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Abstract

Antigen-specific CD8+ T cells play a key role in the host’s antiviral response. T cells recog-

nize viral epitopes via the T cell receptor (TCR), which contains the complementarity-deter-

mining region-3 (CDR3), comprising the variable, diversity and joining regions of the TCRβ
gene. During chronic simian immunodeficiency virus (SIV) infection of Asian macaque non-

human primates, tissue-specific clonotypes are identifiable among SIV-specific CD8+ T

cells. Here, we sought to determine level of antigen exposure responsible for the tissue-spe-

cific clonotypic structure. We examined whether the priming event and/or chronic antigen

exposure is response for tissue-specific TCR repertoires. We evaluated the TCR repertoire

of SIV-specific CD8+ T cells after acute antigen exposure following inoculation with a SIV

DNA vaccine, longitudinally during the acute and chronic phases of SIV, and after adminis-

tration of antiretrovirals (ARVs). Finally, we assessed the TCR repertoire of cytomegalovirus

(CMV)-specific CD8+ T cells to establish if TCR tissue-specificity is shared among viruses

that chronically replicate. TCR sequences unique to anatomical sites were identified after

acute antigen exposure via vaccination and upon acute SIV infection. Tissue-specific clones

also persisted into chronic infection and the clonotypic structure continued to evolve after

ARV administration. Finally, tissue-specific clones were also observed in CMV-specific

CD8+ T cells. Together, these data suggest that acute antigen priming is sufficient to induce

tissue-specific clones and that this clonal hierarchy can persist when antigen loads are natu-

rally or therapeutically reduced, providing mechanistic insight into tissue-residency.

Author summary

During viral infection, CD8+ T cells that bind a specific viral particle through their T cell

receptor (TCR) can help control viral replication. Infection with simian
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immunodeficiency virus (SIV) in nonhuman primates is a commonly used animal model

of HIV infection. Here we assess the TCR sequences of CD8+ T cells specific for the SIV

gag gene during vaccination with an experimental SIV vaccine and throughout SIV infec-

tion, including during treatment with antiretroviral drugs. We identified unique TCR

sequences in specific tissues, which were not identified in the blood or in other tissues,

both in response to vaccination and throughout SIV infection with and without antiretro-

viral treatment. We also observed tissue-specific TCR sequences in CD8+ T cells specific

for Cytomegalovius, another virus that causes a chronic infection in humans. Together,

our findings identify the conditions required to form a tissue-specific TCR repertoire.

Introduction

Virus-specific CD8+ T cells are critical for control of SIV and HIV viral replication [1–3].

Upon HIV infection, antigen-specific CD8+ T cells mobilize in the blood by approximately 20

days after infection [4]. Similarly, SIV infection in nonhuman primates induces antigen-spe-

cific CD8+ T cells in the blood and gut by approximately 14 days post infection [5]. While SIV-

specific CD8+ T cells contribute to reduction of viral replication throughout viral infection

[3,6], virus-specific CD8+ T cells seem to preferentially exhibit cytolytic capabilities in early

acute infection [7] and non-cytolytic function during chronic infection [3].

SIV-specific CD8+ T cells recognize viral antigens via a hypervariable complementarity-

determining region-3 (CDR3) on the T cell receptor (TCR). Together, the CDR3 sequences of

every T cell comprises the TCR repertoire. Utilizing a rhesus macaque (Macaca mulatta) SIV-

infection model, it was determined that a diverse TCR repertoire among SIV-specific CD8+ T

cells is associated with reduced viral escape, whereas more conserved TCR repertoires are asso-

ciated with impaired restriction of viral replication, with viral escape mutations more fre-

quently emerging [8]. Some TCR clonotypes of CD8+ T cells with the same epitope specificity

can be shared by multiple individuals—termed public clonotypes—and their frequency tends

to be associated with better control of SIV replication in vivo [8]. More recently, we have

shown that within an individual, public clonotypes among SIV-specific CD8+ T cells are more

prone to be present in multiple anatomical sites compared to private clonotypes [9].

However, the degree to which tissue-specific clonotypic hierarchies is specific to SIV is

unclear. Cytomegalovirus (CMV) is a common herpesvirus, where approximately 45–100% of

the world’s adult population exhibits CMV seropositivity [10]. Similar to other herpesviruses,

CMV establishes a chronic infection in the host, leading to periods of latent infection and reac-

tivation [11]. CMV-specific CD8+ T cells rapidly increase upon acute CMV infection and have

been shown to increase over time. CD8+ T cells specific for CMV immunodominant epitopes,

such as immediate early 1 (IE1), exhibit cytotoxic and polyfunctional phenotypes and posi-

tively correlate with serum CMV-specific IgG levels [12]. Analyses of the TCR repertoire of

CMV-specific CD8+ T cells present in peripheral blood have been conducted in humans and

animal models, but most analyses are conducted ex vivo under peptide stimulation [13, 14].

Therefore, the tissue specificity of the CMV-specific CD8+ T cell repertoire is unknown in nat-

ural CMV infection.

Active SIV and CMV infections exhibit chronic antigenic stimulation in vivo, in contrast to

responses against vaccination or to viruses which only acutely replicate. Several experimental

vaccines have been shown to induce SIV-specific CD8+ T cells at mucosal sites in addition to

the periphery [15–17], but whether the TCR repertoire of these antigen-specific CD8+ T cells

is similar or distinct to those induced by chronic antigen stimulation is unknown.
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Here, we sought to determine the kinetics underlying the tissue-specific distribution of

TCR repertoires of antigen-specific CD8+ T cells. Using multiple experimental models, we

establish that both the initial antigen priming event and chronic antigen exposure are individ-

ually sufficient to induce tissue-specific TCR signatures and that clonotypes can continue to

evolve in SIV-infected animals treated with antiretrovirals (ARVs). These data provide mecha-

nistic insight into tissue-residency.

Results

SIV-specific CD8+ T cells exhibit tissue-specific TCR repertoires upon

acute infection, which evolve throughout chronic infection

SIV-infected rhesus macaques expressing the MHC-I allele Mamu A�01 commonly present

the immunodominant SIV-gag epitope CM9 (CTPYDINQM) [18,19]. To characterize the

CM9-specific CD8+ T cell response, we utilized a fluorochrome-conjugated MHC-I pentamer

containing the CM9 sequence to identify and sort CM9-specific CD8+ T cells. In animals

intrarectally challenged with SIVmac239X or infected i.v with SIVmac239, CM9-specific

CD8+ T cell frequencies were similar from acute to chronic infection and did not dramatically

decrease after treatment with ARVs in the peripheral blood mononuclear cells (PBMCs),

lymph nodes (LNs) or bronchoalveolar lavage (BAL) (S1A Fig).

To establish how or if the clonotypic hierarchy of CM9-specific CD8+ T cells evolves

throughout infection, we assessed the TCRβ sequences in animals longitudinally sampled

through acute and chronic infection and after several months of ARV treatment. During acute

infection, public clonotypes (shared between multiple animals) and shared clones (shared

between multiple anatomical sites within the same animal at the same time point) were identi-

fied in four animals (Fig 1A–1G). Clonotypes unique to one tissue (private clonotypes) were

also present in acute infection, suggesting antigen priming was sufficient for induction of tis-

sue-specific CM9-specific CD8+ T cells. TCRβ sequences assessed after the animals transi-

tioned into chronic infection similarly included private, shared, and public clones, as did those

from animals treated with ARVs, indicating that reduced antigen presence associated with

ARV treatment does not substantially alter the tissue-specificity of CM9-specific CD8+ T cells.

These data suggest that clonotypes in a single anatomical site can be initiated early after anti-

genic-exposure, can persist over time, and can continue to evolve as antigenic-exposure

continues.

The diversity of the TCR can fluctuate throughout infection and ARV treatment can induce

a narrowing of the TCR repertoire [20]. Comparing the number of unique clonotypes and

using two measures of diversity, the Shannon-Weiner index and the d50 index, we did not

observe any significant differences in TCR repertoire diversity of CM9-specific CD8+ T cells,

with the exception of a significantly higher normalized Shannon-Weiner index in BAL at the

acute compared to the chronic timepoint (Fig 2A–2C). Singular V and J segments from

CM9-specific CD8+ T cells across all time points were plotted in heat maps and showed sub-

stantial diversity at each time point, with minimal clustering by time point (S1B and S1C Fig).

We utilized the Jaccard similarity index to identify how similar or distinct the clonotypic rep-

ertoires of different anatomical sites are to each other. We observed no significant differences

between the Jaccard similarity indexes for the comparisons at any time point (Fig 2D), suggest-

ing that unique and shared clonotypes are prevalent in equal amounts throughout the course

of infection and after ARV treatment. Multidimensional scaling (MDS) plots of all samples

were used to evaluate if any clustering was present regarding the different time points and ana-

tomical sites. While there was minimal clustering by animal, no clear cluster patterns were

observed regarding either anatomical site or time point (Fig 2E).
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Fig 1. SIV-specific CD8+ T cell repertoire fluctuates throughout infection and during ARV treatment. PBMCs, LN biopsies and BAL were sampled from 7

different SIVmac239X or SIVmac239-infected rhesus macaques during acute infection, chronic infection and after 2–7 months of ARV treatment. (A-G).

Clonotypes consisting of more than 1% of the TCR repertoire were represented as percentage of the TCR repertoire during acute and chronic infection and with

ARV treatment. “Public” clonotypes are the same clonotype (same V and J segments and same CDR3 amino acid sequence) found in multiple animals in this

study, and matching clonotypes previously identified in the VDJdb database. “Shared” clonotypes were those found only in one animal but observed in multiple

tissues. “Private” clonotypes were identified in a single anatomical site in a single animal. n = 7 animals. Total cell and TCR sequences numbers are listed above

each column.

https://doi.org/10.1371/journal.ppat.1010611.g001
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Fig 2. SIV-specific CD8+ T cells exhibit similar TCR diversity and similarity throughout SIV infection. PBMCs, LN biopsies and BAL were

sampled from SIVmac239X or SIVmac239-infected rhesus macaques during acute infection, chronic infection and after 2–6 months of ARV

treatment. (A) The number of unique clonotypes in multiple anatomical sites at all timepoints. (B) The normalized Shannon-Weiner diversity

index for the TCR repertoires of all tissues throughout SIV infection. (C) The d50 diversity index for the TCR repertoires of all tissues

throughout SIV infection. (D) The Jaccard similarity index for comparisons between each tissue’s TCR repertoire. In (A-D), data is represented

by mean and SD, with each individual animal represented by a unique symbol. (E) MDS plot of the TCR repertoires of each animal, tissue and

timepoint throughout infection. Two-way ANOVA was used to determine statistical significance for panels A to D. n = 7 animals.

https://doi.org/10.1371/journal.ppat.1010611.g002
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SIV-gag DNA vaccine induces tissue-specific CM9-specific CD8+ T cells

with public clonotypes

As tissue-specific clonotypes were induced upon acute infection, we sought to determine if

controlled and limited antigen exposure, induced by a SIV-gag vaccine, would be sufficient to

induce a similar clonal hierarchy of CM9-specific CD8+ T cells. Rhesus macaques were admin-

istered five doses of 1mg plasmid DNA construct containing the SIV-gag gene, which has been

previously shown to induce CM9-specific CD8+ T cells in peripheral blood and peripheral LNs

of rhesus macaques [16]. Ten days after the final vaccine dose, CM9-specific CD8+ T cell fre-

quencies were significantly higher in the BAL and not in other anatomical sites (Fig 3A), sug-

gesting the SIV-gag DNA vaccine regimen was insufficient to induce long-lasting

CM9-specific CD8+ T cells across multiple tissues.

Assessment of the TCR repertoire of vaccine-induced CM9-specific CD8+ T cells from

multiple anatomical sites revealed public and shared clonotypes, in addition to clonotypes

unique to a single tissue (Fig 3B). These data demonstrate that the same clonotypic hierarchies

we observe across multiple anatomical sites after SIV infection were present with the use of

the DNA vaccine. Diversity and similarity indexes revealed similar diversity (Fig 3C and 3D)

and tissue-specificity (Fig 3E) for each anatomical site. While individual V and J segment

usage was not associated with any particular anatomical site (S2A and S2B Fig), some

minor clustering by individual animal was observed by MDS analysis (S2C Fig). Together,

these data imply that limited antigenic exposure is sufficient to induce similarly diverse and

unique TCR repertoires in multiple anatomical sites, similar to what was observed upon SIV

infection.

Chronic antigen exposure induces tissue-specific clonotypes in a virus-

independent manner

To determine whether the existence of tissue-residency among virus-specific CD8+ T cells was

unique to SIV, we conducted similar studies with cytomegalovirus (CMV)-infected animals

and analyzed CMV-specific CD8+ T cell clonal hierarchy across multiple tissues. All the ana-

tomical sites previously assessed in SIV infected animals were sampled, as was the liver, as

CMV specific CD8+ T cells are commonly found in the liver [21]. CMV induces a chronic

infection in the host and can lead to disease in immunocompromised individuals [22,23]. To

assess the TCR repertoire of CMV-specific CD8+ T cells, we sampled rhesus macaques express-

ing the Mamu A�02 allele and who had acquired CMV infection naturally. CMV-specific

CD8+ T cells were identified by MHC-I tetramers containing the Mamu A�02 restricted

immunodominant epitopes AN10 (TTRSLEYKN) and VY9 (VTTLGMALY) [24]. There were

no statistically significant differences in the frequencies of AN10- or VY9-specific CD8+ T cells

between different anatomical sites (Fig 4A and 4B) in the animals we studied, though they

tended to be lower in LNs compared to other anatomical sites. The TCR repertoire of

AN10-specific CD8+ T cells featured clonotypes that were shared between multiple tissues and

a small number of tissue-specific clonotypes (Fig 4C). VY9-specific CD8+ T cells had multiple

tissue-specific clonotypes and both shared and public clonotypes (Fig 4D). Further analysis of

the TCR repertoire of VY9-specific CD8+ T cells showed no clear groupings of specific V and J

segment usage by tissue (S3A and S3B Fig). Similarly, VY9-specific CD8+ TCR repertoire

showed similar diversity between different tissues as determined by Shannon diversity and

d50 indexes (Fig 4E and 4F). The low Jaccard similarity indexes indicate similarly unique rep-

ertoires between different anatomical sites (Fig 4G).
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Fig 3. SIV-gag DNA vaccine induced a diverse TCR repertoire and tissue-specific clonotypes. PBMCs, BAL, LN, and jejunum

(jej) biopsies were sampled from rhesus macaques who had been administered with SIV-gag DNA vaccine. (A) CM9-specific CD8+

T cells in all tissues pre- and post- vaccine administration as a percentage of total CD8+ cells. (B) Clonotypes consisting of more

than 1% of the TCR repertoire are represented as percentage of the TCR repertoire. “Public” clonotypes are the same clonotype

(same V and J segments and same CDR3 amino acid sequence) found in multiple animals in this study, and matching clonotypes

previously identified in the VDJdb database. “Shared” clonotypes were those found only in one animal but observed in multiple

tissues. “Private” clonotypes were identified in a single anatomical site in a single animal. Total cell and TCR sequences numbers
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Similar clonotypic diversity and similarity among tissues between SIV-

specific and CMV-specific CD8+ T cells

The Shannon diversity and d50 indexes of the clonotypes of chronically infected SIV- and

CMV-specific CD8+ T cells were compared to evaluate virus-specific effects on their respective

diversities. We found no significant differences in measures of diversity between these virus-

specific CD8+ T cells in any anatomical site (Fig 5A and 5B). Jaccard similarity indexes of tis-

sue comparisons, as a proxy measure of tissue specificity, were compared between CMV- and

chronically infected SIV-specific CD8+ T cells and, similarly, showed no significant differences

(Fig 5C). These comparisons suggest two pathogens that induce a chronic infection in the host

can establish similarly diverse and tissue-specific clonotypic hierarchies.

Virus-specific CD8+ T cells do not uniformly exhibit a tissue-resident

phenotype

Tissue-resident memory T cells (TRM) are frequently defined based upon expression patterns

of CD69 and CD103 [25]. Presence of antigen in non-lymphoid tissues mediates the upregula-

tion of CD69 and rapid formation of TRMs following multiple antigen stimulations [26, 27].

These cells are then retained in the tissues via release of local autocrine signals, such as trans-

forming growth factor-β (TGFβ), where competition for these signals promotes diversity in

TRM functionality [28,29]. In HIV infection, T cells expressing residency phenotypes domi-

nate HIV-specific CD8+ T cells in lymphoid tissues and are present in high numbers in HIV

elite controllers, suggesting they contribute to viral control [30]. Given the evidence of tissue-

specific clonotypes of SIV- and CMV-specific CD8+ T cells, we sought to determine the pro-

portion of antigen-specific CD8+ T cells that were expressing these TRM markers in PBMC,

LNs and BAL of the animals we studied. Virus-specific CD8+ T cells expressing both CD69

and CD103 were infrequent in PBMC and LNs of all animals, irrespective of whether SIV- or

CMV-specific CD8+ T cells were examined (Fig 6A–6E). Antigen-specific CD8+ T cells (either

CMV- or SIV-specific) in the BAL were more frequently CD69+CD103+ (Fig 6A–6E), but

VY9-specific CD8+ T cells in the BAL had a significantly higher percentage of CD69+CD103+

T cells compared to CM9-specific CD8+ T cells in after SIV gag DNA vaccination and chronic

SIV infection with ARV treatment (Fig 6F). CD69 expression, without CD103 expression, was

more frequent among antigen-specific CD8+ T cells in all anatomical sites (Fig 6).

Discussion

Here we have studied the phenotypes and clonotypic hierarchies of CMV- and SIV-specific

CD8+ T cells across multiple anatomical sites in rhesus macaques that were either virus-

infected or vaccinated. In all cases we found evidence of tissue-specific CD8+ T cell clonotypes

and the induction of public and shared TCR clonotypes. These data help explain the phenome-

non of CD8+ T cell tissue-residency and demonstrate that either acute or chronic antigen

exposure is required for tissue-resident CD8+ T cell maintenance in vivo.

Tissue-specific clonotypes have been identified in chronic SIV infection [9] and clonotypic

discrepancies between the peripheral blood and other anatomical sites, such as lymphoid tis-

sue, have been observed in chronic HIV infection [30]. During acute infection, clonal

are listed above each column. (C) The normalized Shannon-Weiner diversity index for the TCR repertoires of all tissues. (D) The

d50 diversity index for the TCR repertoires of all tissues. (E) The Jaccard similarity index for comparisons between each tissue’s

TCR repertoire. In (C) to (E), data are presented as mean, with individual data points shown. Two-way ANOVA (A) and one-way

ANOVA (C-E) were used to determine statistical significance. n = 5 animals.

https://doi.org/10.1371/journal.ppat.1010611.g003
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Fig 4. CMV-specific CD8+ T cells exhibit public, shared and tissue-specific clonotypes upon natural infection. PBMCs, LN, liver

biopsies, and BAL were sampled from rhesus macaques who had been naturally infected with CMV. (A) The number of

AN10-specific CD8+ T cells in multiple anatomical sites as a percentage of total CD8+ cells. (B) The number of VY9-specific CD8+ T

cells in multiple anatomical sites as a percentage of total CD8+ cells. (C) Clonotypes consisting of more than 1% of the TCR repertoire

of AN10-specific CD8+ T cells are represented as a percentage of the total TCR repertoire. “Public” clonotypes are the same clonotype

(same V and J segments and same CDR3 amino acid sequence) found in multiple animals in this study, and matching clonotypes

previously identified in the VDJdb database. “Shared” clonotypes were those found only in one animal but observed in multiple

tissues. “Private” clonotypes were identified in a single anatomical site in a single animal. Total cell and TCR sequences numbers are
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expansion of CD8+ T cells typically peaks at 4 weeks post infection [31], occurring during a

period of reduced cytotoxicity, subsequent to initial increases in SIV-specific CD8+ T cells

numbers [7]. The presence of public clonotypes in acute infection is suspected to reflect their

large numbers in the naïve pool, due to the likely generation of these public clonotypes by

listed above each column. (D) Clonotypes consisting of more than 1% of the TCR repertoire of VY9-specific CD8+ T cells are

represented as a percentage of the total TCR repertoire. (E) The normalized Shannon-Weiner diversity index for the TCR repertoires

of VY9-specific CD8+ T cells. (F) The d50 diversity index for the TCR repertoires of VY9-specific CD8+ T cells. (G) The Jaccard

similarity index for comparisons between each tissue’s VY9-specific CD8+ T cell repertoire. In (A), (B) and (E)-(G), data are

presented as mean, with individual data points. One-way ANOVA or mixed effects analysis was used to determine statistical

significance. n = 2 to 5 animals.

https://doi.org/10.1371/journal.ppat.1010611.g004

Fig 5. The TCR repertoires of SIV- and CMV- specific CD8+ T cells exhibit similar diversity and tissue similarity. PBMCs, LN and BAL

were sampled from rhesus macaques who were chronically infected with SIVmac239X (without ARV treatment) or naturally infected with

CMV. (A) The normalized Shannon-Weiner diversity index of the TCR repertoires. (B) The d50 diversity index of the TCR repertoires. (C)

The Jaccard similarity index for comparisons between each tissue’s TCR repertoire. Data are presented as mean, with individual data points.

One way ANOVA was used to determine statistical significance. n = 3 to 6 animals.

https://doi.org/10.1371/journal.ppat.1010611.g005
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Fig 6. Expression patterns of CD69 and CD103 among virus-specific CD8+ T cells. The expression of CD69 and

CD103 on antigen specific CD8+ T cells were assessed by flow cytometry across all experimental groups. (A-E) Average

percentage of CD69-CD103-, CD69+CD103-, CD69-CD103+ and CD69+CD103+ antigen-specific (CM9) CD8+ T cells

after exposure to SIV-gag DNA vaccine (A); during acute (B), chronic (C), and chronic SIVmac239X or SIVmac239

infection with ARV treatment (D); or during CMV infection (E). (F) The number of CD69+CD103+ antigen-specific

CD8+ T cells during all experimental conditions. In (F) data are presented as mean with SD. Two-way ANOVA was

used to determine statistical significance in (F). n = 3 to 6 animals.

https://doi.org/10.1371/journal.ppat.1010611.g006
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convergent recombination in which the same amino acid can be encoded by multiple nucleo-

tide sequences [32]. The presence of tissue-specific clonotypes during acute antigen exposure

or acute infection suggest minimal trafficking between anatomical sites after priming. As these

observations featured TCRs restricted to a singular viral epitope, confirmation with other SIV

epitopes are required before confirming that all SIV-specific CD8+ T cells exhibit tissue spe-

cific clonotypes.

During chronic SIVmac239 infection, the TCR repertoires did not exhibit increased tissue

similarity and showed significantly decreased diversity only in the BAL compared to acute infec-

tion. This differs from previous studies which showed that as SIV infection progresses to chronic

infection, increased sharing of the TCR repertoire between tissues was observed along with

decreased diversity and changes in clonal hierarchy in blood and mucosal tissues [33]. Further-

more, several studies have observed a narrowing of the TCR repertoire during ARV treatment

in SIV and HIV infection, coinciding with reduced antigen presence [20,34]. We observed mod-

est fluctuation of the repertoire throughout infection and with ARV treatment, with the emer-

gence of novel clonotypes and changes in the dominant clones in multiple anatomical sites.

Similar fluctuations have been observed previously among HIV-specific CD8+ T cells during

ARV treatment [35]. These TCR fluctuations may be reflecting the response to emerging variant

epitopes or low levels of viral reactivation during ARV treatment, or identification of existing

clonotypes that were previously below the limit of detection, or recirculation from tissues we did

not sample [36]. Given the emergence of tissue-specific novel clonotypes during chronic infec-

tion with ARV treatment, epitope variants may be disproportionally represented in different

anatomical sites; therefore, analysis of viral sequences in particular tissues are merited.

We also assessed the CMV-specific CD8+ T cell repertoire. Similar to the clonotypic hierar-

chy of SIV-specific CD8+ T cells, CMV-specific CD8+ T cells also exhibited unique clonotypes

in different anatomical sites; thus it is possible that any viral replication within individual tis-

sues over prolonged periods may promote emergence of tissue epitope variants and differences

in dominant epitope variants between tissues. Indeed, these virus-specific CD8+ T cells

revealed similar diversity and tissue similarity, suggesting distinct viruses can induce similar

clonotypic structures during chronic infection.

Given the evidence of tissue-specific clonotypes, we hypothesized that this may correlate

with the presence of a TRM phenotype [25]. However, we did not find a preponderance of a

TRM phenotype among the CD8+ T cells we studied. Indeed, the majority of antigen specific

CD8+ T cells were not CD69+CD103+ regardless of anatomical site or antigen exposure. It is

critical to note that CD103 is not expressed on all TRM [37] and use of another TRM marker

such as CD49a [38] may have identified additional antigen-specific TRM.

Antigen-specific CD8+ T cells exhibit unique, tissue-specific clonotypes during acute infec-

tion, chronic infection and in presence of ARVs, with the TCR repertoire fluctuating through-

out infection. Clonotypes unique to different anatomical sites are likely due to a general

diversifying of the TCR repertoire during infection and are able to persist even when antigen

load is reduced upon ARV treatment. The presence of tissue-specific clonotypes is not unique

to SIV infection, with similar tissue-specificity identified in CMV-specific CD8+ T cells. Clo-

notypes unique to one anatomical site might suggest distinct CD8+ T cell phenotypes in each

tissue, as a relationship between TCR sequence and phenotype has previously been observed

using single cell RNA sequencing [39]. Moreover, unique cues provided within individual tis-

sues may imprint individual phenotypic and functional attributes to antigen-specific CD8 T

cells. These imply that surveying the antigen-specific CD8+ T cell repertoire by only sampling

the blood may prevent identification of multiple TCR clonotypes only present in the tissues.

Therefore, the data presented here suggests that sampling multiple anatomical sites is required

to identify an accurate and comprehensive TCR repertoire in antigen-specific CD8+ T cells.
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Materials and methods

Ethics statement

The National Institute of Allergy and Infectious Diseases (NIAID) animal care and use com-

mittee, as part of the National Institute of Health (NIH) intramural research program,

approved all experimental procedures pertaining to the animals (protocol LVD 26E). The ani-

mals in this study were housed and cared for at the NIH animal center, under the supervision

of the Association for the Assessment and Accreditation of Laboratory Animal Care (AAA-

LAC)-accredited division of veterinary resources and as recommended by the office of animal

care and use nonhuman primate management plan. Care at this facility met the standards set

forth by the animal welfare act, animal welfare regulations, United States fish and wildlife ser-

vices regulations, as well as the guide for the care and use of laboratory animals (8th Edition).

The physical conditions of the animals were monitored daily. Animals in this study were

exempt from contact social housing due to scientific justification, per respective the NIAID/

NIH institutional animal care and use committee (IACUC) protocol, and were housed in non-

contact, social housing where primary enclosures consisted of stainless-steel primate caging.

The animals were provided continuous access to water and offered commercial monkey bis-

cuits twice daily as well as fresh produce, eggs and bread products and a foraging mix consist-

ing of raisins, nuts and rice. Enrichment to stimulate foraging and play activity was provided

in the form of food puzzles, toys, cage furniture, and mirrors.

Study design

For the SIV infection model, nine uninfected Mamu-A�01+ rhesus macaques (Macaca
mulatta) were intrarectally challenged with SIVmac239X or infected i.v with SIVmac239.

Once viral load was detected in the plasma as described [40], animals were sedated with Tela-

zol at 3–4 mg/kg i.m. and peripheral blood, BAL and biopsies of LNs were taken from animals

in acute infection (approximately 10 days to three months after infection), chronic infection

(several months after infection) and between two and seven months after administration of

combination ARVs (S1 Table) as previously described [40]. ARV treatment consisted of a pre-

viously described regimen [41], including the s.c administration of nucleo(s/t)ide reverse tran-

scriptase inhibitors emtricitabine (FTC) and tenofovir disoproxil fumarate [TDF, prodrug of

tenofovir (TFV, PMPA)] with the integrase strand transfer inhibitor dolutegravir (DTG). For

the vaccination model, five SIV-uninfected Mamu-A�01+ rhesus macaques (S2 Table) were

administered, intramuscularly via Pharmajet (Golden, CO, USA), 1 mg of a vaccine consisting

of a DNA plasmid containing the SIV gag gene, driven by the CMV promoter [16]. The SIV-

gag vaccine was administered 5 times to each animal at days 0, 28, 56, 84, and approximately

day 211 post first dose. PBMCs, BAL and biopsies of LNs and jejunum were taken from ani-

mals before and 10 days after final DNA vaccination. For CMV-specific CD8+ T cells, Mamu-
A�02+ rhesus macaques (S3 Table) were identified as being CMV-infected via serology.

PBMCs, BAL and biopsies of LNs and liver were obtained to study the resident CMV-specific

CD8+ T cells. Single-cell suspensions were generated from all blood draws and biopsied tissues

and were used for flow cytometric analysis and sorting. Animal details are included in S1–S3

Tables.

Flow cytometry and sorting SIV-specific CD8+ T cells

Single-cell suspensions were washed twice with PBS (PBMCs) or RPMI 1640 medium supple-

mented with 10% fetal bovine serum, 2 mM l-glutamine, and 1% penicillin/streptomycin (R10

media) (all from HyClone, GE Healthcare Life Sciences). SIV-specific CD8+ T cells were
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identified by CM9 (CTPYDINQM; residues 181–189 of SIV Gag protein) conjugated MHC

Class I Pentamers (Proimmune). CMV-specific CD8+ T cells were identified by AN10

(TTRSLEYKN, residues 279–288 of CMV IE2 protein) and VY9 (VTTLGMALY, residues

134–142 of CMV IE1 protein) MHC-I Pentamers (NIH tetramer facility and ProImmune

respectively) [24]. All tetramers were conjugated to the APC fluorophore. Antibodies against

cell surface markers utilized to identify CD8+ T cells are included in S4 Table. Dead cells were

excluded using Live/dead Aqua dead cell stain kit (ThermoFisher). SIV-specific or CMV-spe-

cific CD8+ T cells were sorted using an S6 Symphony Cell Sorter (BD). CD8+ T cell phenotypes

were also assessed via flow cytometry using a Fortessa cytometer (BD). Primary gating strategy

is displayed in S4 Fig. Flow cytometry data was analyzed in FlowJo 10.8.1.

Clonotype analysis

Between 30 and 10,000 epitope-specific CD8+ T cells were sorted into 100 μL of RNAlater

(MilliporeSigma). Given the oligoclonal nature of the epitope-specific CD8 T cell clonotypic

hierarchy, even analysis of approximately 100 cells has been shown to capture the numbers of

individual clonotypes [30,42–44]. TCR CDR3 regions were amplified without bias using tem-

plate-switch anchored reverse transcription PCR, as described previously [45]. Unique bar-

codes and the P5 and P7 Illumina sequencing adaptors (Illumina) were added to all PCR

products with sequential PCRs. Any samples that failed quality control measures after barcod-

ing were eliminated. Sequences were generated by next-generation sequencing (Illumina) as

previously described [46]. Clonotypes were aligned and TCRΒV and TCRΒJ segments were

identified using MiXCR software (MiLaboratory). All diversity and similarity indices were

determined with VDJTools (Mikhail Shugay). VDJTools was also utilized for graphing of the

V and J segment usage. Graphing of MDS plots was conducted in R Studio v1.3.1056 with raw

data generated from VDJTools. We defined clonotypes by the V and J segment [47] in addition

to the CDR3 amino acid sequence. We define “public” clonotypes as the same clonotype (same

V and J segments and same CDR3 amino acid sequence) found in multiple animals in this

study, and matching clonotypes previously identified in the VDJdb database (https://vdjdb.

cdr3.net). “Shared” clonotypes were those found only in one animal but observed in multiple

tissues. “Private” clonotypes were identified in a single anatomical site in a single animal. TCR

repertoires plots represent all clonotypes that constitute more than 1% of the TCR repertoire.

In instances were only one tissue/animal/timepoint could be obtained and those samples had

insufficient cell numbers or failed quality control measures, the samples were eliminated from

analysis and are absent from the corresponding graphs.

Statistics

All statistical analyses were conducted in Graphpad Prism v8. Statistical analyses of multiple

experimental groups were conducted by one or two-way ANOVAs or mixed effects analysis as

appropriate. Multiple comparisons tests were conducted with each ANOVA or mixed effects

analysis. Significance is defined as p< 0.05. p values of less that 0.05 are denoted as � and p val-

ues of less than 0.01 are denoted as ��.

Supporting information

S1 Fig. The number of SIV-specific CD8+ T cells and V and J segment usage is consistent

throughout SIV infection. PBMCs, LN biopsies and BAL were sampled from SIVmac239X or

SIVmac239-infected rhesus macaques during acute infection, chronic infection and after 2–7

months of ARV treatment. (A) The number of SIV-specific CD8+ T cells in multiple anatomi-

cal sites at all time points, as a percentage of total CD8+ cells. Data are presented as mean with
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SD and individual data points. (B) Heatmap of the V segments of the TCRB genes in multiple

anatomical sites at all time points. (C) Heatmap of the J segments of the TCRB genes in multi-

ple anatomical sites at all time points. Mixed effects analysis was used to determine statistical

significance in (A). n = 7–9 animals.

(TIF)

S2 Fig. The V and J segment usage in TCR repertoires of vaccine-induced SIV-specific

CD8+ T cells across multiple anatomical sites. PBMCs, LN and BAL were sampled from Rhe-

sus macaques who had been administered with SIV-gag DNA vaccine. (A) Heatmap of the V

segments of the TCRB genes in multiple anatomical sites. (B) Heatmap of the J segments of the

TCRB genes in multiple anatomical sites. (C) MDS plot of the TCR repertoires of SIV-specific

CD8+ T cells from multiple anatomical sites. n = 4 animals.

(TIF)

S3 Fig. The V and J segment usage in TCR repertoires of VY9-specific CD8+ T cells in mul-

tiple anatomical sites. PBMCs, LN, liver biopsies, and BAL were sampled from Rhesus

macaques who had been naturally infected with CMV. (A) Heatmap of the V segments of the

TCRB genes in multiple anatomical sites. (B) Heatmap of the J segments of the TCRB genes in

multiple anatomical sites. n = 5 animals.

(TIF)

S4 Fig. Gating strategy for identifying antigen-specific CD8+ T cells. (A) Identification of

CM9 tetramer positive cells via identification of lymphocytes, singlets, live cells, and

CD8+NKG2a- cells. Gating sequence is indicated by black arrows. (B) Gating strategy for iden-

tification of CD69-CD103-, CD69+CD103-, CD69-CD103+ and CD69+CD103+ antigen-spe-

cific (CM9) CD8+ T cells after identification of CM9+ CD8+ T cells (as described in (A)).

Gating sequence is indicated by black arrows.

(TIF)

S1 Table. Animal details—SIV infection study. Details of animals included in the SIV infec-

tion study. “~” denotes viral loads measured 2–3 days before/after the timepoint sampled. “�”

denotes animals that were also used for the vaccination study several months prior to infec-

tion.

(DOCX)

S2 Table. Animal details—SIV vaccination study. Details of animals included in the SIV vac-

cination study.

(DOCX)

S3 Table. Animal details—CMV infection study. Details of animals included in the CMV

infection study.

(DOCX)

S4 Table. Flow cytometry antibodies. List of antibodies used in flow cytometric analysis and

sorting.

(DOCX)
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