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Abstract
The objective of this study was to quantify the number of segments that have contractile

activity and determine the propagation speed from uterine electrophysiological signals

recorded over the abdomen. The uterine magnetomyographic (MMG) signals were

recorded with a 151 channel SARA (SQUID Array for Reproductive Assessment) system

from 36 pregnant women between 37 and 40 weeks of gestational age. The MMG signals

were scored and segments were classified based on presence of uterine contractile burst

activity. The sensor space was then split into four quadrants and in each quadrant signal

strength at each sample was calculated using center-of-gravity (COG). To this end, the

cross-correlation analysis of the COG was performed to calculate the delay between pair-

wise combinations of quadrants. The relationship in propagation across the quadrants was

quantified and propagation speeds were calculated from the delays. MMG recordings were

successfully processed from 25 subjects and the average values of propagation speeds

ranged from 1.3–9.5 cm/s, which was within the physiological range. The propagation was

observed between both vertical and horizontal quadrants confirming multidirectional propa-

gation. After the multiple pairwise test (99% CI), significant differences in speeds can be

observed between certain vertical or horizontal combinations and the crossed pair combina-

tions. The number of segments containing contractile activity in any given quadrant pair

with a detectable delay was significantly higher in the lower abdominal pairwise combination

as compared to all others. The quadrant-based approach using MMG signals provided us

with high spatial-temporal information of the uterine contractile activity and will help us in the

future to optimize abdominal electromyographic (EMG) recordings that are practical in a

clinical setting.
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Introduction
Over past years there have been several attempts to better understand the electrophysiological
activity of uterine contractile mechanism both in animals and humans. The uterine contrac-
tions are a manifestation of complex electrophysiological process and have a direct impact on
the labor process and subsequent delivery of the fetus. The need to investigate the electrophysi-
ological mechanism of the uterus arises from the fact that there is a lack of truly effective
method of diagnosis and management of labor. Better insight into the mechanism can provide
more objective assessment of the labor process that can result in effective and timely therapeu-
tic interventions to alleviate issues surrounding both normal and preterm labor.

The uterine electromyogram (EMG) is one of the techniques that has been applied for over
fifty years using both internal electrodes and abdominal surface electrodes to track the changes
of the uterus going from a quiescent phase to high state of activation, increased propagation
and synchronization of electrical activity across the whole organ [1–15]. In early studies Steer
et al [1–2] and Sureau et al [13] have tried to map the topography of the electrical activity of
the uterus using multiple electrodes. Steer et al [1–2] placed two pairs of electrodes overlying
each fallopian tube junction and placed a third pair high in the mid-line of the fundus. They
reported that a weak activity picked by one of the two pairs of electrodes showed a small time
lag in early labor and the lag diminished as the labor progressed. During labor they observed
that the activity from all the three pairs of electrodes were almost simultaneous. These studies
show that the progress of labor is related to the propagation of electrical activity throughout
the uterus.

More recently, the importance of electrical propagation has been shown in work by Lam-
mers et al [15] where they measured electrical potential from the serosa of isolated pregnant
uteri using large number of silver electrodes (> 200) and recording from these simultaneously.
From published data in rats [16–17] and the work on the whole uterus in guinea pigs [15], it
has been shown that action potentials propagate in a specific manner along the uterine wall,
with rapid conduction in the longitudinal and slow conduction in the transversal direction.
Pacemakers were found to occur in a haphazard manner, never repeating at the same site but
ever changing their location and timing [15].

Uterine EMG studies on humans show that power spectrum analysis and propagation
speed are able to capture true labor more accurately than the traditionally used clinical tech-
niques [18–19]. All these studies were performed to investigate the EMG signal conduction
properties by analyzing the EMG bursts on the whole uterine muscle using multichannel
recordings. However, these studies, due to practical reasons, included a limited number of elec-
trodes in different configurations across the abdomen and there is some discrepancy in values
of speeds reported between these studies.

Over the past few years we have applied the magnetomyographic (MMG) [20–21] technol-
ogy to study uterine electrophysiological activity. MMG is a passive technique that has a high-
spatial temporal resolution with a large array of sensors. This technology uses biomagnetic
field measurement thus making it easier to study the uterine electrophysiology over the entire
maternal abdomen compared to placement of EMG electrodes. Uterine MMG [22–23]
research has demonstrated its potential in the effort to better understand the mechanism of
uterine contraction and we believe that the knowledge obtained from this high-spatial resolu-
tion can guide us to translate and interpret meaningful information obtained from the limited
sensor EMG recordings. Hence, in this work we recorded MMG signals related to the electro-
physiology of the uterus with high-spatial resolution and then split the MMG sensor space
over the abdomen into four quadrants or regions. The rationale for this quadrant based
approach is based on the fact that this will allow for more accurate comparison with recordings
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from EMG electrodes in the literature. A high dimension cross-correlation method with a cen-
ter of gravity (CoG) approach was applied to calculate the delay between pairs of quadrants.
Then, the propagation speed was calculated as the ratio of the distance between the CoGs and
delay [24]. We also characterized the propagation activity based on the percent of sensors
active in a quadrant and the connectivity between the quadrants.

Methods

Subjects and Ethics Statement
The study was approved by University of Arkansas for Medical Sciences (UAMS) Institution
Review Board and subjects were recruited after they were provided with details of the study in
order to obtain an informed signed consent. We enrolled 36 subjects who presented themselves
in triage unit of Labor and Delivery and were undergoing monitoring and evaluation of labor.

Recordings
The data were recorded with a sample rate of 250 Hz using 151 channels from the SARA
(SQUID Array for Reproductive Assessment) system installed at UAMS, Little Rock, USA. All
the subjects were asked to lean forward and sit comfortably with the sensor array covering
their pregnant abdomen. The duration of a recording was typically around 20 minutes. To
obtain the MMG signals, we down-sampled the original data to 32 Hz, then we applied a band-
pass filter (0.1–1 Hz) to attenuate the interfering maternal and fetal cardiac signals. A notch fil-
ter (0.25–0.35 Hz) was applied to suppress the maternal breathing which is a prominent signal
around the frequency of 0.33 Hz. Furthermore, we excluded segments with maternal move-
ment using the method described in Govindan et al [25]. The contractile patterns of the MMG
signals for each sensor were automatically detected using Wavelet and Hilbert transforms [26].

In order to study the spread of the activity, we divided the sensor space into 4 regions or
quadrants and created pairwise combinations (Q1 − Q2, Q1 − Q3, Q1 − Q4, Q2 − Q3, Q2 − Q4,
Q3 − Q4). In a next step, we used a 30 s sliding non-overlapping window and identified seg-
ments wherein contractile activity was present. We used only those windows for delay analysis
when more than 20% of the sensors in that quadrant showed a contractile pattern. These win-
dows were then labelled as active. In each active window, we computed the center of gravities
(CoG) for a given sample in each quadrant. In each quadrant, CoG quantifies the spatial loca-
tion of the MMG activity in a weighted average sense at a given time point. For a given
30-second period, we calculated delay between the CoG from two active windows using time
shifted cross-correlation analysis as described in Furdea et al [24]. The delays were tabulated
and tested for significance using a bootstrap approach [27]. Finally, the propagation speed was
calculated as the ratio of the distance between the average CoGs of the two quadrants to time
delay.

Fig 1 shows the flowchart of the algorithm that was applied for quantifying the activity
between quadrants and computing the propagation speed. The number of 30 s segments based
on the presence of uterine contractile activity to a given threshold in the algorithm for each
pairwise combination of quadrants was classified as follows:

• < 20% active segments: at least one but less than 20% of the sensors from both quadrants
contain contractile activity simultaneously in the pairwise combination: see the dashed oval
with item a) shown in Fig 1;

• > 20% active segments: more than 20% of the sensors from both quadrants contain contrac-
tile activity simultaneously in the pairwise combination: see the dashed oval with item b)
shown in Fig 1;
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The propagation speed was computed only for the delays that were outside the range of -0.5
to 0.5 s. The delays in this range of—0.5 to 0.5 s were classified to be segments with “instanta-
neous” delays in order to avoid obtaining unrealistically high or infinite values for speed. The
classification was defined as follows:

• Segments with delay: delay was detected after time shifted cross-correlation analysis, see the
dashed oval with item c) shown in Fig 1;

• Segments without delay: instantaneous activity if delay was detected in the interval of -0.5 to
0.5 s, see the dashed oval with item d) shown in Fig 1.

For analysis purposes, we used the absolute values in case of negative delay. For compari-
sons between quadrant pairs, we used Kruskal-Wallis analysis and Tukey’s least significant dif-
ference correction with 99% CI.

Results
Out of the 36 recordings from pregnant subjects, we successfully processed 25 data sets. Eleven
datasets were excluded for the following reasons: five had no detectable uterine MMG burst
activity during the recording period and six were excluded due to technical reasons (2: metallic
interference from the subject; 2: incomplete recordings due to maternal compliance; 2 error in
data transfer). The gestation age, cervical dilation prior to the study, time to delivery after
recording and total length of data analyzed after post-processing is shown in Table 1. The ges-
tation ages ranged from 37 weeks to a maximum of 40 weeks with 15 subjects delivering� 3
days from the SARA measurement.

Fig 1. Schematic representation of the propagation speed algorithm. The rectangular boxes describe the flow process and the dotted oval shapes
provide the information that was marked or recorded.

doi:10.1371/journal.pone.0140894.g001
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Fig 2 shows an example of MMG burst activity from a 38 GA weeks subject with cervical
dilation of 2 cm recorded one day prior to delivery. The plot is a representation of one channel
from each of the four quadrants with the duration of contractile burst activity marked in the
figure. In addition, the burst activity that fitted the connectivity criteria for each representative
channel in given quadrant is indicated with a horizontal bar. Fig 3a shows the connectivity
between quadrants for this recording whenever there was an observable delay in propagation
in a given contractile segment across a pair of quadrants. Each line represents a distinct propa-
gation with delay between the centers of activity of each quadrant. In this example majority of
the connections appears to link quadrants Q1, Q3 and Q4. The corresponding average values
of delays and propagation speeds are shown below the figure. Fig 3b shows the spread of dis-
tances between the CoGs for each quadrant pair versus delay for each connection between the
quadrants for which a propagation speed was calculated. It can be seen from the figure that the
across quadrant pairs had the higher values of distances as compared to the horizontal and ver-
tical pairs. The delay values ranged from 1–16 s and the distances of propagation ranged from
11–26 cm in this example.

The grand average and standard deviation of speed for each of the 25 subjects for all the
pairwise combinations are shown in Fig 4a. The average values ranged from 1.3–9.5 cm/s. Fig

Table 1. Characteristics of subjects analyzed in the study.

Subject
ID

GA (weeks/
days)

Duration of recording analyzed
(minutes)

Cervical dilation(cm) /effacement
%/station

Days to delivery after SARA
recording

202 38w0d 17 2-3/50/-3 1

203 37w3d 15 2/25/high 24

204 37w6d 18.5 3-4/50/-2 2

205 40w1d 14 3-4/50/-2 0

207 38w2d 17 1-2/25/-3 4

209 37w3d 18 3/50/-3 10

210 37w3d 18 4/*/* 0

211 37w2d 17 1-2/thick/high 12

212 39w0d 14 2-3/50/-2 1

213 37w4d 14 ft/thick/high 18

214 37w3d 13 ft/thick/high 2

218 38w0d 14 Cesarean/Section 0

221 37w0d 17 1/25/-3 5

222 38w0d 17 3/75/-2 1

224 39w0d 17.5 1-2/75/-3 1

225 37w6d 11.5 closed/50/-3 8

226 38w0d 15.5 2/50/-2 2

227 40w3d 17.5 3/50/-2 1

229 39w1d 15.5 3-4/75/0 1

230 38w5d 17.5 4/50/-2 0

232 37w6d 17.5 4/50/high 1

233 39w3d 16.5 2-3/25/-3 3

234 37w5d 18 3-4/90/-1 0

235 39w0d 10.5 3/50/-2 7

237 40w2d 16.5 ft/thick/high 6

Key- Dilation: ft—fingertip to 10; Effacement- thick to100%; Station: -3 to 3; >3—high;

*Data not available;

doi:10.1371/journal.pone.0140894.t001
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4b shows the average speed in each quadrant pair across subjects and the median of this quan-
tity as marked in the box plot has the following values in cm/s: 4.03 (Q1-Q2); 4.44 (Q1-Q3);
2.36 (Q1-Q4);3.30 (Q2-Q3); 4.06 (Q2-Q4); 2.36 (Q3-Q4). After the multiple pairwise test (99%
CI), we found no significant differences between horizontal (i.e., Q1 −Q2 and Q3 −Q4), vertical
(i.e., Q1 −Q4 and Q2 −Q3) or crossed pairwise combinations (i.e., Q1 − Q3 and Q2 − Q4).
However, significant differences can be observed between one of the vertical pair Q1 − Q4 with

Fig 2. An example of uterine MMG burst activity estimates detected from one sensor in each quadrant for Subject 202. Amarker is plotted over burst
activity of the MMG signal. The horizontal bars on top indicate the burst activity that fitted the connectivity criteria for the representative sensor shown.

doi:10.1371/journal.pone.0140894.g002
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the crossed pair combinations, Q1 − Q3 and Q2 − Q4. Also, one of the horizontal pairwise Q3
− Q4 combination is significantly different from both the crossed combinations.

The quantification of uterine activity across the abdomen in each quadrant is shown in Fig
5. The figure shows stacked bar plots of the number of segments with contractile activity in less
than (gray) and more than (dark) 20% of active sensors for each subject in different quadrant
pairs. For the case of>20% of active sensors (dark bars) we observed a higher number of seg-
ments with contractile activity in Q3 − Q4.

Fig 6a shows stacked bar plots of the number of segments with and without delay in propa-
gation for each subject for all pairwise combinations. Again in this case, we observed higher
number of segments with delay (light bars) in Q3 − Q4 combination. Fig 6b shows the number
of segments with delay across all subjects in each of the quadrants pairs. Based on the multiple
pairwise test (99% CI), we found significant difference in the number of segments with delay
between Q3 − Q4 and all other quadrant pairs except with Q1 − Q4 combination.

Fig 3. (a) Front view of the SARA sensors and partitioning in four quadrants. An example of connectivity (lines) between quadrants and COGs (green dots)
for Subject 202. (b) Plot showing the distance between COGs between quadrants and detected delay for each connection. (c) The table below provides the
average values of delay and propagation speeds between quadrants.

doi:10.1371/journal.pone.0140894.g003
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Discussion
Based on our quadrant approach we quantified the uterine electrophysiological activity across
the abdomen. Using this approach, we are able to determine the delay and propagation speeds

Fig 4. Propagation speed. (a)Grand average speed along with standard deviation across quadrants for each subject. (b) Average speed for each pairwise
combinations of quadrants across subjects. The solid horizontal line inside the box corresponds to median, the edges of the box are the 25th and 75th
percentiles, the whiskers extensions are the most extreme data points, and “+”markers correspond to the outliers. Kruskal-Wallis analysis and Tukey’s least
significant difference correction with 99% CI was applied.

doi:10.1371/journal.pone.0140894.g004
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such that it aids in providing a meaningful comparison to existing abdominal EMG studies.
Several estimates of the propagation speed have been reported in the human uterus using EMG
electrodes applied on the maternal abdomen with various configurations. Recently, Mikkelsen
et al [28] reported median speed values of 2.15 (0.66; 13.8) cm/s in the upper part and 1.53
(0.58; 6.7) cm/s in the lower part of the uterus (values in parenthesis represent lower and upper
10th percentiles) using three electrodes along the vertical median axis. The study concluded
that the propagation direction occurs both downward and upward, suggesting multidirectional
propagation. In a further study by the same group, using 16 electrodes with a 4×4 grid and an
inter-electrode distance of 3.5 cm, Lange et al [29] reported speeds of 2.18±0.68 cm/s. In this

Fig 5. Number of segments that contain less than andmore than 20% of active sensors with contractile activity for each pairwise combinations of
quadrants per subject.

doi:10.1371/journal.pone.0140894.g005
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Fig 6. Number of 30 s segments containing contractile activity observed with and without delay in propagation. (a) Number of segments with and
without delay for each pairwise combinations of quadrants per subject. (b) Number of segments with delay for each pairwise combinations of quadrants
across subjects. The solid horizontal line inside the box corresponds to median, the edges of the box are the 25th and 75th percentiles, the whiskers
extensions are the most extreme data points, and “+”markers correspond to the outliers. Kruskal-Wallis analysis and Tukey’s least significant difference
correction with 99% CI was applied.

doi:10.1371/journal.pone.0140894.g006
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study too, they did not observe, any single preferred direction of propagation. With our four-
quadrant approach the average values of speed in our MMG recordings fall within the same
range as reported by them with propagation observed between both vertical and horizontal
quadrants confirming their report on multidirectional propagation.

In an earlier study Rabotti et al [19] reported the direction and propagation speed of single
action potentials using 8×8 high-density electrode grid located in a small area of the abdominal
surface. They obtained values of 3.68 ± 3.24 and 3.76 ± 3.21 cm/s for vertical and horizontal
components of the amplitude of the speed, respectively, as well as they found no directional
pattern even within the same contraction. Although we used a 30 s windowing approach rather
than single action potential to find speed, we also did not observe any significant differences in
speeds in propagation in either horizontal or vertical pairs. The difference we observed in the
cross-pairs with reference to certain horizontal or vertical pairs is related to the fact that the
distances the propagation traversed in the cross-pair centers of activity (i.e. CoG’s) were gener-
ally much higher as is evident in the example shown in Fig 3a. As seen in the figure the values
related to the distances between the cross quadrants Q1-Q3 and Q2-Q4 are greater than 20 cm
as compared to the horizontal or the vertical ones. The fact that the cross-pairs have higher dis-
tances appear to be reasonable if we approximate the maternal abdomen (or the uterus) close
to a spherical shape then the distances between the CoG’s would reflect values measured along
the circumference of the sphere.

There have been only two studies that have attempted to evaluate propagation speed by cor-
relating it with labor characteristics and clinical outcomes. A study by Lau et al [30] reports
that the average amplitude of the speed was significantly higher for the labor group
(8.65 ± 1.90 cm/s) compared to the non-labor group (5.30 ± 1.47 cm/s). They also showed a
high variability of the propagation direction between groups. The other study by Lucovnik et al
[18] recorded EMG signals with pairs of electrodes arranged around the navel in four corners
with an inter-electrode distance of 2.5 cm. They reported speed values of 31.25 ± 14.91 cm/s
and 11.31 ± 2.89 cm/s for labor and non-labor term subjects, respectively and 52.56 ± 33.94
cm/s and 11.11 ± 5.13 cm/s for preterm subjects delivering within and after 7 days from mea-
surement, respectively. There is a significant discrepancy in speed values when comparing the
labor vs non-labor groups which were reported in both studies. Further, in general the speeds
reported in this last study appear to be higher than all the other EMG studies (described above)
and our current MMG study. A plausible explanation of this difference could be attributed to
the differences in electrode configuration [31] but all the other human EMG studies obtain val-
ues within the expected physiological range similar to the values reported by Lammers et al
[15,32] on the intact pregnant guinea pig uterus.

The speed values obtained in our study are based on high-resolution recording reduced to a
four-quadrant with weighted COG approach and can be considered to mimic a semi-adaptable
EMG configuration based on activation of given area constrained within each quadrant. Several
possible explanations have been proposed to explain the high speeds reported by Lucovnik et al
[18]. Rabboti et al [31] suggested that this discrepancy is due the combination of the recording
methods and the nature of the activity propagation. Also they state that the high speeds are a
result of only two channel recordings (four electrodes coupled in bipolar fashion). This expla-
nation may be reasonable based on our results since the four MMG quadrants can be thought
of as four electrodes recorded in a unipolar fashion (since magnetic field recordings are inde-
pendent of references). In addition, in a recent report using a mathematical model based on the
concept of “mechanotransduction”, Young et al [33] suggest that the high speed values could
be an artifact of recording. They argue that these values probably relate to mechanotransduc-
tion occurring nearly at the same time in the case where two regions are independently active
and with electrodes that are positioned relatively far apart yielding high speed values.
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Furthermore, they attribute low speeds values to the action potential propagation within a
region rather than across regions. In the case of Lange et al [29] and our measures with the
largest distances being across the diagonals (approx. 20 cm), we still observe relatively low
speed values in most cases. On the other hand the hypothesis proposed by Young et al [33]
could be relevant if we had not excluded delays that were between -0.5 to 0.5 s for calculating
the propagation speed. In such instances we may obtain higher speeds in cases even when the
distances are relatively large between centers of activity across the quadrant pairs coupled with
shorter delays below 0.5 s. Even with the current threshold settings there were two instances
where we observed relatively high speed up 40 cm/sec and a closer inspection showed that the
delays were close to the 0.5 s boundary with a distance of 20 cm between the centers of activity.
In order to further the understanding of the propagation mechanism, we plan to simultaneous
MMG and EMG recording with different electrode configurations. We believe that it is reason-
able to assume that for a relatively accurate characterization of speeds we would need at least
four channels of EMG activity and the optimal electrode separation distance will be guided by
the results of the uterine MMG recordings.

The other interesting finding in our study was related to the fact that the most of the seg-
ments with delay were observed in the lower horizontal quadrant pair (Q3-Q4). Although we
did not observe any difference in speeds between upper and lower horizontal pair, it implies
that a higher number segments from the lower horizontal quadrant contributed to calculation
of speed values in comparison to other combinations thus indicating higher instances of propa-
gation along the lower abdomen. This aspect can be further investigated in conjunction with
uterine modelling approaches that are currently being studied [34–35] since this observation
could be attributed to the differences in fiber orientation and the structure of the lower uterine
segment as compared to the fundal area.

There are several limitations that should be discussed regarding our study and MMG tech-
nology in general. One of the major limitations of the MMG technology is that any substance
that has magnetic properties can interfere with the recordings. We had to exclude two record-
ings because of interference related to metallic implants or materials that were present in the
body of the subject that (i.e. metal dental retainers) that could not be removed at the time of
study. Another limitation includes the use of a four quadrant approach over the sensor space
rather than splitting them in to smaller regions. The four quadrant approach was undertaken
after much debate on what would be the optimal division of units that can be considered taking
in to account the methodological limitations surrounding the MMG technique. It should to be
noted that unlike EMG, MMG recordings provide a global view of the activity under consider-
ation. Uterine EMG records the secondary currents that are incident at the surface of the elec-
trode whereas MMG records the magnetic field related to the primary current. Furthermore,
the magnetic field drops off as the inverse cube of distance and also the sensitivity of the “gradi-
ometer” sensor is dependent on its baseline. Thus, unlike an EMG electrode placed at a single
location with incident surface current, each MMG sensors will capture the field in the whole
general area thus recording contributions from overlapping sources although with varying
amplitude based on sensor distance from the source. Based on these methodological issues,
smaller units will be detrimental since a group of neighboring sensors will be recording the
same signal thus detecting almost no propagation. In order to avoid such an overlap we choose
the quadrant approach along with the center of gravity calculation to mimic more of a regional
propagation.

As mentioned before, the propagation speed was computed only for the delays that were
outside the range of -0.5 to 0.5 s. Although the threshold could have been set at a lower value,
we chose a conservative estimate in order to avoid infinite or unrealistically high calculated val-
ues of speed. Since this value can have an impact on the prognostic value of propagation speed,
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so we gave careful consideration to this aspect and did not discard the segments outside the
limit. Rather, we bundled them in the “segment without delay” group (Fig 6). Though the cut-
off will have some effect, we believe that the high speeds can still be accounted for since we
hypothesize that the number segments without delay would increase as one approaches labor
and this, in conjunction with speed values, can be a potential parameter for differentiation
between true labor and non-labor patients.

Finally, in regard to correlation of delivery outcomes, the data were recorded from patients
who presented themselves to the UAMS Labor and Delivery triage unit with a complaint of
uterine contractions. At the time of subject recruitment we were blinded to their true labor sta-
tus as this had not yet been clinically determined. There is therefore a large variation in the
number of days between the recording and delivery. This is especially true with the outliers
since these subjects were not close to active labor and were discharged after observation. The
idea of this study was to characterize uterine MMG activity in patients who present to Labor
and Delivery triage for assessment of labor and not necessarily to relate recordings to patient
outcomes. In order to correlate the outcomes of delivery to uterine activity, we would need to
perform long-duration monitoring which is not feasible with our current system set up. In this
study, we performed a one-time recording of uterine MMG signals in order to develop the
methodology for observing and validating the EMG speed measures. We are currently analyz-
ing another group of subjects who started the study at 37 weeks and have weekly recordings to
track the changes in speed and synchrony. We plan to correlate the outcomes in this group
since we will be able to serially quantify the electrophysiological changes as the uterus goes
through as it approaches labor.

In summary, our studies show that high-resolution MMG recordings can guide us in
improving the understanding of the uterine electrophysiological mechanism and simulta-
neously provide better insight in to optimizing uterine EMG recordings for improved diagnosis
of labor.

Author Contributions
Conceived and designed the experiments: HE CLL. Performed the experiments: HE CLL PM.
Analyzed the data: DE HE RBG. Contributed reagents/materials/analysis tools: DE AF RBG.
Wrote the paper: DE HE RBG PM.

References
1. Steer C M and Hertsch G J. Electrical Activity of the human uterus in labor—the electrohysterograph.

Am J of Obstet Gynecol. 1950; 59:25–40.

2. Steer CM. The electrical activity of the human uterus in normal and abnormal labor. Am J Obstet Gyne-
col. 1954; 68:867–90. PMID: 13188920

3. Hon E H G, Davis C D. Cutaneous and uterine electrical potentials in labor—an experiment. Obstet
Gynecol. 1958; 12:47–53, PMID: 13553190

4. Larks S, Assali N, Morton D, Selle W. Electrical Activity of Human Uterus in Labor. J Appl Physiol.
1957; 10:479–83. PMID: 13438805

5. Wolfs G and Rottinghuis H. Electrical and Mechanical Activity of the Human Uterus During Labor. Arch
Gynak. 1970; 208:373–385.

6. Wolfs G and Van Leeuwen M. Electromyographic observations on the human uterus during labor. Acta
Obstset Gynecol Scan Suppl.1979; 90:1.

7. Marque C and Duchene J. Human abdominal EHG processing for uterine contraction monitoring. In:
Wise D L ed. Applied biosensors. Stoneham: Butterworth, pp. 187–226, 1989.

8. Buhimschi C, Boyle MB, Garfield RE. Electrical Activity of the human uterus during pregnancy as
recorded from abdominal surface. Obstet Gynecol. 1997; 90:102–111. PMID: 9207823

9. Garfield RE. Chwalisz K. Shi L. Olson G. Saade GR. Instrumentation for the diagnosis of term and pre-
term labour -Review. J of Perinat Med. 1998; 26(6):413–36.

Propagation of Uterine Electrophysiological Signals

PLOS ONE | DOI:10.1371/journal.pone.0140894 October 27, 2015 13 / 15

http://www.ncbi.nlm.nih.gov/pubmed/13188920
http://www.ncbi.nlm.nih.gov/pubmed/13553190
http://www.ncbi.nlm.nih.gov/pubmed/13438805
http://www.ncbi.nlm.nih.gov/pubmed/9207823


10. Csapo A, Takeda H. Electrical activity of the parturient human uterus. Nature. 1963; 200:68.

11. Caspo A, Sauvage J. The evolution of uterine activity during pregnancy. Acta Obstset Gynecol Scand.
1968; 47:181.

12. Kuriyama H, Caspo A. A study of parturient uterus with the microelectrode technique. Endocrinology.
1961; 68:1010–25. PMID: 13755275

13. Sureau C, Chavinine J, Cannon M. L'electrophysilogic uterine. Bull. Fed Soc Gynec Obstet. 1965; 17-
(1):79–140.

14. Maner WL, Garfield RE, Maul H, Olson G, and Saade G. Predicting term and preterm delivery with
transabdominal uterine electromyography. Obstet Gynecol. 2003; 101(6):1254–1260. PMID:
12798533

15. LammersWJ, Mirghani H, Stephen B, Dhanasekaran S, Wahab A, Al Sultan MA, et al. Patterns of elec-
trical propagation in the intact pregnant guinea pig uterus. American journal of physiology. Regulatory,
integrative and comparative physiology. 2008; 294(3):R919–928. PMID: 18046017

16. Buhimschi C, Boyle MB, Saade GR, Garfield RE. Uterine activity during pregnancy and labor assessed
by simultaneous recordings from the myometrium and abdominal surface in the rat. Am J of Obstet
Gynecol. 1998; 178(4):811–822.

17. LammersWJEP, Stephen B, Hamid R, Harron D. The effects of oxytocin on the pattern of electrical
propagation in the isolated pregnant uterus of the rat. Pflügers Arch (Eur J Physiology). 1999; 437;
363–370.

18. Lucovnik M, Maner WM, Chambliss LR, Blumrick R, Balducci J, Novak-Antolic Z, et al. Noninvasive
uterine electromyography for prediction of preterm delivery. Am J of Obstet Gynecol. 2011; 204(3):228.
e1–228.e10.

19. Rabotti C, Mischi M, Oei SG, Bergmans JWM. Noninvasive estimation of the electrohysterographic
action-potential conduction velocity. IEEE Trans Biomed Eng. 2010; 57(9):2178–2187. doi: 10.1109/
TBME.2010.2049111 PMID: 20460202

20. Eswaran H, Preissl H, Wilson JD, Murphy P, Lowery CL. Prediction of labor in term and preterm preg-
nancies using non-invasive magnetomyographic recordings of uterine contractions. Am J of Obstet
Gynecol. 2004; 190(6):1598–1603.

21. Eswaran H, Preissl H, Wilson JD, Murphy P, Robinson SE, Lowery CL. First magnetomyographic
recordings of uterine activity with spatial-temporal information with a 151-channel sensor array. Am J
Obstet Gynecol. 2002; 187(1):145–151. PMID: 12114902

22. Eswaran H, Govindan RB, Furdea A, Murphy P, Lowery CL, Preissl HT. Extraction, quantification and
characterization of uterine magnetomyographic activity—a proof of concept case study. Eur J Obstet
Gynecol Reprod Biol. 2009; 144 Suppl 1:S96–100. doi: 10.1016/j.ejogrb.2009.02.023 PMID: 19303190

23. Govindan RB, Siegel E, Mckelvey S, Murphy P, Lowery CL, Eswaran H. Tracking the Changes in Syn-
chrony of the Electrophysiological Activity as the Uterus Approaches Labor Using Magnetomyographic
Technique. Reprod Sci. 2015 May; 22(5):595–601 doi: 10.1177/1933719114556484 PMID: 25352329

24. Furdea A, Preissl H, Lowery CL, Eswaran H, Govindan RB. Conduction velocity of the uterine contrac-
tion in serial magnetomyogram (MMG) data: Event based simulation and validation. In 2011 Conf Proc
IEEE Eng Med Biol Soc. 2011;6025–6028. doi: 10.1109/IEMBS.2011.6091489 PMID: 22255713

25. Govindan RB, Vairavan S, Ulusar UD, Wilson JD, Mckelvey SS, Preissl H, et al. A novel approach to
track fetal movement using multi-sensor magnetocardiographic recordings. Ann Biomed Eng. 2011;
39(3):964–972. doi: 10.1007/s10439-010-0231-z PMID: 21140290

26. Furdea A, Eswaran H, Wilson JD, Preissl H, Lowery CL, Govindan RB. Magneto- myographic recording
and identification of uterine contractions using Hilbert-wavelet transforms. Physiol Meas. 2009; 30-
(10):1051. doi: 10.1088/0967-3334/30/10/006 PMID: 19738317

27. Govindan RB, Wilson JD, Preissl H, Murphy P, Lowery CL, Eswaran H. An objective assessment of
fetal and neonatal auditory evoked responses. Neuroimage. 2008 43(3):521–527. doi: 10.1016/j.
neuroimage.2008.07.054 PMID: 18760370

28. Mikkelsen E, Johansen P, Fuglsang-Frederiksen A, Uldbjerg N. Electrohysterography of labor contrac-
tions: propagation velocity and direction. Acta Obstetricia et Gynecologica Scandinavica 2013; 92-
(9):1070–1078. doi: 10.1111/aogs.12190 PMID: 23730731

29. Lange L, Vaeggemose A, Kidmose P, Mikkelsen E, Uldbjerg N, Johansen P. Velocity and directionality
of the electrohysterographic signal propagation. PloS One. 2014; 9(1):e86775. doi: 10.1371/journal.
pone.0086775 PMID: 24466235

30. de Lau H, Rabotti C, Bijlo R, Rooijakkers MJ, Mischi M, Oei SG. Automated conduction velocity analy-
sis in the electrohysterogram for prediction of imminent delivery: a preliminary study. Comput Math
Methods Med. 2013; 627976. doi: 10.1155/2013/627976 PMID: 24489602

Propagation of Uterine Electrophysiological Signals

PLOS ONE | DOI:10.1371/journal.pone.0140894 October 27, 2015 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/13755275
http://www.ncbi.nlm.nih.gov/pubmed/12798533
http://www.ncbi.nlm.nih.gov/pubmed/18046017
http://dx.doi.org/10.1109/TBME.2010.2049111
http://dx.doi.org/10.1109/TBME.2010.2049111
http://www.ncbi.nlm.nih.gov/pubmed/20460202
http://www.ncbi.nlm.nih.gov/pubmed/12114902
http://dx.doi.org/10.1016/j.ejogrb.2009.02.023
http://www.ncbi.nlm.nih.gov/pubmed/19303190
http://dx.doi.org/10.1177/1933719114556484
http://www.ncbi.nlm.nih.gov/pubmed/25352329
http://dx.doi.org/10.1109/IEMBS.2011.6091489
http://www.ncbi.nlm.nih.gov/pubmed/22255713
http://dx.doi.org/10.1007/s10439-010-0231-z
http://www.ncbi.nlm.nih.gov/pubmed/21140290
http://dx.doi.org/10.1088/0967-3334/30/10/006
http://www.ncbi.nlm.nih.gov/pubmed/19738317
http://dx.doi.org/10.1016/j.neuroimage.2008.07.054
http://dx.doi.org/10.1016/j.neuroimage.2008.07.054
http://www.ncbi.nlm.nih.gov/pubmed/18760370
http://dx.doi.org/10.1111/aogs.12190
http://www.ncbi.nlm.nih.gov/pubmed/23730731
http://dx.doi.org/10.1371/journal.pone.0086775
http://dx.doi.org/10.1371/journal.pone.0086775
http://www.ncbi.nlm.nih.gov/pubmed/24466235
http://dx.doi.org/10.1155/2013/627976
http://www.ncbi.nlm.nih.gov/pubmed/24489602


31. Rabotti C, Oei SG, van 't Hooft J, Mischi M. Electrohysterographic propagation velocity for preterm
delivery prediction. Am J Obstet Gynecol. 2011; 205: e9–10 author reply.

32. LammersWJ. The electrical activities of the uterus during pregnancy. Reprod Sci. 2013; 20(2):182–-
189. doi: 10.1177/1933719112446082 PMID: 22649122

33. Young RC, Barendse P. Linking myometrial physiology to intrauterine pressure; how tissue-level con-
tractions create uterine contractions of labor. PLoS Comput Biol. 2014; 16:10(10: ).

34. Sheldon RE, Baghdadi M, McCloskey C, Blanks AM, Shmygol A, van den Berg HA. Spatial heteroge-
neity enhances and modulates excitability in a mathematical model of the myometrium. J R Soc Inter-
face.2013; 10(86); 20130458. doi: 10.1098/rsif.2013.0458 PMID: 23843249

35. La Rosa PS, Eswaran H, Preissl H, Nehorai A. Multiscale forward electromagnetic model of uterine
contractions during pregnancy. BMCMed Phys. 2012; 12:4. doi: 10.1186/1756-6649-12-4 PMID:
23126570

Propagation of Uterine Electrophysiological Signals

PLOS ONE | DOI:10.1371/journal.pone.0140894 October 27, 2015 15 / 15

http://dx.doi.org/10.1177/1933719112446082
http://www.ncbi.nlm.nih.gov/pubmed/22649122
http://dx.doi.org/10.1098/rsif.2013.0458
http://www.ncbi.nlm.nih.gov/pubmed/23843249
http://dx.doi.org/10.1186/1756-6649-12-4
http://www.ncbi.nlm.nih.gov/pubmed/23126570

