
and refractory subtype due to the aberrant expression of the
estrogen receptor (ER), progesterone receptor, and human
epidermal growth factor receptor 2.4 In addition, long-term
chemotherapy has many side effects and will eventually
increase the risk of developing drug resistance. The problems
mentioned above have seriously hampered the successful
treatment of breast cancer, and therefore, it is urgent to
establish new therapeutic strategies.

In the theory of traditional Chinese medicine (TCM), the
main etiologies of breast cancer are “liver-qi” stagnation, heat-
induced toxicity, and phlegm accumulation.5,6 Accordingly,
several TCMs with heat-clearing and detoxification efficacy
show certain curative effects on breast cancer. For instance,
Shuganning injection inhibits tumor growth and promotes cell
ferroptosis in TNBC.7 Qingdu granules were reported to
suppress tumor growth and breast cancer cell angiogenesis by
regulating the nuclear factor of activated T-cell (NFAT)
pathway.8 Xi huang pills inhibited the growth of breast cancer
in vitro and in vivo.9 The abovementioned studies support the
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notion that heat-clearing and detoxifying TCMs have great
potential for breast cancer treatment. Therefore, identifying
drugs from this kind of TCM with antibreast cancer activity
and understanding the molecular mechanism might provide
new alternative therapies for breast cancer treatment.
Jin’gan capsules (JGCs), a heat-clearing and detoxifying

formula in Miao medicine, were approved to treat colds (such
as fever, headache, cough, and sore throat) in the clinic by the
China Food and Drug Administration (no. Z20059013) in
2005. JGC treatment has the potential to cause side effects,
including drowsiness, fatigue, thirst, rash, urticaria, and
granulocytopenia. Additionally, the long-term use of large
amounts of this drug may increase the risk of liver and kidney
dysfunction. However, these symptoms can be relieved
automatically after drug withdrawal. According to the etiology
of breast cancer in TCM theory, JGCs, with the effects of heat-
clearing and detoxification, might have the potential to treat
breast cancer. However, their antibreast cancer activity remains
unknown.
JGCs are composed of seven botanical drugs, including

Lonicera japonica Thunb. [Caprifoliaceae; L. japonicae flos],
Andrographis paniculata (Burm.f.) Nees [Acanthaceae; An-
drographis herba], Isatis tinctoria L. [Brassicaceae; Isatidis
radix], Taraxacum mongolicum Hand.-Mazz. [Compositae;
Taraxaci herba], acetaminophen, amantadine hydrochloride,
and chlorphenamine maleate. Previous studies have demon-
strated that some extracts from the five botanical drugs in
JGCs, including L. japonica Thunb.,10,11 A. paniculata
(Burm.f.) Nees,12,13 I. tinctoria L.,14 T. mongolicum Hand.-
Mazz.,15,16 and acetaminophen,17 suppressed the malignant
phenotype of breast cancer.
The present study aimed to explore the antibreast cancer

activity of JGCs and the molecular mechanism. First, we
assessed the antiproliferative activity of JGCs in breast cancer
cell lines. Then, we evaluated the effects of JGCs on cell
apoptosis and the cell cycle by flow cytometry. Furthermore,
we identified the potential bioactive components of JGCs and
their corresponding target genes and constructed a bioactive

compound−target interaction network by ultra-performance
liquid chromatography−high-resolution tandem mass spec-
trometry (UPLC-HR-MS/MS) and network pharmacology
analysis. Finally, the underlying mechanism was investigated
through gene function enrichment analysis and experimental
validation (Figure 1).

2. RESULTS
2.1. JGCs Inhibited Breast Cancer Cell Viability and

Proliferation. Three breast cancer cell lines were employed to
evaluate the effect of JGCs on cell viability and proliferation.
As shown in Figure 2a, JGCs clearly inhibited the viability of all
cell lines in a concentration-dependent manner. Notably, two
TNBC cell lines, MDA-MB-231 and MDA-MB-468, were
more sensitive to JGCs, with IC50 values of 0.56 ± 0.03 and
0.16 ± 0.03 mg/mL, respectively, after 72 h of incubation than
the non-TNBC breast cancer cell line MCF-7 (IC50 = 0.94 ±
0.09 mg/mL). The proliferation ability was further evaluated
by constructing cell growth curves and performing colony
formation assays. As shown in Figure 2b−d, JGCs inhibited the
proliferation of MDA-MB-231 and MDA-MB-468 cells in a
time- and concentration-dependent manner. Moreover, after
treatment with different doses of JGCs for 24 and 48 h, MDA-
MB-231 and MDA-MB-468 cells exhibited apoptotic mor-
phologies as observed by inverted microscopy (Figure 2e,f).
2.2. JGCs Promoted Breast Cancer Cell Apoptosis. To

reveal the underlying mechanisms responsible for the JGC-
mediated inhibitory effects, apoptosis was detected by flow
cytometry with Annexin V-fluorescein isothiocyanate (FITC)/
propidium iodide (PI) double staining. JGCs concentration-
dependently enhanced the apoptosis rate of TNBC cells. The
apoptosis rate of MDA-MB-231 cells increased from 2.47 ±
0.21% (0.5 mg/mL) to 4.57 ± 0.42% (1 mg/mL) and 30.9 ±
1.09% (2 mg/mL) after 24 h of treatment with JGCs (Figure
3a,b). For MDA-MB-468 cells, the apoptosis percentage
increased from 12.25 ± 0.32% (0.25 mg/ml) to 15.65 ±
0.74% (0.5 mg/mL) and 22.56 ± 0.79% (1 mg/mL) (Figure
3c,d). After 48 h, a similar apoptosis rate trend was observed

Figure 1. Integrated workflow of the network pharmacology and experimental studies of JGCs against breast cancer.
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after the cells were treated with JGCs. Moreover, at the same
concentration, the apoptosis rate at 48 h was higher than that
at 24 h. The morphological changes during cell apoptosis were
then validated by Hoechst 33342 staining. As shown in Figure
3e,f, many MDA-MB-231 and MDA-MB-468 cell nuclei
became noticeably dense and fragmented. These results

suggest that JGCs are able to induce cell apoptosis in a
concentration- and time-dependent manner.
2.3. JGCs Induced S Phase Cell Cycle Arrest in Breast

Cancer Cells. We also evaluated the influence of JGCs on the
cell cycle distribution using PI staining and flow cytometry.
Compared with the control group, in MDA-MB-231 cells, JGC
treatment at 0.5 and 1 mg/mL for 24 h led to the clear

Figure 2. JGCs inhibited the viability and proliferation of breast cancer cells. (a) Cell viability was assessed by an MTT assay after JGC treatment
for 72 h. (b,c) Cell proliferation of MDA-MB-231 (b) and MDA-MB-468 (c) cells treated with the indicated dose of JGCs was determined using
the MTT assay. (d) Colony formation of MDA-MB-231 and MDA-MB-468 cells treated with JGCs. (e,f) Representative images of MDA-MB-231
(e) and MDA-MB-468 (f) cells treated with JGCs for 24 and 48 h (magnification ×200, scale bar: 100 μm) (black arrows indicate apoptotic cells).
Each experiment was repeated at least in triplicate. **P < 0.01 vs the control group.
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accumulation of cells in the S phase and a significant decrease
in cells in G1 and G2 phases (Figure 4a,b). After 48 h of
treatment, flow cytometry analysis showed that JGC treatment
at 0.25, 0.5, and 1 mg/mL could significantly increase the

percentage of MDA-MB-231 cells in the S phase. Consistent
with the results in MDA-MB-231 cells, we observed that JGC
treatment enhanced the proportion of MDA-MB-468 cells in
the S phase and reduced the proportions of cells in G1 and G2

Figure 3. JGCs promoted breast cancer cell apoptosis. (a) Apoptosis analysis of MDA-MB-231 cells treated with different concentrations of JGCs
for 24 or 48 h. (b) Histogram analysis of the percentage of total apoptotic MDA-MB-231 cells. (c) Apoptosis analysis of MDA-MB-468 cells
treated with different concentrations of JGCs for 24 or 48 h. (d) Histogram analysis of the percentage of total apoptotic MDA-MB-468 cells. (e,f)
MDA-MB-231 (e) and MDA-MB-468 (f) cells were stained with Hoechst 33258 and examined by fluorescence microscopy (magnification ×200,
scale bar: 200 μm) (white arrows showing the bright blue regions indicate fragmented or condensed nuclei). Data are shown as the mean ± SD for
treatments tested at least in triplicate. **P < 0.01 vs the control group, ##P < 0.01 vs the JGC 24 h group.
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phases (Figure 4c,d). These findings indicate that the JGC-
induced inhibitory effect on breast cancer cell proliferation is
partly associated with arresting cell cycle progression at the S
phase.
2.4. JGCs Regulated the Expression of Apoptosis-

and Cell Cycle-Related Proteins in Breast Cancer Cells.
To further explore the possible mechanisms of JGCs in breast
cancer, Western blot analysis was performed to evaluate
changes in the expression levels of apoptosis- and cell cycle-
associated proteins. As shown in Figure 5a, JGCs promoted the
concentration-dependent specific cleavage of poly(ADP-
ribose) polymerase (PARP), caspase-8, caspase-9, and
caspase-3 in both MDA-MB-231 and MDA-MB-468 cells.
Moreover, the protein ratio of Bax/Bcl-2 also increased after
24 h of JGC treatment. These results together demonstrated
that JGCs induced apoptosis in MDA-MB-231 and MDA-MB-
468 cells probably via both the mitochondrial-dependent and
extrinsic pathways. In addition, JGC treatment notably
downregulated the levels of c-Myc, CDK2, cyclin B1,
CDC25C, and p-CDC25C but upregulated the level of p21
(Figure 5b). These results further clarify that JGCs could arrest
breast cancer cell cycle progression.

2.5. Identification of the Active Ingredients in JGCs.
To determine the pharmacodynamic material basis of JGCs,
UPLC-HR-MS/MS analysis was first carried out on an Agilent
1100 instrument and Thermo Ultimate 3000/Q EXACTIVE
FOCUS mass spectrometers. As shown in Figure 6a, 45
ingredients were identified from JGCs. Detailed information
on these ingredients is provided in Table S1. Further analysis
revealed that these chemical constituents included 10
terpenoids, 10 phenylpropanoids, 8 ketones, 3 alcohols/ethers,
3 acids/esters, 2 phenols, 2 alkaloids, and 7 other compounds
(Figure 6b). According to the OB and DL values, seven
ingredients were identified as potential active ingredients,
which might be responsible for the antitumor activities of JGCs
(Table S2).
2.6. Identification of the Potential JGC Targets. Then,

we investigated the possible genetic foundation of JGCs, and
234 targets of the 7 active ingredients in JGCs were retrieved
from STITCH, TCMSP, ETCM, SymMap, and DrugBank.
Furthermore, a total of 1460 genes were identified as breast
cancer-related targets from CTD, TDD, DISEASES, and
MalaCards. Venn diagram analysis showed that there were
116 JGC-related targets for breast cancer (Figure 7a). Then,

Figure 4. JGCs induced S phase cell cycle arrest in breast cancer cells. (a) The cell cycle distribution of MDA-MB-231 cells treated with JGCs was
analyzed by flow cytometry. (b) Cell cycle distribution of MDA-MB-231 cells in the G1, S, and G2 phases. (c) The cell cycle distribution of MDA-
MB-468 cells treated with JGCs was analyzed by flow cytometry. (d) Cell cycle distribution of MDA-MB-468 cells in the G1, S, and G2 phases.
Each experiment was repeated at least in triplicate. *P < 0.05, **P < 0.01 vs the control group.
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we generated a protein−protein interaction (PPI) network for
the 116 genes. From the network, we identified 10 hub genes,
including JUN, RELA, MAPK14, STAT3, FOS, ESR1,
NR3C1, EP300, MAPK1, and SRC, which might be the key
targets of JGCs for the inhibition of breast cancer (Figure 7b).
We also constructed an active ingredient−target interaction
network for JGCs and found that puerarin, daidzein,
dehydroandrographolide, neoandrographolide, eleutheroside
B, cryptochlorogenic acid, and harpagoside had 51, 44, 11, 8,
7, 1, and 1 target genes, respectively (Figure 7c). Among the
116 genes, PTGS2 could potentially interact with all 7 active
ingredients.
2.7. JGCs Inhibited Breast Cancer Tumorigenesis

through the JAK2/STAT3 Signaling Pathway. To further
elucidate the underlying mechanism by which JGCs exert their
antibreast cancer activity, we performed the biological process
and Kyoto encyclopedia of genes and genomes (KEGG)

pathway enrichment analyses for the 116 JGC-related genes via
Metascape. Gene ontology (GO) enrichment analysis revealed
that these genes were prominently related to several biological
processes, including cellular response to organic cyclic
compounds (P = 2.50 × 10−39), positive regulation of cell
death (P = 2.50 × 10−39), and the apoptotic signaling pathway
(P = 5.78 × 10−34) (Figure 8a). Additionally, as shown in
Figure 8b, there were many pathways potentially participating
in the antitumor effects of JGCs, such as pathways in cancer (P
= 1.03 × 10−49), apoptosis (P = 4.81 × 10−27), microRNAs in
cancer (P = 8.58 × 10−25), and the Janus kinase (JAK)-signal
transducer and activator of transcription (STAT) signaling
pathway (P = 4.55 × 10−20).
Our previous studies reported that the JAK-STAT signaling

pathway played major roles in the carcinogenesis process.18,19

Recent studies have demonstrated that the JAK-STAT
signaling pathway is also involved in the regulation of breast

Figure 5. JGCs regulated the expression of apoptosis- and cell cycle-related proteins in breast cancer cells. (a) Western blot analysis of the effects of
JGCs on apoptosis-related proteins, including Bcl-2, Bax, activated caspase-8, activated caspase-9, activated caspase-3, and PARP, in breast cancer
cells after 24 h of treatment with JGCs. (b) Western blot analysis of the effects of JGCs on cell cycle-related proteins, including c-Myc, CDK2,
cyclin B1, CDC25C, p-CDC25C, and p21, in JGC-treated cells. GAPDH was used as a loading control. Each experiment was repeated at least in
triplicate.
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cancer cell proliferation, cycle arrest, and apoptosis.20,21

Combined with the above KEGG analysis results, we
attempted to determine whether the suppressive effect of
JGCs on the breast cancer cell phenotype was mediated
through the JAK-STAT signaling pathway. In both MDA-MB-
231 and MDA-MB-468 cells, Western blot analysis showed
that JGCs could markedly decrease the expression of p-JAK2,
p-STAT3, and STAT3 in a dose-dependent manner but had no
effect on the expression of total JAK2 (Figure 8c,d). Taken
together, these results demonstrated that JGCs might exhibit
their antibreast cancer effect by inactivating the JAK2/STAT3
signaling pathway.

3. DISCUSSION
TCMs have been applied for the prevention and treatment of
breast cancer for thousands of years in China. In the present
study, we evaluated the effects of JGCs on breast cancer cells.
Our results demonstrated that JGCs significantly inhibited
breast cancer cell growth in a dose- and time-dependent
manner, promoted cell apoptosis, and induced cell cycle arrest
in the S phase, indicating that JGCs may serve as a potential
therapeutic drug against breast cancer; however, the identities
of the effective substances remain unclear.
Generally, TCM exhibits multicomponent, multitarget, and

multipathway biological effects. Considering the complexity, it
is difficult to clarify how TCM actions are carried out by
traditional methods. Based on systems biology, pharmacology,
and bioinformatics approaches, network pharmacology has
been validated as a powerful tool to uncover the molecular
mechanisms of TCM and brings new opportunities to drug
development.22,23 For instance, network pharmacology com-
bined with experimental evaluation was used to reveal the
synergistic effects of Huachansu capsules on hepatocellular
carcinoma cell proliferation and migration.24 Despite its wide
application in various human diseases, there are some
limitations of network pharmacology to identify active

ingredients. For example, shikimic acid was reported to be
an active ingredient and promote ER-positive breast cancer cell
proliferation.25 However, it was excluded according to the OB
and DL values in this study. Therefore, network pharmacology,
as a bioinformatics approach, can provide some preliminary
evidence but still requires experimental validation.
Utilizing UPLC-HR-MS/MS analysis and network pharma-

cology, we identified seven potential bioactive ingredients from
JGCs. Interestingly, all seven ingredients have been identified
as potential anti-inflammatory agents in various diseases,
including osteoarthritis, ischemia−reperfusion injury, and
colitis.26−32 Moreover, some compounds have also shown
potential antitumor activity. For example, puerarin, a natural
isoflavonoid from Pueraria lobata, could restrain breast cancer
cell metastasis and enhance chemosensitivity to adriamy-
cin.33,34 Daidzein, a natural isoflavone from Leguminosae, was
found to induce cell cycle arrest at the G1 and G2/M phases,
promote cell apoptosis, suppress TNF-α-induced migration
and invasion, and reverse breast cancer resistance protein
(BCRP)-mediated drug resistance in breast cancer.35−38

Eleutheroside B (syringin), a phenylpropanoid glycoside, can
induce oxidative stress to suppress the proliferation of breast
cancer.39 Neoandrographolide and dehydroandrographolide,
the two principal components of A. paniculata (Burm.f.) Nees,
had shown good antitumor effects against a variety of tumor
cells, including Jurkat cells, lung cancer cells, and oral cancer
cells. However, their biological functions in breast cancer
remain unclear.40−42 The bioactivities of other bioactive
ingredients, including harpagoside and cryptochlorogenic
acid, against human cancer have not yet been reported.
Applying Venn analysis, 116 target genes of the 7 bioactive

ingredients were identified as potential targets of JGCs
responsible for their inhibitory effects against breast cancer.
In the bioactive compound−target interaction network, we
observed that PTGS2 was the common target of the seven
bioactive ingredients. PTGS2 encodes the inducible enzyme

Figure 6. Identification of active ingredients in JGCs. (a) UPLC-HR-MS/MS analysis of JGCs in positive and negative ion modes. (b) Major
categories of identified ingredients.
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COX-2, which converts arachidonic acid into prostaglandins.
PTGS2 is frequently highly expressed in several types of
human cancer, including breast cancer, and predicts an
unfavorable prognosis.43 PTGS2 was reported to promote
breast cancer cell invasion and enhance chemoresistance and
stemness.44−46 Other target genes, such as NFKB1, NOS2, and
AURKB, also have crucial roles in breast cancer tumori-
genesis.47−49

Subsequently, gene function enrichment analysis of the 116
target genes was performed to comprehensively understand the
possible mechanisms. The results showed marked enrichment
in the positive regulation of cell death and the apoptotic
signaling pathway, which was in accordance with our
observation of JGCs promoting breast cancer cell apoptosis.
Consistent with their known anti-inflammatory roles, we found
that these genes were strongly associated with the response to
lipopolysaccharide, indicating that JGCs might have the
potential to modulate breast cancer immunotherapy. Interest-
ingly, the positive regulation of cell migration was also
implicated for JGCs.
KEGG pathway analysis revealed that the antitumor effects

of JGCs might be involved in apoptosis, cancer, and the JAK-

STAT signaling pathway. Notably, the JAK-STAT signaling
pathway has also been implicated in tumor survival, metastasis,
angiogenesis, apoptosis, and drug resistance, suggesting that
the JAK-STAT pathway is a promising therapeutic target for
breast cancer treatment.50 Several reports have shown that
TCMs can arrest tumorigenesis and metastasis by regulating
the JAK-STAT signaling pathway. For example, ECN, a
compound derived from Tussilago farfara L. (Kuan Dong
Hua), downregulated the expression of phosphorylated JAK1/
2 and Src, blocked the nuclear translocation of STAT3, and
induced apoptosis of breast cancer cells.51 Yang et al. identified
a STAT3 inhibitor from Eupatorium lindleyanum that strongly
inhibited the viability of TNBC cells.52 In accordance with the
KEGG analysis, the Western blot results showed that the
protein expression of p-JAK2, p-STAT3, and STAT3 was
significantly decreased after JGC treatment. These findings
highlighted that JGCs might exert their antibreast cancer
effects partly by inhibiting the JAK/STAT signaling pathway.

4. CONCLUSIONS
In conclusion, our study provides the first clear evidence of
JGCs having excellent antitumor activity against breast cancer.

Figure 7. Identification of the potential JGC targets. (a) Venn diagram analysis of the overlapping targets. We filtered out 116 potential JGC targets
in breast cancer. (b) PPI network of 116 JGC-related targets in breast cancer using STRING. The interaction score was set as the highest
confidence (0.900). (c) An active ingredient−target network was generated using Cytoscape, which consisted of 7 active ingredients and 116
potential targets. The red triangles represent the active ingredients. The green circles represent the gene that the ingredient targets.
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Furthermore, JGCs significantly repressed cell growth,
promoted cell apoptosis, and induced S phase cell cycle arrest
partly by inactivating the JAK2/STAT3 signaling pathway.
Additionally, we identified many potential active ingredients
from JGCs that may help develop novel therapeutic agents
against breast cancer.

5. MATERIALS AND METHODS
5.1. Preparation of JGCs. JGCs were purchased from

Guizhou Bailing Enterprise Group Pharmaceutical Corpora-
tion Limited (Guiyang, China). JGCs were prepared according
to a previous patent (CN201010137089.8) by Guizhou
Bailing. Briefly, the raw materials consisted of the flowers of
L. japonica Thunb. (250 g), the dried aerial part of
Andrographis paniculate (Burm.f.) Nees (250 g), the root of
I. tinctoria L. (250 g), the dried whole plant of T. mongolicum
Hand.-Mazz. (250 g), acetaminophen (250 g), amantadine
hydrochloride (50 g), and chlorphenamine maleate (1.0 g).
The alcohol extracts of A. paniculata (Burm.f.) Nees were
obtained using 10 volumes of 85% ethanol for 2 h and 8
volumes for 2 h of 85% ethanol, I. tinctoria L., and T.
mongolicum Hand.-Mazz. Also, the drug residues of L. japonica
Thunb. were decocted with water twice with 7 and 5 solvent
volumes for 1.5 h each time. The above alcohol extracts and
aqueous extracts were mixed with acetaminophen, amantadine
hydrochloride, and chlorphenamine maleate; dried; crushed
into 20 mesh particles; dried again; and mixed with the
distillate of L. japonica Thunb. The total mixture was filled into
capsules and packed. A total of 1000 capsules were generated.
5.2. Cell Culture and Treatment. The human breast

cancer cell lines MCF-7, MDA-MB-231, and MDA-MB-468
were purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). All cells were maintained in
Dulbecco’s modified Eagle’s medium (DMEM; GIBCO, USA)
at 37 °C with 5% CO2 supplemented with 10% fetal bovine
serum (FBS; GIBCO, USA). According to a previous
description,24 pulverized JGCs (0.45 g) were accurately

weighed and dissolved in 2.25 mL of phosphate-buffered
saline (PBS), processed with ultrasonication for 30 min,
centrifuged at 3000 rpm for 15 min, filtered through a 0.22 μm
nylon membrane (Millipore, USA) at a final concentration of
0.2 g/mL, and diluted with the culture medium to different
concentrations (0.125, 0.25, 0.5, 1, or 2 mg/mL).
5.3. MTT Assay. A total of 6000 cells were seeded to 96-

well plates. After culturing overnight, the cells were treated
with PBS or various concentrations of JGCs (0, 0.125, 0.25,
0.5, 1, or 2 mg/mL) for the indicated time. Then, 10 μL of 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bro-
mide (MTT) solution (Sigma, USA) was added to each well
and incubated for 4 h at 37 °C. Afterward, the supernatant was
removed, and 160 μL of dimethyl sulfoxide (DMSO) was
added to each well. The absorbance value at 490 nm was
measured using a microplate reader (BioTek, Winooski, VT,
USA). The IC50 values were estimated by the relative survival
curve.
5.4. Colony Formation Assay. Cells were seeded in 6-

well plates (1000 cells/well). After treatment with the
indicated concentration of JGCs for 14 days, the colonies
were fixed with 4% paraformaldehyde (PFA; Sigma) for 30
min and stained with a 0.1% crystal violet solution (Sigma) for
20 min. Images were captured with a digital camera, and the
visible colonies were counted.
5.5. Flow Cytometry Analysis. Cells were seeded into 6-

well plates and exposed to JGCs for 24 and 48 h. For the cell
apoptosis assay, the cells were stained using an FITC Annexin
V/PI apoptosis detection kit (BD Biosciences, Franklin Lakes,
NJ, USA) in the dark for 15 min at room temperature and
analyzed using a FACSCalibur flow cytometer (BD Bio-
sciences). For the cell cycle assay, cells were fixed with 70%
ethanol at −20 °C overnight, stained with PI (BD Biosciences)
in the dark for 30 min at 37 °C, and then measured by flow
cytometry.
5.6. Hoechst 33258 Staining. Hoechst 33258 staining

was performed to observe the nuclear morphology of the

Figure 8. JGCs inhibited breast cancer tumorigenesis through the JAK2/STAT3 signaling pathway. (a) The top 20 biological processes were
enriched using Metascape. (b) The top 20 KEGG pathways were identified using Metascape. (c,d) Western blot analysis of p-JAK2, JAK2, p-
STAT3, and STAT3 in breast cancer cells after 24 h of treatment with JGCs. GAPDH was used as a loading control. Each experiment was repeated
at least in triplicate.
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apoptotic cells according to a previous description.53 Briefly,
after treatment with different concentrations of JGCs, cells
were stained with Hoechst 33258 (Beyotime, Jiangsu, China)
for 10 min. The stained nuclei were observed under a Leica
fluorescence microscope.
5.7. Western Blot. Treated cells were harvested and lysed

in radioimmunoprecipitation assay (RIPA) buffer with a
protease inhibitor cocktail. Proteins were separated by 8−
12% sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and transferred to polyvinylidene difluoride
(PVDF) membranes. The membranes were blocked with 5%
nonfat milk for 1 h at room temperature and then incubated
with primary antibodies against caspase-3, cleaved caspase-3,
caspase-8, cleaved caspase-8, caspase-9, cleaved caspase-9,
PARP, Bcl-2, Bax, CDK2, cyclin B1, c-Myc, CDC25C, p-
CDC25C, p21, JAK2, p-JAK2, STAT3, p-STAT3, and
GAPDH (CST, Danvers, MA, USA) at 4 °C. After overnight
incubation, the membranes were incubated with fluorescently
labeled secondary antibodies (CST) for 1 h at room
temperature. The protein levels were normalized to GAPDH.
5.8. UPLC-HR-MS/MS Analysis. Pulverized JGCs were

accurately weighed and dissolved. The JGC ingredients were
identified by UPLC-HR-MS/MS system analysis on an Agilent
1100 instrument and Thermo Ultimate 3000/Q EXACTIVE
FOCUS mass spectrometers (Thermo Finnigan, San Jose, CA,
USA). Chromatographic separation was performed on an ACE
Ultracore 2.5 SuperC18 column (2.1 mm × 100 mm). The
column temperature was 40 °C, the flow rate was 0.3 mL/min,
mobile phase A was a 0.1% aqueous solution of formic acid,
and mobile phase B was acetonitrile. The data were analyzed in
both positive and negative ion modes with a UHPLC-Q/
Exactive instrument with the following parameters: electro-
spray ionization (ESI) source; spray voltage: 3.0 kV (+)/2.5
kV (−); scanning model: full MS-ddms2; resolution: full MS
(70,000) and MS/MS (17,500); isolation width: 1.5 m/z;
intensity threshold: 1.6 × 105; and dynamic execution: 5 s. The
temperature of the capillary tube was 320 °C, followed by
heating to 350 °C. The flow rates of the sheath and auxiliary
gas were 35.0 and 10.0 arbitrary units, respectively. Then, the
collected raw data were imported into Compound Discoverer
3.0 software to perform qualitative analysis. The measured
spectra of the secondary fragments were matched with the
mzCloud network database and the Orbitrap Traditional
Chinese Medicine Library (OTCML).54 The UPLC-HR-MS/
MS analysis was conducted at the Analysis and Testing Center
of The Key Laboratory of Chemistry for Natural Products of
Guizhou Province and Chinese Academic of Sciences.
5.9. Screening the Active Ingredients of the JGCs. All

ingredients obtained from UPLC-HR-MS/MS were analyzed
using TCMSP,55 TCM Database@Taiwan,56 ETCM,57 and
SymMap.58 Ingredients with OB ≥ 10% and DL ≥ 0.10 were
defined as potential active ingredients for further analysis.59,60

5.10. Target Fishing of JGCs and Breast Cancer.
Targets of the potential active ingredients in the JGCs were
retrieved from STITCH,61 TCMSP,55 ETCM,57 SymMap,58

and DrugBank.62 Breast cancer-related targets were collected
from CTD,63 TDD,64 DISEASES,65 and MalaCards.66

5.11. Target Mapping and Network Construction.
Venn diagram analysis was employed to search for target genes
common for both the active ingredients and breast cancer. The
JGC-active ingredient−target network was constructed using
Cytoscape_3.6.0.67 GO and KEGG pathway enrichment
analyses were performed using Metascape.68 Then, the

enriched pathway terms with a P value less than 0.05 were
considered significant and selected for further analysis. A PPI
network was generated using STRING,69 and hub genes from
the network were identified using cytoHubba.70

5.12. Statistical Analysis. All data from at least three
independent experiments were analyzed using GraphPad Prism
software and are presented as the mean ± standard deviation.
The differences between groups were determined by a
Student’s t-test. P < 0.05 was considered significant.
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